

Disclaimer for Deliverables with dissemination level PUBLIC
This document is issued within the frame and for the purpose of the NEMO project. This project has received funding from the European
Union’s Horizon Europe Framework Programme under Grant Agreement No. 101070118. The opinions expressed and arguments employed
herein do not necessarily reflect the official views of the European Commission.
The dissemination of this document reflects only the author’s view, and the European Commission is not responsible for any use that may be
made of the information it contains. This deliverable is subject to final acceptance by the European Commission.
This document and its content are the property of the NEMO Consortium. The content of all or parts of this document can be used and
distributed provided that the NEMO project and the document are properly referenced.
Each NEMO Partner may use this document in conformity with the NEMO Consortium Grant Agreement provisions.

(*) Dissemination level: (PU) Public, fully open, e.g., web (Deliverables flagged as public will be automatically published in CORDIS project’s
page). (SEN) Sensitive, limited under the conditions of the Grant Agreement. (Classified EU-R) EU RESTRICTED under the Commission
Decision No2015/444. (Classified EU-C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified EU-S) EU
SECRET under the Commission Decision No2015/444.

D1.2 NEMO meta-architecture,
components and benchmarking. Initial

version

Keywords:
Meta-OS, meta-architecture, architecture, verification, validation, multi-cluster orchestration

Document Identification
Status Final Due Date 31/08/2023

Version 1.0

Submission Date 31/08/2023

Related WP WP1 Document Reference D1.2
Related
Deliverable(s) D1.1 Dissemination Level (*) PU

Lead Participant SPACE Lead Author Nikos Drosos (SPACE)

Contributors

ATOS, ATOS IT,
ENG, INTRA, TID,
WIND3, SYN, STS,
AEGIS, UPM, ICCS,
RWTH, TSG, MAG

Reviewers

Dimitris Christopoulos,
(FHW)
Wafa Ben Jaballah (TSG)

Ref. Ares(2023)5917399 - 31/08/2023

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 2 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Document Information
List of Contributors
Name Partner
Aitor Alcázar-Fernández ATOS
Victor Gabillon TSG
Antonello Corsi ENG
Andrea Sabatino ENG
Dimitrios Skias INTRA
Panagiotis. Karkazis MAG
Astik Samal MAG
Nikos Drosos SPACE
Emmanouil Bakiris SPACE
Alejandro Muñiz Da Costa TID
Luis Miguel Contreras TID
Fabrizio Brasca WIND3
Gianluca Rizzi WIND3
Antonis Gonos ESOFT
Theodore Zahariadis SYN
Terpsi Velivassaki SYN
Harry Skianis SYN
Konstantinos Psychogyios SYN
Spyros Vantolas AEGIS
Alberto del Rio UPM
Dimitris Siakavaras ICCS
Stefan Lankes RWTH

Document History
Version Date Change editors Changes
0.1 08/05/2023 N. Drosos (SPACE) Table of Contents
0.2 24/05/2023 A. del Rio (UPM), T. Velivassaki

(SYN), K. Psychogyios (SYN), D.
Skias (INTRA), A. Corsi (ENG), S.
Vantolas (AEGIS), S. Lankes
(RWTH), D. Siakavaras (ICCS)

Updates on Section 3

0.3 09/06/2023 A. Alcázar-Fernández (ATOS), A.
Muñiz and LM. Contreras (TID)

Updates on Section 5

0.4 07/07/2023 N. Drosos (SPACE), Th. Zahariadis
(SYN), T. Velivassaki (SYN)

Updates on section 2 and 4

0.5 21/07/2023 P. Karkazis (MAG). A. Samal
(MAG)

Updates on Section 6

0.6 31/07/2023 T. Velivassaki (SYN), N. Drosos
(SPACE)

Contributions to sections 1, 2
and 7

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 3 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

0.7 02/08/2023 D. Skias (INTRA), A. Gonos
(ESOFT), S. Vantolas (AEGIS), N.
Drosos (SPACE), T. Velivassaki
(SYN)

Updates on Section 5

0.8 04/08/2023 N. Drosos (SPACE) Document consolidation;
Ready for peer review

0.8.1 08/08/2023 D. Christopoulos (FHW) Peer review
0.8.2 10/08/2023 W. Ben Jaballah (TSG) Peer review
0.9 30/08/2023 N. Drosos (SPACE), E. Bakiris

(SPACE), A. Muniz (TID), D.
Siakavaras (ICCS), A. Sabatino
(ENG), T. Velivassaki (SYN)

Addressing peer review
comments; Document
finalization

0.91 30/08/2023 N. Drosos (SPACE) FINAL VERSION TO BE
SUBMITTED

1.0 31/08/2023 Rosana Valle (ATOS) Format check & submission
to CE

Quality Control
Role Who (Partner short name) Approval Date
Deliverable leader N. Drosos (SPACE) 31/08/2023
Quality manager R. Valle Soriano (ATOS) 31/08/2023
Project Coordinator E. Pere Pages Montanera (ATOS) 31/08/2023

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 4 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Table of Contents
Document Information ...2

Table of Contents ...4

List of Tables ..6

List of Figures ..7

List of Acronyms ..8

Executive Summary ...11

1 Introduction ..12

1.1 Purpose of the document ..14

1.2 Relation to other project work..14

1.3 Structure of the document ..15

2 Methodology for NEMO architecture ..16

2.1 Defining the purpose for the meta-OS meta-architecture ..16

2.2 Standardization Landscape around (meta-) Architecture Descriptions ..16

2.3 The NEMO meta-Architecture approach ...18

3 Reference Architectures for the IoT, Edge and Cloud Continuum...19

3.1 GAIAX ...19

3.2 IDSA ..19

3.3 BDVA / DAIRO ...22

3.4 Open DEI ...23

3.5 AIOTI ...24

3.5.1 Functional model ... 25

3.6 FIWARE ..26

3.7 H2020 IoT RIA projects ..28

3.7.1 IoT-NGIN .. 28

3.7.2 ASSIST-IoT ... 31

3.7.3 INGENIOUS ... 33

3.7.4 INTELLIOT ... 35

3.7.5 VEDLIOT .. 37

3.7.6 TERMINET ... 38

4 Convergence to the meta-OS meta-architecture ...40

4.1 NEMO Meta-architecture...40

4.2 Rationale ..41

4.3 Entity of interest ...41

4.4 Stakeholders ...42

4.5 Stakeholders’ perspective...42

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 5 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

4.6 Concerns...43

4.7 Viewpoints ...43

4.8 Cross-cutting functions ..48

5 NEMO Architecture ...49

5.1 Network view ...49

5.2 User view ...51

5.2.1 Meta-OS provider .. 52

5.2.2 Meta-OS consumer .. 53

5.2.3 Meta-OS partner .. 54

5.3 Logical view ...54

5.4 Operational view ..55

5.5 Functional view ..56

5.5.1 NEMO Infrastructure Management ... 57

5.5.2 NEMO Kernel .. 64

5.5.3 NEMO Service Management ... 81

5.5.4 NEMO PRESS & Policy Enforcement .. 93

5.5.5 NEMO Federated MLOps ... 96

5.5.6 NEMO Cybersecurity & Unified/Federated Access Control 97

5.6 Process View ..105

5.6.1 Workload Deployment... 105

5.6.2 Workload Migration .. 106

5.7 Development view ...107

5.8 Physical view ...107

6 NEMO Validation & Verification Benchmarking Framework ..108

6.1 Overall Verification and Validation strategy ...108

6.1.1 User Service Validation ... 108

6.1.2 Testing Results .. 108

6.2 Verification and Validation methodology ..109

6.2.1 Testing Approaches ... 110

6.2.2 Testing Categories ... 111

6.2.3 Test Execution phases.. 112

6.2.4 Certification and Labeling ... 112

7 Conclusions ..113

8 References ..114

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 6 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

List of Tables
Table 1: Relation of D1.2 with other NEMO activities. ___ 14
Table 2: The Stakeholders’ perspectives for each Stakeholder ______________________________________ 43
Table 3: The Concerns in the meta-OS meta-architecture ___ 43
Table 4: The Network Viewpoint ___ 44
Table 5: The User Viewpoint ___ 44
Table 6: The Logical Viewpoint ___ 44
Table 7: The Operational Viewpoint __ 45
Table 8: The Functional Viewpoint ___ 45
Table 9: The Process Viewpoint ___ 45
Table 10: The Development Viewpoint __ 46
Table 11: The Physical Viewpoint ___ 46
Table 12: Network elements and concepts in the NEMO meta-OS ___________________________________ 49
Table 13: NEMO functional requirements addressed through the mNCC _____________________________ 61
Table 14: NEMO non-functional requirements addressed through the mNCC _________________________ 63
Table 15: Analysis of the meta-orchestrator elements __ 65
Table 16: Interactions of the meta-Orchestrator with other NEMO components and external entities _______ 67
Table 17: NEMO functional requirements addressed through the meta-Orchestrator ____________________ 68
Table 18: NEMO non-functional requirements addressed through the meta-Orchestrator ________________ 69
Table 19: Interactions of the IMC with other NEMO components ___________________________________ 72
Table 20: NEMO functional requirements addressed through IMC __________________________________ 73
Table 21: NEMO non-functional requirements addressed through IMC ______________________________ 74
Table 22: Analysis of the CMDT elements ___ 76
Table 23: Interactions of the CMDT with other NEMO components _________________________________ 77
Table 24: NEMO functional requirements addressed through the CMDT _____________________________ 78
Table 25: NEMO non-functional requirements addressed through the CMDT _________________________ 78
Table 26: Interactions of the SEE with other NEMO components ___________________________________ 81
Table 27: NEMO requirements addressed through SEE __ 81
Table 28: Interactions of Intent-based API/SDK with other NEMO components and external entities _______ 84
Table 29: NEMO use case requirements addressed through the Intent-based API/SDK __________________ 85
Table 30: Interactions of the Plugin & Applications Lifecycle Manager with other NEMO components _____ 89
Table 31: NEMO requirements addressed through LCM __ 90
Table 32: Interactions of MOCA with other NEMO components ____________________________________ 92
Table 33: NEMO requirements addressed through MOCA __ 92
Table 34: Interactions of the PPEF with other NEMO components __________________________________ 94
Table 35: NEMO pilots requirements correlation with PPEF ______________________________________ 95
Table 36: Interactions of the CFDRL with other NEMO components ________________________________ 97
Table 37: NEMO requirements addressed through CFDRL __ 97
Table 38: Interactions of the IAM component with other NEMO components __________________________ 99
Table 39: NEMO requirements addressed through IAM ___ 100
Table 40: Interactions of the Access Control component with other NEMO components ________________ 102
Table 41: NEMO requirements addressed through the Access Control component _____________________ 102
Table 42: Interactions of the NMB with other NEMO components _________________________________ 104
Table 43: NEMO requirements addressed through NMB ___ 104
Table 44: Common testing approaches ___ 111

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 7 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

List of Figures
Figure 1: NEMO Functional Stack Vision ___ 13
Figure 2: Positioning of the Reference Architecture in the technological and business landscape [9] _______ 16
Figure 3: Conceptual model of Entity’s Architecture Description in ISO/IEC/IEEE 42010:2022 [13] _______ 17
Figure 4: IDS Reference Architecture Model ___ 19
Figure 5: Roles and interactions in the Industrial Data Space ______________________________________ 20
Figure 6: Functional architecture of the International Data Spaces _________________________________ 20
Figure 7: Representations of the Information Model ___ 21
Figure 8: Interactions between components of the functional layer __________________________________ 21
Figure 9: NEMO mapping on the BDV Reference Architecture _____________________________________ 22
Figure 10: Open DEI Reference Architecture Framework ___ 24
Figure 11: AIOTI HLA functional model __ 25
Figure 12: FIWARE Reference Architecture ___ 27
Figure 13: IoT-NGIN Meta-architecture __ 29
Figure 14: Alignment of IoT-NGIN and NEMO meta-architectures _________________________________ 30
Figure 15: ASSIST-IoT conceptual architecture ___ 31
Figure 16: ASSIST-IoT functional view ___ 33
Figure 17: INGENIOUS architecture ___ 34
Figure 18: High-level view of IntellIoT’s logical architecture ______________________________________ 36
Figure 19: VEDLIoT architecture overview __ 38
Figure 20: The TERMINET Architecture __ 39
Figure 21: The NEMO meta-OS meta-Architecture framework _____________________________________ 41
Figure 22: The NEMO meta-architecture viewpoints ___ 47
Figure 23: Transition from Stakeholder Perspectives to Concerns and Viewpoints in the meta-OS MAF ____ 47
Figure 24: Network topology for the NEMO meta-OS __ 50
Figure 25: User view entities and their relations __ 51
Figure 26: Meta-OS provider subroles, activities and aspects ______________________________________ 52
Figure 27: Meta-OS Consumer subroles, activities and aspects ____________________________________ 53
Figure 28: MetaOS Partner subroles, activities and aspects _______________________________________ 54
Figure 29: Logical view of the NEMO metaOS architecture _______________________________________ 55
Figure 30: The functional view of the NEMO metaOS architecture. _________________________________ 56
Figure 31: Initial design of mNCC ___ 58
Figure 32: High-level design of the NEMO meta-orchestrator _____________________________________ 65
Figure 33: High-level design of the NEMO Intent Based Migration Controller ________________________ 71
Figure 34: The CMDT high-level design __ 76
Figure 35: High-level design of the Secure Execution Environment _________________________________ 80
Figure 36: The NEMO Intent-based API __ 82
Figure 37: NEMO Plugin & Applications Lifecycle Manager ______________________________________ 89
Figure 38: The MOCA component and interactions __ 91
Figure 39: PRESS & Policy Enforcement framework logical view __________________________________ 93
Figure 40: The NEMO Cybersecure Federated Deep Reinforcement Learning component _______________ 96
Figure 41: The NEMO Cybersecurity & Unified/Federated Access Control ___________________________ 98
Figure 42: Sequence diagram for workload deployment ___ 105
Figure 43: Sequence diagram for workload migration ___ 106
Figure 44: V&V phases ___ 110

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 8 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms
Abbreviation /
acronym

Description

AAA Authentication, Authorization, and Accounting
ABAC Attribute-Based Access Control
AD Architecture Description
AI Artificial Intelligence
API Application Programming Interface
AR Augmented Reality
BDVA Big Data Value Association
CBAC Context-Based Access Control
CFDRL Cybersecure Federated Deep Reinforcement Learning
CI/CD Continuous Integration & Continuous Delivery/Continuous Deployment
CMDT Cybersecure Microservices’ Digital Twin
CN Core Network
CNCF Cloud Native Cloud Foundation
CNI Container Network Interface
COAP Constrained Application Protocol
CPO Charging Point Operator
CPU Central Processing Unit
DAC Discretionary Access Control
DAIRO Data, AI and Robotics
DLT Distributed Ledger Technology
DN Distinguished Name
DoA Description of Action
DVL Data Virtualization Layer
Dx.y Deliverable number y belonging to WP x
E2E End-to-End
EC European Commission
FI-PPP Future Internet Public-Private Partnership
GDPR General Data Protection Regulation
GPU Graphics Processing Unit
HIL Human-in-the-Loop
HLA High-Level Architecture
HPC High Performance Computing
HTTP Hypertext Transfer Protocol
HW Hardware
IAKM Infrastructure-assisted Knowledge Management
IAM Identity and Access Management
IAS Intent-based API/SDK
IDSA International Data Spaces Association
IIoT Industrial Internet of Things

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 9 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Abbreviation /
acronym

Description

IMC Intent-based Migration Controller
IoT Internet of Things
JTC Joint Technical Committee
K8s Kubernetes
KPI Key Performance Indicator
LCM Life-Cycle Manager
LDAP Lightweight Directory Access Protocol
LSP Large Scale Pilot
MAC Mandatory Access Control
MANO Management and Orchestration
MEC Multi-access Edge Computing
meta-OS Meta-Operating System
ML Machine Learning
mNCC Meta Network Cluster Controller
MOCA Monetization and Consensus-based Accountability
MQTT Message Queuing Telemetry Transport
NFV Network Function Virtualization
NGIoT Next-Generation IoT
NGSI Next Generation Service Interface
NMB NEMO Message Broker
mRA meta-Reference Architecture
OS Operating System
OTP One-Time Password
PPEF PRESS & Policy Enforcement Framework
PRESS Privacy, data pRotection, Ethics, Security & Societal
RAM Random Access Memory
RAN Radio Access Network
Raas Resources as a Service
RBAC Role-Based Access Control
RL Reinforcement Learning
ROS Robot Operating System
RTT Round Trip Time
RuBAC Rule-Based Access Control
SDK Software Development Kit
SDLC Software Development Life Cycle
SDN Software Defined Networking
SDO Standard Development Organization
SD-WAN Software-Defined Wide Area Network
SEE Secure Execution Environment
SLA Service Level Agreement
SLO Service Level Objective
SSD Solid-State Drive
SSO Single Sign-On

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 10 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Abbreviation /
acronym

Description

SUT System Under Test
TEE Trusted Execution Environment
TSN Time Sensitive Networks
UBAC User-Based Access Control
UC Use Case
V&V Validation & Verification
VIM Virtual Infrastructure Manager
VM Virtual Machine
VNF Virtual Network Function
VR Virtual Reality
WASM webassembly
WP Work Package
YAML Yet Another Markup Language

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 11 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Executive Summary
NEMO aims to develop the meta–Operating System (metaOS), which will enable multi-cluster and
multi-network orchestration of containerized workloads across the Internet of Things (IoT), edge and
cloud continuum. As a (meta-)OS, NEMO will be user-centric, facilitating users to develop and deploy
on top of NEMO. Moreover, NEMO will enable cloud and infrastructure providers to integrate their
computing and networking resources into NEMO’s infrastructure.
The present document provides architectural specifications towards achieving this vision. The main
outcomes reported in this deliverable include:

• Definition of the methodology to be followed for the NEMO meta-architecture and architecture
description, adopting the conceptual model defined in ISO/IEC/IEEE 42010 for architecture
descriptions.

• Analysis of notable Reference Architectures which aim at the development of ecosystems in the
continuum.

• Presentation of the NEMO Meta-Architecture Framework (MAF), which can be used as a
reference for the description of metaOS architectures.

• Specification of the first version of the NEMO architecture, following the proposed MAF. This
first version provides specifications for the Network, User, Logical, Functional and Process
views of the architecture.

• Presentation of the NEMO Verification and Validation methodology, which aims to guide the
relevant activities in WP4.

The information and specifications provided in this deliverable aim to guide the development,
integration, validation and pilot activities of the project. Moreover, they may inspire metaOS architects
and developers to build applications, services and plugins for the proposed metaOS.
The future work and updates over the architectural specifications are expected in D1.3 “NEMO meta-
architecture, components and benchmarking. Final version”, due on M24.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 12 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

The future of the digital world is modular and containerized. As digitalization penetrates with increasing
rates in our personal and professional activities, myriads of software pieces arise to complete the puzzle
of our digital well-being, supporting use cases hard to even imagine in the recent past and which demand
their housing in the digital grounds of the connected world. As technology evolves, newer and more
devices spring up, and uninterrupted online presence becomes a necessity. But how to support delivery
of any service, anywhere and anytime?
The response to this is challenging, even in the cloud and edge computing era. Cloud provides virtually
unlimited resources and high availability is considered a commodity. Inherent cloud features, like
elasticity and multitenancy, have allowed production-level delivery of myriads of services, while
providing distinct user’s personal space (tenant). However, advances in technologies, like
Augmented/Virtual/Mixed Reality, as well as advances in image/video resolution (reaching 8K to date)
are just examples that have led to the emergence of applications demanding ultra-low latency. In
addition, the increasing penetration of Artificial Intelligence (AI) has created stiff requirements on
availability and access to large data volumes, raising privacy concerns. Here is where computation and
intelligence at the ‘edge’ came into play and together with advances and enhancements in
communication technologies through 5G & 6G embrace private/local computation and networking,
which aspire to connect seamlessly to various clouds.
This would possibly not have happened without cloud native applications and services. Microservices’
based architectures, i.e. independent, loosely coupled software modules providing small functional
pieces together with the cloud and workloads’ containerization have leveraged the flexible use of
resources while delivering high-QoS (Quality of Service) and high-QoE (Quality of Experience)
services since the cloud-only computing era. Those distinct software pieces, the microservices, may run
at different points (nodes) across clouds and more recently across edges and even IoT devices.
Depending on their design, microservices usually need to communicate in order to form/deliver together
a greater, coordinated application logic.
The next step is on services’/microservices’ deployment and lifecycle management across the various
points of presence of ambient computing, including the cloud, the edge and the IoT planes, in short,
continuum. The orchestration of cloud native containers across the plane of dispersed resources, even
in hybrid cloud settings, relies on container management, as the one delivered through Kubernetes [1].
Kubernetes, or -in short- K8s, allows managing containerized workloads and services, that facilitates
both declarative configuration and automation. That is, through K8s, a single entity may organize the
deployment of their services into clusters of nodes, which may be dispersed in remote locations and
across infrastructure providers.
K8s has dominated the container world, as regards the cloud and servers, including also edge servers.
The challenges that need to be faced now are mainly two. First, the extension of K8s, e.g. through
lightweight distributions, in order to embrace lowest capabilities’ devices. There are already mature
solutions around lightweight K8s, like MicroK8s [2], K3s [3], K0s [4], minikube [5], KubeEdge [6],
which, in the general case, apply to devices of as low as 0.5 GB RAM. However, the integration of least
capable devices is less mature, with some attractive solutions, such as Akri [7], allowing to easily expose
heterogeneous leaf devices (such as IP cameras and USB devices) as resources in a Kubernetes cluster.
The second challenge relates to the seamless execution and coherent orchestration of services and
microservices across K8s clusters, integrating nodes across the IoT, edge and cloud continuum, even
across administrative domains. We need to allow microservices being able to flexibly use the available
resources, while respecting user-defined requirements, PRESS (Privacy, data pRotection, Ethics,
Security & Societal) compliance, while guaranteeing seamless application delivery. This implies that
the microservices composing together the functionality in the context of an application, while each of
them may run at any place in the IoT-edge-cloud continuum, must ensure that the application services
reach the end users at the appropriate (defined) performance, QoS and QoE levels.
NEMO aims to address this challenge by building the meta-Operating System (metaOS), which will
enable multi-cluster and multi-network orchestration of containerized workloads across the IoT, edge

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 13 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

and cloud continuum. As a (meta-)OS, NEMO will be user-centric, facilitating users to develop and
deploy on top of NEMO. Moreover, NEMO will enable cloud and infrastructure providers to integrate
their computing and networking resources into NEMO’s infrastructure.
The functional stack vision of NEMO for this kind of metaOS is depicted in Figure 1.

Figure 1: NEMO Functional Stack Vision

This vision foresees three broad functional layers, which abstract metaOS components’ role into
functional groups, as well as three vertical (cross-cutting) functions, which apply at all metaOS levels.
The functional layers of the NEMO vision include:

• Underlying Technology, which includes the infrastructural elements delivering communication
and network services, as well as the management of those resources. In the metaOS, the role of
this layer includes meta network management, i.e., abstracting and homogenizing resources and
network management for the underlying infrastructure elements.

• NEMO Kernel, which –in correspondence to the Linux Kernel [8]– is the main meta-OS
component, and the core interface between both the virtual and physical infrastructural
resources and the processes, i.e., applications and services running on the metaOS. The NEMO
Kernel is envisioned to support registration and scheduling of the metaOS tasks and processes,
as well as cater for security and privacy preservation during these operations. As the underlying
infrastructure elements can be quite diverse, as well as there can be varying orchestration
clusters, the role of the Kernel is to offer meta-orchestration of the available resources, as a
meta-control plane on top of the existing container orchestration (K8s) clusters.

• NEMO Service Management, which deals with service management from the end-user
perspective following the ZeroOps approach. This layer is envisioned to bring GitOps practices
for managing multi-cluster settings, aiming to address the complexity in integrating cloud and
edge computing, while supporting accountability and development on top of NEMO. This layer
is envisioned to support the plugin architecture for applications and services. With the NEMO
Kernel in the role of the core system, plugins are meant to allow providing additional features
as plugins to the core, providing extensibility, flexibility, and isolation of application or custom
metaOS logic.

• The cross-cutting functions include:

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 14 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

• Cybersecurity and unified/federated access control, which ensures the security of metaOS
operations across the metaOS layers, as well as federated access and identity management across
the metaOS components.

• Data & Services Policy Compliance Enforcement, which ensures that PRESS rules and GDPR,
as well as user-defined rules, are respected across the metaOS layers and components.

• Cybersecure Federated MLOps, which provides inherent integration of Artificial Intelligence
(AI) operations and services into the metaOS, yielding AI-based decisions and or controls
alongside the metaOS. This function aims to support the complete Machine Learning (ML)
lifecycle, e.g., from ML development and training to serving and inference performed within
metaOS components, ensuring AI cybersecurity.

Under this vision, the meta-OS meta-architecture and architecture are defined in this document.

1.1 Purpose of the document
The present document is the second deliverable of Work Package (WP) 1 (D1.2) and reports the
activities of Task 1.2 “NEMO meta-architecture design and components specifications” and Task 1.3
“Benchmarking definition and GDPR/Ethical compliance”. Moreover, D1.2 reports the outcome of
activities which contribute to meeting the following WP1 objectives:

• Analyze the challenges, define the requirements and specification of the NEMO meta-
Architecture.

• Produce the test reports format, parameter, test points and benchmarking for a unified and
reliable outcome.

• Provide continuous technology monitoring on next generation IoT advancements and alignment
with NEMO.

This document aims to provide the first version of the NEMO metaOS meta-architecture, which will
materialize the NEMO vision. In order to achieve this, we first define a methodology for such a
definition, starting by analyzing state of the art flagship Reference Architectures.
Then, we define the NEMO meta-architecture framework (MAF), following the definitions of
ISO/IEC/IEEE 42010 for the architecture framework, slightly adapted to support the meta-architecture
concept. The NEMO MAF includes conventions, principles and practices for the description of a
metaOS meta-architecture and may inspire future metaOS architecture designers.
Moreover, MAF is applied for the NEMO metaOS instantiation. The present document covers most
parts (viewpoints) of the NEMO MAF, while there are references for the ones planned in other NEMO
activities.
Last, but not least, the present document includes an introduction to the NEMO Validation &
Verification (V&V) benchmarking framework, guiding the V&V activities within WP4.

1.2 Relation to other project work
The relation of D1.2 with other NEMO activities is tabulated in Table 1.

Table 1: Relation of D1.2 with other NEMO activities.

WP Relation to D1.2
WP1 D1.2 reports activities conducted within Task 1.2 and 1.3. Moreover, it considered

feedback from D1.1, identifying functional and non-functional requirements, used as input
for the definition of NEMO components’ functionalities in the functional viewpoint of the
architecture. Moreover, the use case scenarios’ definition in D1.1 complement the NEMO
architecture specifications, as they constitute the operational view of the NEMO
architecture.
D1.2 will feed further activities in WP1, providing the first version of the metaOS
architecture, subject to updates in D1.3 “NEMO meta-architecture, components and
benchmarking. Final version”, due on M24.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 15 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

WP Relation to D1.2
WP2 D1.2 aligns to the activities of WP2, reporting the functional specifications for the NEMO

components developed in WP2. D1.2 will provide feedback in future WP2 activities, for
defining the technical specifications (development view) for WP2 components.

WP3 D1.2 aligns to the activities of WP3, reporting the functional specifications for the NEMO
components developed in WP3. D1.2 will provide feedback in future WP3 activities, for
defining the technical specifications (development view) for WP3 components.

WP4 D1.2 aligns to the activities of WP4, reporting the functional specifications for the NEMO
components developed in WP4. D1.2 will provide feedback in future WP4 activities, for
defining the technical specifications (development view) for WP4 components. Moreover,
the process view of NEMO provides feedback for the integration activities which will be
conducted within WP4. D1.2 provides V&V methodology for the NEMO framework
validation, also part of WP4 activities. Such activities will also provide feedback to WP2
for updating D1.2.
Last, but not least, the NEMO metaOS architecture reported in D1.2 will be complemented
by the deployment view, which will be part of future WP4 activities.

WP5 D1.2 provides architectural specifications, which are useful for the instantiation of the
NEMO metaOS in the Living Labs. Thus, D1.2 may be used as a guide to NEMO
deployments on the Living Labs.

WP6 D1.2 reports significant outcomes around the metaOS (meta-)architecture specifications,
which may be used for impact creation, dissemination, communication and exploitation
activities.

WP7 D1.2 provides architectural specifications, which may be useful to Open Call candidates
and winners.

1.3 Structure of the document
This document is structured in 7 major chapters.
Chapter 2 presents the methodology followed by NEMO for the definition of the NEMO MAF and
architecture.
Chapter 3 analyses state-of-the-art reference architectures.
Chapter 4 presents the NEMO MAF.
Chapter 5 presents the NEMO architecture specifications.
Chapter 6 introduces the NEMO V&V framework.
Chapter 7 draws conclusions and next steps.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 16 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

2 Methodology for NEMO architecture

NEMO aims to facilitate design and development of higher-level (meta) operating systems for the smart
Internet of Things with strong computing capacity at the smart device, system and edge-level, embedded
in a compute continuum from IoT-to-edge-to-cloud. The NEMO meta-OS would then provide what
expected by an operating system, such as hardware abstraction, device control, service orchestration and
management, as well as meta-OS functionalities, allowing flexible and seamless communication and
management of services across nodes, whether they belong to cloud, edge or the IoT side.

2.1 Defining the purpose for the meta-OS meta-architecture
The NEMO meta-architecture is conceived as a Reference Architecture on top of existing reference
architectures, which aims to provide guidance on evolving or creating new meta-OS architectures.
Reference Architectures capture knowledge from existing architectures. Based on an elaboration of
mission, vision, strategy, and on customer needs, the Reference Architecture is transformed into an
architecture that provides guidance to multiple organizations that evolve or create new architectures.
Reference Architectures should address technical aspects, business needs, and context. The aim and
positioning of the Reference architecture in the technological and business landscape is depicted in
Figure 2.

Figure 2: Positioning of the Reference Architecture in the technological and business landscape [9]

2.2 Standardization Landscape around (meta-) Architecture Descriptions
ISO/IEC/IEEE 42010:2011 “Systems and software engineering — Architecture description” [10]
addresses the creation, analysis and sustainment of architectures of systems through the use of
architecture descriptions (AD). The standard, which has been revised by ISO/IEC/IEEE 42010:2022
[11], has shifted its focus from the ‘system’ to the ‘entity’, including software, systems, enterprises,
systems of systems, families of systems, products (goods or services), product lines, service lines,
technologies and business domains. It provides the requirements for describing an entity’s architecture
via a set of architecture views and architecture view components (‘models’ in the first edition). This set
is governed by architecture viewpoints and model-kinds, respectively. The second edition introduces
‘Stakeholder Perspectives’ as a means to group ‘Concerns’ and therefore to organize ‘Viewpoints’
framing those ‘Concerns’. This edition also introduces ‘Architecture Aspects’ as characteristics of the
entity of interest that are reflected in Architecture Views.
The standard is domain-neutral and is aimed to be used as the primary reference for specific Architecture
Descriptions, allowing software and system architects to communicate in a common language.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 17 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Figure 3 presents the conceptual model – or “meta model” – of the Architecture Description in terms of
a UML class diagram, as revised in the 2nd edition of the standard. The updates are depicted in purple in
the figure.

ISO and IEC Joint Technical Committee (JTC 1) for information technology, which is a consensus-
based, voluntary international standards group, has identified Meta Reference Architecture and
Reference Architecture for Systems Integration as key components of the work program and has
established an Advisory Group (AG) on this topic, namely AG 8 “Meta Reference Architecture and
Reference Architecture for Systems Integration”. Meta Reference Architecture and Reference
Architecture for Systems Integration needs to provide the highest level of abstraction for multiple
horizontal business domains under a systems-of-systems view, and Meta Reference Architecture and
Reference Architecture should allow business value assessments to select among potential alternative
models and or scenarios. JTC 1 AG 8 aim is to standardize architecture practices across JTC 1. The
group has adopted ISO/IEC/IEEE 42010 as the primary point of reference for the Meta-Reference
Architecture standards its members are developing [12]. The resulting document entitled mRA (for meta
reference architecture) describes a canvas with several viewpoints and model-kinds to provide a
standardised way for architecting reference architectures. It also leverages the concept of patterns, or
reusable artefacts that can be used in the construction of architectures.

Figure 3: Conceptual model of Entity’s Architecture Description in ISO/IEC/IEEE 42010:2022 [13]

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 18 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

2.3 The NEMO meta-Architecture approach
The NEMO meta-architecture definition has been derived, according to the following steps.

• Define architecture objectives.
• Review other architectures, styles and patterns and gather lessons from past experience.
• State architecture principles
• Decide on concepts and mechanisms to ensure architectural integrity and consistency.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 19 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

3 Reference Architectures for the IoT, Edge and
Cloud Continuum

3.1 GAIAX
Gaia-X [14] is a project that aims to create a federated and secure data infrastructure for Europe.
Spearheaded by the European Union and various key industrial players, Gaia-X seeks to establish a
framework that promotes data sovereignty, interoperability, and transparency.
The primary goal of Gaia-X is to build a trusted ecosystem where businesses, organizations, and
individuals can securely store, share, and utilize data in a standardized manner. By fostering data
mobility and enabling secure data exchange, Gaia-X aims to empower European businesses to compete
globally while maintaining control over their data. With its emphasis on privacy, security, and
compliance with European data protection regulations, Gaia-X envisions a future where data is
harnessed as a strategic asset for innovation, economic growth, and societal benefits.
As of 2023, the Gaia-X Association for Data and Cloud AISBL counts more than 340 members and
three working groups. The backbone of the ecosystem are the Gaia-X hubs, which are designed to enable
seamless interoperability between different data infrastructures, allowing businesses and organizations
to leverage diverse data sources while maintaining control over their data assets. It should be noted, that
access to the data hubs or a technical specification on data access is currently not publicly available.

3.2 IDSA
The International Data Spaces Association (IDSA) [15] is a coalition of more than 140 member
companies, a non-profit organization, that share a vision of a world where all companies self-determine
usage rules and realize the full value of their data in secure, trusted, equal partnerships. The goal of
IDSA is a global standard for international data spaces (IDS) and interfaces, as well as fostering the
related technologies and business models that will drive the data economy of the future across industries.
The International Data Spaces initiative proposes a Reference Architecture Model (RAD) for data
sovereignty and related aspects, including requirements for secure and trusted data exchange in business
ecosystems, aiming to establish an international standard.
In compliance with common system architecture models and standards (e.g., ISO 42010, 4+1 view
model), the RAD uses a five-layer structure expressing various stakeholders’ concerns and viewpoints
at different levels of granularity. The general structure of the Reference Architecture Model is illustrated
in Figure 4.

Figure 4: IDS Reference Architecture Model

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 20 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

The model consists of five layers:
The Business Layer specifies and categorizes the different roles, which the participants of the
International Data Spaces can assume, and it specifies the main activities and interactions connected
with each of these roles (Figure 5).

Figure 5: Roles and interactions in the Industrial Data Space

The Business Layer can be used to verify the technical architecture of the International Data Spaces. In
this sense, the Business Layer specifies the requirements to be addressed by the Functional Layer.
The Functional Layer defines the functional requirements of the International Data Spaces, and the
concrete features to be derived from these. A summary of functional requirements is depicted in Figure
6.

Figure 6: Functional architecture of the International Data Spaces

The Process Layer specifies the interactions taking place between the different components of the
International Data Spaces and thus provides a dynamic view of the Reference Architecture Model. The
layer contains three basic processes: 1 – Onboarding; 2 - Exchanging data; 3 - Publishing and using Data
Apps.
The Information Layer defines a conceptual model which makes use of linked-data principles for
describing both the static and the dynamic aspects of the International Data Space’s constituents. The
Information Model has been specified at three levels of formalization. Each level corresponds to a digital
representation, ranging from this high-level, conceptual document down to the level of operational code,
as depicted in Figure 7. Every representation depicts the complete Information Model in its particular
way.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 21 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Figure 7: Representations of the Information Model

 The System Layer is concerned with the decomposition of the logical software components,
considering aspects such as integration, configuration, deployment, and extensibility of these
components.
From the requirements identified on the Functional Layer, three major technical components are
derived:

• the Connector
• the Broker
• the App Store.

How these components interact with each other is depicted in Figure 8. The components are supported
by four additional components:

• the Identity Provider
• the Vocabulary Hub
• the Update Repository

Figure 8: Interactions between components of the functional layer

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 22 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

3.3 BDVA / DAIRO
The Big Data Value Association [16] has been established in 2014 as the private counterpart of the
European Commission in the Big Data Value Public Private Partnership. Since then, the Association has
served the community within and outside the scope of the Partnership and has been instrumental in
developing research and innovation agendas and roadmaps, guidelines for industry and policy makers,
and in creating a forum for knowledge sharing and discussions on Big Data, Data Value and Data-driven
AI at the EU level.
In 2020 and taking into account the end of the 2014-2020 Multi Annual Financial Framework and the
advent of the post 2020 European Commission’s programmes (i.e. Horizon Europe and Digital Europe),
BDVA members decided to strengthen the Association by giving it a new mandate, a new name and by
expanding its scope and breadth of activities. In 2021, BDVA thus became DAIRO. DAIRO stands for
Data, AI and Robotics (DAIRO). This new name testifies the ambition of the Association to closely
collaborate with other communities in order to jointly engage at the intersection of the key disciplines
of Data, AI and Robotics.

The Big Data Value (BDV) Reference Model is a reference framework defined by the European Big
Data Value Association (BDVA) in their Strategic Research and Innovation Agenda (SRIA) that
describes logical components of a generic big data system. The BDV Reference Model is composed of
horizontal and vertical concerns. Horizontal blocks refer to the data processing value chain, from data
acquisition to data visualization. Whilst, vertical blocks address cross-cutting issues, which may affect
all the horizontal concerns.

Figure 9: NEMO mapping on the BDV Reference Architecture

Although BDV Reference Model has no ambition to serve as a technical reference structure, the
presented model is compatible with NEMO. As illustrated in Figure 9, NEMO functional elements can
be easily mapped on the BDV RM. More specifically, the alignment of NEMO meta-OS towards the
BDV RA’s Horizontal and Vertical concerns is listed below:

• Data Visualization and User Interaction is also promoted in NEMO especially through
DevZeroOps services that aim to provide to the NEMO user an intent-based SDK/API in a sense
of an interactive interface.

IoT, micro-services
& applications data

Smart IoT Devices IoT/Edge 5G Core Network
& Resources control

DevZeroOps PaaS

Cloud/Edge/IoT continuum
Meta-Network Controller

Cybersecure
Federated MLOps

Data & Services Policy
Compliance Enforcement

E2E policy, SLO-based
optimization

NEMO Kernel,
meta-Orchestrator
Distributed μservices

Monetization &
Consensus Accounting
Distributed Ledger, BC

Intent Based SDK
Cybersecure Micro-
services Digital Twins

Cybersecurity &
Unified/Federated
Access Control

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 23 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

• Data Processing is driven by the NEMO Kernel and the NEMO meta-Orchestrator, which
enforce optimization and scalability techniques to the deployed micro-services.

• Data Analytics in NEMO feed the Cybersecure Federated Deep Reinforcement Learning (CF-
DRL) and the PRESS framework providing for the Service Level Objective (SLO)-based
optimization of the NEMO micro-services.

• Data Protection in NEMO is realized through Data & Services Policy Compliance Enforcement
tools such as PRESS. PRESS in NEMO includes privacy protection and anonymization
monitoring mechanism facilitating data protection in the meta-OS.

• Data Management techniques in NEMO are provided through the Monetization and Consensus-
based Accountability (MOCA) where Distributed Ledger Technology (DLT) technology
verifies data integrity.

• Cloud and high-performance computing in NEMO is facilitated on one hand by the NEMO
Kernel layer which optimally orchestrates the deployed NEMO services and on the other,
through the meta-Network Cluster Controller which facilitates the transparency of the
underlying infrastructure that covers the complete IoT/Edge/Cloud continuum.

• Smart IoT and Edge (and cloud) devices and applications are the main source of data for NEMO.
• Development – Engineering and DevOps is aligned with NEMO’s DevZeroOps Platform as a

Service framework which aims to provide to the user DevOps automation at the highest degree.
• Communication and connectivity in NEMO are based on the underlying infrastructure that

covers the whole IoT/Edge/Cloud continuum and is orchestrated by the meta-Network Cluster
Controller. In addition, 5G core network and resource control mechanisms are also part of the
NEMO meta-OS.

• Finally, Cybersecurity and Trust in NEMO is addressed by various components namely, PRESS
framework and CF-DRL. In NEMO’s reference architecture, Cybersecurity and Unified
Federated Access Control is a vertical functionality as well. This means that is inherently
incorporated in all of the horizontal layers of NEMO meta-OS architecture.

3.4 Open DEI
The digital transformation strategy of the European Union has, among others, a particular priority: the
creation of common data platforms based on a unified architecture and an established standard. As part
of the Horizon 2020 programme, the OpenDEI project [17] focused on “Platforms and Pilots” to support
the implementation of next generation digital platforms in four basic industrial domains, namely
Manufacturing, Agriculture, Energy and Healthcare.
The project’s aim has been to enable a unified data platform, to create large scale pilots and contribute
to a digital maturity model, to build a data ecosystem and to strive for standardisation.
The four domains on which Open DEI focuses are very closely related to the cloud-to-edge-to-IoT
continuum since in all of them there is extensive use of sensors/drones/robots and/or other IoT devices
which generate a large amount of data which needs to be stored and processed in different levels of the
cloud-to-edge-to-IoT continuum.
Open DEI suggests a Reference Architecture Framework (RAF) for integrated data-driven services for
Digital Transformation pathways, to guide their planning, development, operation and maintenance by
adopting organizations. Open DEI RAF is depicted in Figure 10 and provides a modular conceptual
model, which comprises loosely coupled service components interconnected through a shared common
data infrastructure.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 24 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Figure 10: Open DEI Reference Architecture Framework

Regarding the connection with NEMO, Open DEI RAF considers distinct services in the IoT, edge and
cloud continuum, which could be flexibly orchestrated by the NEMO meta-OS. It also provides a
reference for integrating data spaces concept into the meta-OS.

3.5 AIOTI
The Alliance for IoT and Edge Computing Innovation (AIOTI) [18] aims to lead, promote, bridge and
collaborate in IoT and Edge Computing and other converging technologies research and innovation,
standardisation and ecosystem building, providing IoT and Edge Computing deployment for European
businesses creating benefits for European society.
Within the AIOTI Standardisation Working Group, a High-Level Architecture (HLA) for IoT has been
proposed, which aims to address the challenges of architectural convergence and interoperability in the
IoT domain. It recognizes the need to align with existing standard development organizations (SDOs),
alliances, and consortia to promote a unified approach. The HLA intends to provide a foundation for
standardization activities and accommodate the requirements of AIOTI Large Scale Pilots.
The main objectives of the HLA proposal are:

• Converging Architectures: The proposal seeks to align with existing efforts from SDOs,
alliances, and open-source projects to promote convergence and interoperability across different
IoT architectures.

• Large Scale Pilots (LSP): The HLA aims to serve as a framework for AIOTI Large Scale Pilots,
enabling the incorporation of feedback from working groups involved in pilot projects.

• Incremental Development: The proposal adopts an incremental approach, avoiding duplication
of existing standards and projects, allowing flexibility, and supporting evolution over time.

The HLA proposal leverages the ISO/IEC/IEEE 42010 standard, which provides guidelines for
describing architectures. This standard serves as a reference for capturing and organizing architecture
descriptions. The proposal focuses on two key models: the Domain Model and the Functional Model.
The Domain Model is derived from the IoT-A (Internet of Things Architecture) Domain Model. It
captures the main concepts and relationships within the IoT domain. The model highlights the
interaction between a User and a physical entity (Thing), mediated by an IoT Service and an IoT Device.
Emphasis is placed on semantic interoperability and the inclusion of metadata to consistently describe
things.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 25 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

The Functional Model defines the functions and interfaces within the IoT domain. It is structured into
three layers: Application, IoT, and Network. Each layer represents a set of modules that provide specific
services. The Application layer focuses on user-application interaction, the IoT layer handles device-
service interaction, and the Network layer facilitates network connectivity and communication between
devices and services.
In addition, the HLA emphasizes the digital representation of physical things as IoT Entities. These
entities enable services such as discovery, actuation, and measurement. The proposal acknowledges that
multiple representations of a physical thing can exist based on user needs, and these representations can
coexist within an IoT system.
Security and management are critical aspects of IoT systems. The proposal suggests that security and
management functionalities should be intrinsic to interface specifications. It highlights authentication,
authorization, and encryption as essential security features. Additionally, the proposal addresses various
management aspects, including device and gateway management, infrastructure management, data life
cycle management, digital rights management, and compliance management.
Identifiers play a crucial role in identifying components within IoT systems. The proposal categorizes
identifiers into Thing, Application & Service, Communication, User, Data, Location, and Protocol
identifiers. It recognizes the existence of diverse identification schemes and suggests that IoT
applications should accommodate different schemes based on specific requirements and contexts.
In conclusion, the proposal for an HLA for IoT within the AIOTI WG Standardisation presents a
comprehensive framework for achieving architectural convergence and interoperability. It builds upon
the ISO/IEC/IEEE 42010 standard, emphasizes the Domain Model and Functional Model, addresses
security and management considerations, and provides guidance on the use of identifiers within IoT
systems. The proposal aims to collaborate with existing standards bodies, align with ongoing projects,
and support the development of AIOTI Large Scale Pilots.

3.5.1 Functional model

The AIOTI functional model provides a framework for describing the functions and interfaces within
an IoT system. It emphasizes that the functions described in the model do not dictate any specific
implementation or deployment approach. In other words, the model does not assume that each function
must correspond to a physical entity in an operational setup. Instead, it allows for the grouping of
multiple functions within a single physical equipment in practical implementations.

Figure 11: AIOTI HLA functional model

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 26 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

The model is depicted in Figure 11, referred to as the "AIOTI HLA functional model." It presents a
high-level overview of the various functions involved in an IoT system. Let's delve into the functions
depicted in the figure:

• App Entity: An App Entity represents an entity in the application layer that implements the logic
of IoT applications. It can exist within devices, gateways, or servers, and there is no
predetermined assumption of a centralized approach. The App Entity encapsulates the specific
application functionalities and can be tailored to different use cases. For example, it could
represent a fleet tracking application entity or a remote blood sugar monitoring application
entity.

• IoT Entity: An IoT Entity represents an entity in the IoT layer that exposes IoT functions either
to App Entities via Interface 2 or to other IoT entities via Interface 5. The IoT Entity serves as
a bridge between the application layer and the underlying IoT infrastructure. It encompasses a
wide range of functions such as data storage, data sharing, subscription and notification
mechanisms, firmware upgrades, access right management, location services, analytics,
semantic discovery, and more. The IoT Entity utilizes the data plane interfaces of underlying
networks (Interface 3) for sending and receiving data. It may also access control plane network
services (Interface 4) for tasks like location or device triggering.

• Networks: Networks represent the underlying connectivity infrastructure of the IoT system.
These networks can be realized using various technologies such as Personal Area Networks
(PAN), Local Area Networks (LAN), Wide Area Networks (WAN), and others. Networks are
composed of interconnected administrative network domains, and the Internet Protocol (IP)
often serves as the common interconnection mechanism between heterogeneous networks.
Depending on the requirements of App Entities, the network may offer best-effort data
forwarding or premium services with Quality of Service (QoS) guarantees, including
deterministic guarantees for specific flows.

The AIOTI functional model also outlines the interfaces between these functions:
• Interface 1: This interface defines the structure of data exchanged between App Entities. The

actual connectivity for data exchange on this interface is provided by the underlying Networks.
Examples of data exchanged through Interface 1 include authentication and authorization
details, commands, measurements, and more.

• Interface 2: Interface 2 enables access to services exposed by an IoT Entity. App Entities can
use this interface to register, subscribe for notifications, consume or expose data, and interact
with IoT functions provided by the IoT Entity.

• Interface 3: Interface 3 facilitates the sending and receiving of data across the Networks to other
entities within the IoT system. It serves as the data plane interface, ensuring the seamless
transfer of information between different components.

• Interface 4: This interface enables the IoT system to request network control plane services.
These services could include device triggering (similar to "wake on LAN" in IEEE 802), device
location (including subscriptions), establishment of QoS bearers, and deterministic delivery for
specific flows.

• Interface 5: Interface 5 enables the exposing and requesting of services between IoT Entities. It
allows entities to exchange data and services with each other. For instance, a gateway may use
this interface to upload data to a cloud server or retrieve software images of gateways or devices.

The AIOTI HLA is highly relevant to NEMO, as it represents a family of IoT systems which can be part
of the meta-OS. The IoT and Network Layer relate to the infrastructural elements of NEMO, that can
have monitoring interest for the meta-OS as potential nodes and network management elements. Also,
the application layer provides workload that can be hosted and orchestrated across the meta-OS nodes.

3.6 FIWARE
FIWARE [19] has been a flagship project of the Future Internet Public-Private Partnership (FI-PPP)
program, a joint action by the European Industry and the European Commission. FIWARE

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 27 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Community’s current mission is to “build an open sustainable ecosystem around public, royalty-free
and implementation-driven software platform standards that ease the development of new Smart
Applications in multiple sectors”. FIWARE realizes this vision via open-source Generic Enablers (GE)
or Domain Specific Enablers, which support generic or domain specific functions, respectively.
The Reference Architecture of FIWARE is designed to provide a flexible and scalable framework for
developing smart applications and services in the context of the IoT and data-driven solutions. It follows
a modular approach, where different components work together to enable the processing, management,
and utilization of data in real time.
At the core of the FIWARE architecture is the Context Management layer. It consists of the Context
Broker, which acts as a central repository for managing and storing context information. The Context
Broker follows the Next Generation Service Interface (NGSI) standard and provides a uniform API for
accessing and manipulating context data. It enables real-time updates, retrieval, and querying of context
information from various sources.
Building upon the Context Management layer, FIWARE offers various tools and components for Data
Processing and Analysis. This includes components for real-time data processing, data fusion, and
complex event processing. These components allow for real-time analysis and extraction of valuable
insights from the context data. They can perform tasks such as data aggregation, filtering, correlation,
and pattern recognition, enabling intelligent decision-making and triggering of actions based on the
analyzed data.

Figure 12: FIWARE Reference Architecture

FIWARE supports the publication and subscription of context information through its Data Publication
and Subscription mechanisms. Publishers can push data updates to the Context Broker, while subscribers
can express their interest in specific context data and receive notifications when changes occur. This
pub/sub model allows applications and services to efficiently consume and react to real-time data
changes, facilitating dynamic and responsive behavior.
To facilitate the integration of IoT devices and systems, FIWARE includes IoT Agents. These agents
handle device registration, discovery, and communication with the Context Broker. They support
various communication protocols, such as Message Queuing Telemetry Transport (MQTT), Constrained
Application Protocol (CoAP), Hypertext Transfer Protocol (HTTP), and provide a standardized way to
connect and manage IoT devices. IoT Agents ensure interoperability and ease the process of
incorporating diverse IoT devices into the FIWARE ecosystem.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 28 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Security is a crucial aspect of the FIWARE architecture. It incorporates mechanisms for Security and
Access Control to protect data and ensure controlled access. This includes features such as
authentication, authorization, and secure communication between components. Access control policies
can be defined to restrict data access based on user roles and permissions, ensuring data privacy and
confidentiality.
FIWARE provides a set of tools, APIs, and frameworks to enable the development of applications on
top of the platform. This Application Enablement layer includes features for data visualization, user
interface development, and application logic implementation. It allows developers to build user-friendly
interfaces, create innovative applications, and leverage the power of the underlying FIWARE
components.
The FIWARE architecture is designed to be cloud-friendly and supports deployment on various cloud
platforms. It offers compatibility with popular cloud services and can seamlessly integrate with other
cloud-based applications and infrastructure. This allows for scalability and flexibility in deploying
FIWARE-based solutions, leveraging the advantages of cloud computing.
The modular and extensible nature of the FIWARE architecture empowers developers to select and
combine the components that best suit their application requirements. It promotes interoperability,
scalability, and reusability, enabling the development of robust and flexible smart solutions in various
domains, including smart cities, agriculture, industry, and transportation.
The FIWARE RA may accommodate a lot of IoT systems, which may run on top of NEMO,
implementing the FIWARE conceptual model. In addition, individual elements, such as the Context
Broker and IoT agent could be interesting for data collection from IoT nodes participating in the meta-
OS.

3.7 H2020 IoT RIA projects
In the following, reference architectures proposed by EU research and innovation actions, aiming to
accommodate next-generation IoT systems are presented. The architecture proposals by IoT-NGIN [20],
ASSIST-IoT [21], INGENIOUS [22], INTELLIOT [23], VEDLIOT [24] and TERMINET [25] projects
are presented.

3.7.1 IoT-NGIN
H2020 IoT-NGIN project has defined a patterns-based meta-architecture [26] [27] for next-generation
IoT systems. The meta-architecture is aimed to act as an architectural map for IoT platforms and
services, accommodating both existing, legacy IoT architectures, as well as next-generation IoT
architectures.
The meta-architecture is designed around four key artifacts, namely the IoT Architectural Pattern
Vertical, the Domain Horizontal, the Quality Vertical, and the Element View. The Elements view of the
meta-architecture view is depicted in Figure 13.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 29 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Figure 13: IoT-NGIN Meta-architecture

The IoT-NGIN meta-architecture is organized in the following elements, each of which groups a set of
functionalities for IoT systems.
The Things functional group contains the elements related to the management, orchestration and proper
application support of the far-edge IoT devices.
The Fog-Edge functional group refers to the ability of a platform to support, at edge or fog level, the
execution of computationally (CPU- or GPU-wise) expensive applications on behalf of the platform-
interfacing IoT devices.
The Analytics functional group is meant to support the ingested data refinement and transformation into
valuable information insights through data analytics processes and assistive technologies.
The elements of the Automation functional group are related to enabling the automation perspective of
a next-generation, edge-friendly IoT platform, catering on one hand on the proper operated services
exposure and, on the other, on the management of the platform, per se, and of its hosted applications.
These elements aim to support automation of infrastructure and application provisioning, integration,
and management.
The Infrastructure functional group contains elements related to the entirety of the infrastructure
supporting the IoT platform bootstrapping, configuration, management and, in general, operation.
The Cloud subgroup refers to the seamless integration of cloud and edge resources, enabling tasks
offloading to the cloud.
The Container as a Service subgroup elements ensure that effective infrastructure resources
management and coordination is possible, including Cluster management per se, Container operations
(hosting and deploying containers), Container security and image repositories, actively supporting the
Container Orchestration element of the Automation functional group. This subgroup comprises
functionalities that are common in cloud-native environments as well.
The 5G Network subgroup addresses networking needs existent at the core of edge-oriented platforms,
interconnecting the physical world (devices, things) with the digital one (edge infrastructures), ensuring
real-time data handling in a secure and trusted manner.
The Federation functional group targets at scalability, availability, and stability of the next generation
of IoT services as well as sovereignty and transparent control of data and data streams. This group relates
to ensuring controlled but also effective data access. The term “Federation” implies platform consistency
across the entirety of the operations of the platform at computational level, also known as workloads.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 30 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

The Workloads functional group addresses consistency in the offered web services and the data
management lifecycle towards effective interoperability. Under this group, the exposed Services group
is identified, building up the core of the IoT platform computational environment, including the core
platform services and the hosted (user-oriented) ones. In addition, the Workloads/Middleware subgroup
elements focus on the interoperability potential of the platform, considering both classical client-server,
HTTP-based protocols and other friendlier to IoT scopes technologies, relevant to self-organization and
data security and sovereignty. Last, but not least, the Data subgroup enables low-level data operations,
per se, both from an infrastructural point of view but also from the data and metadata management
perspective.
The meta-architecture of IoT-NGIN collects key quality requirements, architectural patterns and high-
level system components aiming to provide an overall framework for individual system
implementations. The motivation is to enable reuse of existing IoT technologies and solutions to new
domains and assist structured, informed IoT platform design.
As IoT-NGIN has contributed the meta-architecture for designing IoT ecosystems, it can be related to
the NEMO meta-OS meta-architecture, mainly through the infrastructure part, which on the IoT/
edge/cloud communication side is similar, while most of IoT-NGIN processes can be considered as
services running on top of the meta-OS. Figure 14 depicts the relation among the two meta-architectures.

Figure 14: Alignment of IoT-NGIN and NEMO meta-architectures

As shown in the figure, the Things and Fog-Edge elements of the IoT-NGIN meta-architecture can be
seen as meta-OS nodes in NEMO, while Infrastructure element includes the NEMO functionalities
related to infrastructure, communication and network management. The Workloads and Analytics parts
offer candidate workloads to run on top of NEMO. The Automation and Federation elements are covered
by the NEMO Kernel, supporting the functions included here and additional ones which offer flexible
orchestration, configuration, automation and lifecycle management through DevZeroOps methods.

meta-OS nodesIoT/Edge/5G
Resource Control

NEMO Kernel

NEMO workloads
(containers)

NEMO Kernel

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 31 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

3.7.2 ASSIST-IoT
The ASSIST-IoT architecture was designed considering multiple inputs including (i) the current trends
integrating IoT technologies with complementary ones like Edge Computing, Artificial Intelligence and
SDN/NFV paradigms; (ii) the expertise of the consortium partners; (iii) the outcomes of previous and
concurrent projects as well as of Standards Developing Organisations (SDOs); (iv) extensive research
of innovative concepts to improve current performance and scalability of IoT architectures. This
architecture was deeply influenced by three architectures, namely the ones provided by the IoT European
Large-Scale Pilots (LSP) programme [4], the OpenFog consortium [5], and AIOTI HLA [6].
In the initial stages of developing the ASSIST-IoT, one of the primary decisions was to adopt a layered
approach for its Next-Generation IoT (NGIoT) blueprint. This choice was primarily driven by the desire
to represent its functionalities and properties in a straightforward manner. Specifically, the conceptual
architecture is based on a multidimensional strategy, where horizontal Planes intersect with Verticals,
allowing for increased modularity. Planes serve as collections of functions that can be logically stacked
upon each other. For instance, when sensor-generated observation data is involved, it needs to traverse
through the Smart network and control plane before being processed on the Data management plane.
Eventually, it is presented to end-users through a graphical interface on the Applications and services
plane. It is important to note that not all information is required to pass through all Planes. In fact, edge
devices belonging to the Device and edge plane often perform functions like filtering out necessary data
or aggregating it, ensuring that only relevant information is forwarded. It's worth emphasizing that the
concept of Planes in ASSIST-IoT should not be confused with the traditional protocol stack approach
(similar to OSI model). Instead, it should be seen as an intelligent categorization of logical functions
that fall within various plane domains.
In contrast, Verticals encompass essential system properties or aspects that intersect with the overall
architecture, along with functions that address specific Next-Generation IoT properties. For instance,
even if a comprehensive identity and authorization stack is implemented, security measures should be
extended across all Planes, ranging from the network to application code.

Figure 15: ASSIST-IoT conceptual architecture

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 32 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

The ASSIST-IoT conceptual architecture is presented in Figure 15, while the horizontal planes and
verticals are described in more detail as follows.
Horizontal Planes:

• Device and edge plane refers to the grouping of functions that can be logically assigned to
physical components within the realm of IoT. This encompasses various entities, such as smart
devices, sensors, actuators, wearables, edge nodes, and network hardware like hubs, switches,
and routers. Therefore, in addition to incorporating the physical elements responsible for the
computing and networking infrastructure, this plane also encompasses the functionalities
necessary for conducting local intelligent analysis, executing actions, and either pre-processing
or elevating data to services in the upper Planes.

• Smart network and control plane oversees the virtual and wireless components of network
connectivity. It encompasses essential functions that involve technologies facilitating software-
based and virtualized networks, such as SD-WAN (Software-Defined Wide Area Network),
NFV (Network Function Virtualization), and MANO (Management and Orchestration). This
plane follows an access-network-agnostic approach, offering a high level of flexibility in
network connections. It provides features like dynamic network configuration, routing,
tunnelling, and intelligent firewalling at an advanced level.

• Data management plane is responsible for overseeing all functions associated with a virtual
shared data ecosystem. Within this ecosystem, data is acquired, delivered, and processed to
facilitate crucial data-related operations. This encompasses various mechanisms, such as data
routing (moving data between computation nodes and/or services), ensuring interoperability
(semantic compatibility), and storage, among other relevant functions.

• Application and services plane represents the culmination of the Planes, encompassing end-
user and administrative functions as well as various services. It serves as an abstraction layer
that leverages the capabilities provided by the underlying Planes, combining them to deliver
synergistic value for the entire system. This plane offers valuable insights through user-centric
and tactile interfaces, granting users and third-party systems access to the system's
functionalities.

Verticals:
• Self-* refers to a collection of features that offer autonomous or semi-autonomous capabilities

across various dimensions. Specifically, the self-* vertical encompasses different capabilities,
including self-diagnosis and self-healing, which enable the autonomous detection and resolution
of faulty elements. Additionally, it includes self-configuration and self-provisioning, allowing
for the autonomous configuration and provisioning of resources in anticipation of potential
increased demand based on statistical predictions, among other capabilities.

• Interoperability is a system's ability to work well internally and with external entities. It
involves different levels: technical (making it technologically possible), syntactic (allowing data
exchange despite different interfaces and languages), and semantic (ensuring shared
understanding with precise meanings).

• Security, Privacy, and Trust vertical aims to provide important functionalities within the
architecture. This includes authorized device registration, secure data sharing, protected storage,
and mechanisms to address cyber threats. It's crucial to carefully analyze these aspects, as any
flaws can hinder the system's adoption.

• Scalability is crucial for an NGIoT deployment to adjust to different workloads, performance
levels, costs, and business needs. It requires flexibility in hardware, software, and
communications to accommodate changing requirements and support diverse options. This
adaptability ensures the system can meet evolving business needs effectively.

• Manageability involves configuring system elements, such as computation nodes, and
deploying, configuring, and terminating functionalities across the Planes and Verticals. Ease of
use is important for adoption. It also ensures proper interfacing of features, enabling the creation
of complex services for specific use cases.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 33 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Additionally, the Functional View (or Logical View), depicted in Figure 16, allows to expose the
functionalities required to fulfill the user needs and address the stakeholders’ concerns. It describes the
main system’s functional elements, their responsibilities, interfaces, and primary interactions.

Figure 16: ASSIST-IoT functional view

3.7.3 INGENIOUS
The iNGENIOUS architecture is depicted in Figure 17. It comprises four layers. The initial three layers
encompass hardware, heterogeneous networks, and data management and analytics services. On top of
these, the fourth layer accommodates applications that rely on the underlying iNGENIOUS components
for their functionalities.
The bottom layer of the iNGENIOUS architecture is known as the "things" layer. It encompasses various
IoT devices, including sensors and actuators. These devices interact with the physical world in both
static and mobile conditions, such as being part of a vehicle or attached to a shipping container. To
function as IoT devices, sensors and actuators require embedded computers and network communication
hardware. These information-technology components are also part of the bottom layer, with items like
wireless modems located at the boundary to the network layer.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 34 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Figure 17: INGENIOUS architecture

Data Management & Application Layers: IoT devices vary not only in terms of their Radio Access
Network (RAN), but they are also connected through multiple, incompatible machine-to-machine
(M2M) platforms that cater to the diverse stakeholders in the heterogeneous supply chain. Data
generated by the IoT devices flows from the network layer into these distinct M2M silos. The
iNGENIOUS Data Virtualization Layer (DVL) makes data from all M2M platforms accessible using
one common interface. Therefore, the DVL facilitates complete tracking and monitoring of all supply
chain assets, along with data-driven predictions and optimizations. The DVL also plays a crucial role in
maintaining the integrity of supply chain data by recording it in distributed ledger networks. The
iNGENIOUS architecture supports multiple Distributed Ledger Technology (DLT) systems. This
responsibility is carried out by a Cross-DLT Layer, which leverages Telefonica's TrustOS to virtualize
the DLTs and securely record all transactions passing through the DVL.
IoT Network Layer: Due to the varied and diverse purposes served by IoT devices, there is no universal
solution for connecting them to a network. While wired connections may be suitable for devices
operating in fixed locations, wireless connections are primarily required, especially in logistics
scenarios. Depending on factors like device type, energy constraints, and operating environments,
different radio technologies must be utilized. Therefore, the iNGENIOUS architecture needs to support
heterogeneous networks that can address the multi-dimensional requirements of bandwidth, latency,
range, reliability, and energy efficiency. In addition to 3GPP networks, the bottom layer of the
iNGENIOUS architecture incorporates non-3GPP networks, which are connected through a smart IoT
gateway. The iNGENIOUS partners also contribute Radio Access Technology (RAN) that allows for
adaptable PHY/MAC implementations. To support use cases like transportation-platform health
monitoring and container shipping, satellite connectivity is an essential component of the iNGENIOUS
network layer.
IoT Things layer: This layer encompasses IoT devices, including sensors and actuators. These devices
interact with the physical world in both static and mobile conditions, such as when they are integrated
into vehicles or attached to shipping containers. To function as IoT devices, sensors and actuators require
embedded computers and network communication hardware. These information-technology

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 35 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

components are also part of the bottom layer, with items like wireless modems positioned at the
boundary between the "things" layer and the network layer. Most “thing” components are only needed
for specific use cases, but representatives of generic classes such as sensors or actuators are always
present.

3.7.4 INTELLIOT
IntellIoT is a European Research and Innovation project that fosters development of humanized IoT and
AI devices and systems. The initiative aims to facilitate a competitive ecosystem and to strengthen the
European market in finding solutions applicable in healthcare, agriculture and manufacturing. Enabling
technologies such as 5G, cybersecurity, distributed technology, Augmented Reality and tactile internet,
the project champions end-user trust, adequate security and privacy by design.
The description of the IntellIoT’s architecture is based on the 4+1 Architectural View Model, which
aligns with the approach that is followed by NEMO for describing its meta-OS architecture. IntellIoT’s
architecture is established up three core pillars that are key to for the project’s concept namely,
Collaborative IoT, Human-in-the-loop and Trustworthiness. In addition, five (5) core component groups
have been identified, with individual components falling into one of them. The groups are described
below:

• Collaborative IoT enablers: This group contains the components that realize IntellIoT’s
Collaborative IoT pillar, focusing on the cooperation of various semi-autonomous entities
(tractors, robots, healthcare devices, etc.) to execute multiple IoT applications.

• Human-in-the-Loop enablers: This group contains the components involved in IntellIoT’s
Human-in-the-Loop (HIL) pillar, which focuses on involving the human in the process, when
necessary, in order to solve complex situations that the system does not yet know how to handle.

• Trust enablers: This group involves components that are part of IntellIoT’s Trust pillar. This
pillar focuses on privacy, security, and ultimately building trust into the IntellIoT framework.

• Infrastructure management: This group is comprised of the computation and communication
infrastructure and its management capabilities, which enable the deployment and management
of edge applications.

• Use-Case deployment: This group involves all components which are Use-Case specific, (i.e.,
pertaining to the use case environment deployment), such as edge devices and their hardware,
edge apps, and edge AI models.

The first 4 groups are comprised from use-case agnostic enablers that constitute the core IntellIoT
framework, and which are potentially usable in NG-IoT use cases. Figure 18, illustrates the
aforementioned thematic entities that concern project’s implemented enablers.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 36 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Figure 18: High-level view of IntellIoT’s logical architecture

Elaborating on the high-level alignment between NEMO and IntellIoT and in an attempt to identify
high-level similarities, where applicable, it is evident that the distribution of AI components across the
system and within the system’s components is one of the common characteristics of both projects’
architecture. In IntellIoT, the kernel of the system-wide AI components is the Hypermedia Multi-Agent
System (MAS) infrastructure.
The Infrastructure-assisted Knowledge Management (IAKM) which is located in the IntellIoT
infrastructure (private network or private 5G MEC), acts as an AI/ML broker and storage according to
W3C-defined semantics. In addition, the Global AI Component in IntellIoT acts as the centralized entity
that supports individual devices to share the training results and it manages the entire federated learning
process. The Local AI Component is responsible of training AI models using the local datasets at the
IoT device. Similarly, NEMO CF-DRL component realizes federated learning mechanisms and aims to
deliver AI-logic to the NEMO components (e.g. NEMO meta-orchestrator).
Moreover, similarly to the NEMO’ meta-orchestrator, IntellIoT’s MAS contains an orchestrator that
facilitates the communication between the system and the edge app. More specifically, the
communication and computation infrastructure builds the foundation of the IntellIoT framework and
allows the deployment and dynamic management of edge applications (Edge Apps). The central point
for triggering the deployment of Edge Apps is the Edge Orchestrator that works together with one /
multiple Edge Manager(s) to orchestrate the efficient deployment of an Edge App onto one / multiple
edge devices.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 37 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

In IntellIoT, the Communication Resource Manager is responsible for dynamically reconfiguring the
5G network (RAN and CN) for optimal performance of the 5G infrastructure, i.e., to open, configure,
maintain and monitor dedicated 5G resources. In NEMO the abovementioned functionality is facilitated
by the mNCC.
With respect to security, in IntellIoT the Agents within Hypermedia MAS infrastructure, Edge Apps
and Interoperability Box interact with the DLT Manager enabling decentralized journaling of the
system’s operation. On the other hand, NEMO also incorporates DLT technology that safeguards the
business-logic of the communications that adhere to the resource provisioning activities.
Lastly, an additional common architectural feature of both projects is the common underlying 5G
infrastructure. In NEMO the 5G core network and resources manager and in IntellIoT the
Communications Resource Manager are both responsible for dynamically reconfiguring the 5G network
(RAN and CN) for optimal performance of the 5G infrastructure.
To conclude, NEMO has the opportunity to capitalize on the work that has been conducted in projects
such as IntellIoT and optimize the operational effectiveness of their implemented technologies.

3.7.5 VEDLIOT
The EU-funded VEDLIoT project develops an IoT platform that uses deep learning algorithms
distributed throughout the IoT continuum. The proposed new platform with innovative IoT architecture
is expected to bring significant benefits to a large number of applications, including industrial robots,
self-driving cars, and smart homes. The project offers an Open Call at project midterm, incorporating
additional VEDLIoT-related industrial use-cases in the project, increasing the market readiness of the
VEDLIoT solutions.
In terms of hardware, VEDLIoT offers a platform, the Cognitive IoT platform, leveraging European
technology, which can be easily configured to be placed at any level of the compute continuum starting
from the sensor nodes and then edge to cloud. Driven by use cases in the key sectors of automotive,
industrial, and smart homes, the platform is supported by cross-cutting aspects satisfying security and
robustness. Overall, VEDLIoT offers a framework for the Next Generation Internet based on IoT devices
required for collaboratively solving complex DL applications across a distributed system.
The VedlIoT project capitalizes on architecture frameworks that organize architectural descriptions and
associated requirements into distinct architectural views. These different views are necessary to describe
the diverse use cases and concerns associated with the VEDLIoT platform. An architectural view
expresses “the architecture of a system from the perspective of specific system concern”. This concept
is similar to the NEMO project’s meta-architecture, where again the NEMO framework architecture
instantiations reflect its Living Lab Use Case particular requirements and logic.
The VedlIoT project concerns three (3) pilots namely, the Automotive m Industrial IoT and Smart Home
ones. The NEMO project is partially aligned as it realizes similar Living Lab Use Cases. However the
VedlIoT ones are oriented towards energy efficiency.
VedlIoT architecture overview is presented in Figure 19. VEDLIoT aims at enabling the use of DL
algorithms in IoT by accelerating and optimizing applications with energy efficiency in mind. Compared
to the NEMO metaOS framework, energy efficiency on deployed applications is a common objective
for both of the projects.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 38 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Figure 19: VEDLIoT architecture overview

To conclude, the VedlIoT AIoT hardware platform offers tailored hardware components and
supplementary accelerators for AIoT applications, ranging from embedded systems to edge computing
and cloud platforms. Although NEMO metaOS has a broader scope, both projects utilize hardware
platforms and infrastructures that cover the Far Edge, Near Edge and Cloud continuum. In addition they
seem to be fairly aligned on the concept of bringing AI logic in the IoT applications and devices, where
both projects they are incorporating AI/ML models based decision making assistance.

3.7.6 TERMINET
The TERMINET project aims to provide a novel next generation reference architecture based on cutting-
edge technologies such as SDN, multiple-access edge computing, and virtualization for next generation
IoT, while introducing new, intelligent IoT devices for low-latency, market-oriented use cases.
TERMINET suggests an NG-IoT architecture [28], taking full advantage of a variety of technologies
such as SDN, Multiple-access Edge Computing (MEC), Federated Learning and Digital Twins. In
particular, as illustrated in Figure 20, the TERMINET architecture is composed of six layers: (a)
Physical Layer, (b) Middleware Layer, (c) Intelligence Layer, (d) Platform Layer and (e) Application
Layer.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 39 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Figure 20: The TERMINET Architecture

The Physical Layer includes physical and virtualised IoT devices that are connected to the hardware-
based and virtual SDN switches. Next, the Middleware Layer is devoted to the network monitoring and
controlling activities managed by the SDN controller. This layer focuses on the southbound interfaces
and includes streaming analytics as a pre-processing step before the activities of the Intelligence Layer.
This layer is devoted to federated learning activities for a variety of purposes, including smart farming,
personalised healthcare and predictive maintenance. Subsequently, the Platform Layer pays special
attention to the orchestration services carried out by the Vertical Application Orchestration. Finally, the
Application Layer refers to cloud computing sources and applications offered either by TERMINET
itself or the TERMINET end users.
Similarly to rest projects investigated, TERMINET provides candidate workloads for the NEMO meta-
OS, which may come from the Middleware Layer and above. In addition, the project considers both IoT
and edge nodes, which could be integrated into the meta-OS infrastructure.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 40 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

4 Convergence to the meta-OS meta-architecture

4.1 NEMO Meta-architecture
ISO/IEC/IEEE 42010 defines architecture framework as “conventions, principles and practices for the
description of architectures established within a specific domain of application and/or community of
stakeholders” [11]. In this document, we adopt the slightly modified term “meta-Architecture
framework”, as “conventions, principles and practices for the description of meta-architectures
established within an ecosystem of various domains of application and/or community of
stakeholders”. The NEMO meta-architecture aims to serve as a basis for building meta-OS reference
architectures, facilitating entities’ integration in the meta-OS world.
NEMO has defined a meta-OS meta-Architecture Framework (MAF), which includes the following
elements, as depicted in Figure 21:

• Rationale
• Entity of interest
• Stakeholders
• Stakeholders’ perspective
• Concerns
• Viewpoints
• Cross-cutting functions

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 41 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Figure 21: The NEMO meta-OS meta-Architecture framework

The NEMO meta-OS MAF elements are described in the following subsections.

4.2 Rationale
The NEMO meta-OS MAF aims to facilitate the design of meta-OS ecosystems, in a way that they will
be scalable, extensible, modular and interoperable. Thus, it provides specifications of elements that
would be of interest for a meta-OS architecture designer. The selection of the NEMO MAF elements
has been made on the premise to provide a consistent domain agnostic way of describing any specific
meta-OS architecture.

4.3 Entity of interest
The Entity of interest refers to the meta-Operating system for the IoT, edge and cloud continuum.
The term meta-OS has been coined from Microsoft [29] (MetaOS/TAOS), possibly referring to “a
platform on top of that foundation [cc SharePoint, the Office 365 substrate, Azure, Microsoft's machine-
learning infrastructure and more] - one oriented around people and the work they want to do rather

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 42 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

than our devices, apps, and technologies.” This can be understood as a layer that could leverage its AI
technology to harness user data and make user applications coherently smarter and more user-centric,
rather than oriented to devices, applications and services.
Moreover, ROS (Robot Operating System) [30] is defined as a meta-operating system for robots,
clarifying that: “It provides the services you would expect from an operating system, including hardware
abstraction, low-level device control, implementation of commonly-used functionality, message-passing
between processes, and package management. It also provides tools and libraries for obtaining,
building, writing, and running code across multiple computers.” So, the meta-OS additionally allows
communication of processes running at different nodes to communicate at runtime.
In NEMO, the meta-OS is considered to enable abstraction of hardware and software management
across IoT, edge and cloud resources, providing an interface between humans (application) and any
computing device. In the meta-OS, intelligence may move closer to the point of decision, supporting
every activity, process and decision that ranges from ad-hoc micro-cloud cluster self-organization to
micro-services migration and intent based programming, while ensuring interoperability, trust,
cybersecurity and privacy policies enforcement.

4.4 Stakeholders
Stakeholders are parties (individuals, groups or organization) who have some interest in the meta-OS.
These could include parties who may pay for the meta-OS or provide or even sustain it, as these activities
would require that they should have a clear idea of the meta-OS architecture.
Each stakeholder has at least one Concern over the meta-OS. Indicative stakeholders’ groups include
end users, operators, acquirers, owners, suppliers, developers, maintainers, markets., etc.
The following stakeholders are identified:

• Meta-OS provider, referring to parties that may host, provide and/or manage the meta-OS.
• Meta-OS consumer, referring to consumers of the meta-OS services, basically referring to

application and service owners wishing to run their applications on the continuum.
• Meta-OS partner, referring to parties that may create value on top of the meta-OS, which may

result from integration of own resources, development on top of the meta-OS, service brokerage
and enablement, but also auditing.

4.5 Stakeholders’ perspective
The Stakeholder perspective is used to group concerns for each of the identified Stakeholders,
considering the way the interest on the meta-OS is perceived by each Stakeholder. In NEMO, four
perspectives have been identified for the three Stakeholder groups, namely:

• Concept: It represents concerns related to the meta-OS strategic intent, as expressed by the
capabilities envisioned for the meta-OS. The concerns of this perspective aim to support the
analysis and optimization of the meta-OS capabilities, supporting their description, interaction
and operation.

• Meta-OS specifications: This perspective expresses concerns on the description of the meta-OS,
which will cater for the delivery of capabilities, activities, as well as resource and data
exchanges.

• Service specifications: This perspective expresses concerns on the description of services
running on top of the meta-OS. The concerns address the identification and description of
services supporting the IoT-edge-cloud native paradigm.

• Infrastructure specifications: This perspective groups concerns around the infrastructural
elements supporting the delivery of the meta-OS capabilities. These could refer to physical or
virtual computational, storage and network resources. The concerns may refer to description of
the structure, connectivity and behaviour of the various types of infrastructural elements.

Table 2 classifies the identified Stakeholder perspectives per Stakeholder of the meta-OS architecture.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 43 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Table 2: The Stakeholders’ perspectives for each Stakeholder

 Meta-OS provider Meta-OS consumer Meta-OS partner
Concept
Meta-OS specifications

Service specifications
Infrastructure
specifications

4.6 Concerns
According to ISO/IEC/IEEE 42010, a Concern is any interest in the meta-OS, as perceived by a
Stakeholder. The identification of concerns in the meta-architecture is fundamental in the architecture
description, as the meta-OS is multi-disciplinary in the sense that it has different types of Stakeholders.
So, the Concerns may lead to different forms of presentation which may target different Stakeholders.
Ideally, the traceability of stakeholders’ concerns and their form of presentation (i.e., viewpoint in the
meta-OS meta-architecture) is key to deriving an interest-driven meta-OS architecture.
The identified concerns of the meta-OS meta-architecture are described in Table 3.

Table 3: The Concerns in the meta-OS meta-architecture

Concern Description

User-centricity The ability of the meta-OS to deliver capabilities according to users’ needs
and desires, rather than according to services/applications needs

Functionality
The ability of the meta-OS to deliver capabilities fully or partly as and when
required and allow people and applications/services which interact with the
meta-OS to work effectively

Security
The ability of the system to reliably control, monitor and audit who can
execute which types of activities on the meta-OS resources and data, as well
as the ability to detect and mitigate security incidents.

Scalability The ability of the meta-OS to handle increasing workload or infrastructural
resources.

Interoperability The ability of the meta-OS to incorporate different types of physical or
virtual infrastructure.

Performance The ability of the meta-OS to deliver the expected level of capabilities under
the mandated profile

Openness The modularity of the meta-OS and conformance to open interfaces.

Fragmentation The ability of the meta-OS to deliver its capabilities coherently across IoT,
edge and cloud resources

Sustainability The ability of the meta-OS to adapt capabilities’ delivery according to energy
consumption goals.

4.7 Viewpoints
A Viewpoint in the meta-architecture includes a set of conventions used to develop an Architecture
View. The Viewpoint aims to frame a set of Concerns.
NEMO has identified the following Viewpoints for the meta-OS meta-architecture:

• Network
• User
• Logical

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 44 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

• Operational
• Functional
• Process
• Development
• Physical

The viewpoints are analysed in the following tables, providing the objectives aimed to be covered and
the concerns addressed by each, as well as the usage and presentation form of the corresponding views.

Table 4: The Network Viewpoint

Network Viewpoint

Description

This viewpoint aims to
• identify infrastructure elements
• identify different classes of physical devices, based on their capabilities and

placement on the IoT, edge and cloud continuum.
• identify the artefacts upon which resources are deployed and can show the

nodes that the resources realize
Concerns
addressed Fragmentation

Usage

Definition of meta-OS concepts
Definition of meta-OS options
Meta-OS deployment
Operational planning

Representation Tabular, Topological

Table 5: The User Viewpoint

User Viewpoint

Description
This viewpoint aims to

• identify different users, roles and subroles in the meta-OS.
• identify the activities enabled by the meta-OS capabilities for each user.

Concerns
addressed User centricity

Usage

Definition of meta-OS concepts
Definition of meta-OS options
Definition of stakeholders’ interests
Definition of security and privacy rules

Representation Structured Text, Entity-Relationship diagram

Table 6: The Logical Viewpoint

Logical Viewpoint

Description

This viewpoint aims to
• identify the entities constructing or involved in the meta-OS
• identify the conceptual inter-relations among those entities
• identify entities in the meta-OS which relate to monitoring or imposing

sustainability goals
Concerns
addressed

Functionality
Sustainability

Usage Definition of meta-OS concepts
Source for elicitation of functional requirements

Representation Entity-Relationship diagram

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 45 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Table 7: The Operational Viewpoint

Operational Viewpoint

Description

This viewpoint aims to
• identify use cases of application of the meta-OS
• identify user operational activities through specific scenarios
• present added value through the meta-OS in business cases
• identify assumptions for the realization of these business cases
• identify desired outcomes and measurable benefits associated with the

defined use cases
Concerns
addressed

User centricity
Functionality

Usage

Definition of strategic vision for the meta-OS
Analysis of expected results and effects
Definition of operational activities enabled for each user
Meta-OS capabilities’ planning (requirements), matching the definition of
operational activities

Representation Structured text (usage scenarios)

Table 8: The Functional Viewpoint

Functional Viewpoint

Description

This viewpoint aims to
• identify meta-OS capabilities which may support the defined operational

activities per stakeholder
• group the meta-OS capabilities into sets that constitute functional layers
• identify the technical components which may deliver the meta-OS

capabilities
• identify cross-cutting functionalities

Concerns
addressed

Functionality
Security
Scalability
Interoperability
Openness
Sustainability

Usage Feedback to meta-OS product management; capability planning
Representation Structured text; Black diagram

Table 9: The Process Viewpoint

Process Viewpoint

Description

This viewpoint aims to
• Identify representative use cases delivering the combined capabilities of

the meta-OS
• Identify the components delivering those use cases
• Identify the interactions among these components for delivering the use

cases
• Identify data flows within these interactions

Concerns
addressed

Functionality
Security
Interoperability

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 46 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Process Viewpoint

Usage Highlight potential integration requirements
Implement/enable interactions among meta-OS components

Representation Sequence diagram

Table 10: The Development Viewpoint

Development Viewpoint

Description

This viewpoint aims to
• identify the implementation details for components delivering meta-OS

capabilities
• identify measurable targets for capabilities’ verification

Concerns
addressed

Functionality
Security
Interoperability
Performance

Usage Implementation
Setting Capability Requirements

Representation Class diagram (components)
Structured text (metrics)

Table 11: The Physical Viewpoint

Physical Viewpoint

Description

This viewpoint aims to
• identify the deployment setups for the components delivering meta-OS

capabilities
• guide the integration of those components
• identify hardware and software requirements for the installation of those

components
• provide installation and user guides for the integrated components

delivering NEMO capabilities
Concerns
addressed

Security
Performance

Usage Integration
Deployment

Representation Topology diagram (deployment setup, components)
Structured text (requirements, guides)

Figure 22 presents the NEMO MAF viewpoints and their relations and interactions for designing a meta-
OS architecture.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 47 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Figure 22: The NEMO meta-architecture viewpoints

It has to be noted that the viewpoints address stakeholders’ concerns. The stakeholder perspectives are
mapped into the defined concerns, and these are meant to be addressed through the development of the
defined viewpoints. Figure 23 presents indicative the way the Stakeholder Perspectives are perceived as
Concerns and their transition to Viewpoints in the NEMO MAF.

Figure 23: Transition from Stakeholder Perspectives to Concerns and Viewpoints in the meta-OS MAF

Network

User Operational

Functional

Process

Development

Physical

Logical

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 48 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

4.8 Cross-cutting functions
The NEMO identifies three cross-cutting functions for the meta-OS:

• Cybersecurity & Unified/Federated Access Control, which denotes that cybersecurity should be
present at any point in the meta-OS continuum and access to data and controls must be by design
managed uniformly;

• Cybersecure Federated Deep Reinforcement Learning, which provides a meta-OS native
MLOps platform, supporting advanced Machine Learning (ML) capabilities across the meta-
OS. AI and ML should be present in all meta-OS components and this function aims to support
this function across them;

• PRESS & Policy Enforcement Framework, which ensures that Privacy, data pRotection, Ethics,
Security & Societal (PRESS) and user-driven policies must be respected at all levels and by any
component in the continuum.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 49 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

5 NEMO Architecture

5.1 Network view
The Network view provides the physical and conceptual classification and hierarchy of the NEMO meta-
OS computing resources. The network elements are described in tabular format in Table 12.

Table 12: Network elements and concepts in the NEMO meta-OS

Network element Description
Node A node is a hardware computing element of highest granularity in the meta-

OS continuum. As such, it may represent any physical computing device in
the continuum, including IoT, Edge and Cloud Server Devices, or even a
virtual machine provided by a cloud provider. As nodes are aimed to provide
computing abstraction for executing containers of workloads on them, the
distinction in node types is only aimed to help the selection of proper
distribution of the containers’ orchestration framework, which would be
compliant to the computing capabilities of the node in terms of CPU, RAM
and storage.

Cluster A Cluster is defined as a grouping abstraction of nodes which are managed
by a single entity. A cluster could include one or more nodes, which
altogether form the resource pool upon which different workloads’ execution
is orchestrated. Nodes can be added or removed from the cluster, without this
affecting the execution of workloads. In NEMO, clusters are K8s clusters.

Cluster Set A Cluster Set provides a grouping abstraction for clusters participating in the
meta-OS. It allows to restrict the workload execution among the clusters
participating in the cluster set.

Cluster Shell A Cluster Shell is the complete set of clusters participating in the meta-OS.
A Cluster Shell is scoped at meta-OS level and implies that clusters are
managed in parallel in a coherent way. The Cluster Shell allows performing
cluster-aware administration, being aware and managing groups of clusters
(i.e. Cluster Sets). It is usually composed of multiple clusters, allowing high-
availability, fault tolerance and flexible use of available infrastructure across
them. Unless otherwise defined, a workload’s execution should be able to be
orchestrated in a coherent manner across all the clusters in a single meta-OS
instance.

Admin domain The Admin domain represents the IP space and infrastructure managed by a
single entity, usually an enterprise, even if they do not belong to the entity.
Workload orchestration in the meta-OS should be coherent across admin
domains, respecting the security and privacy rules of the owning enterprise.

The topology of the defined network elements is depicted in Figure 24. The figure illustrates how the
concepts described in Table 12 are conceived in NEMO, in particular the Node, the Cluster, the Cluster
Set, the Cluster Shell and the Admin Domain.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 50 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Figure 24: Network topology for the NEMO meta-OS

Moreover, the node placement in the continuum is highlighted. It is worth noting that for the conceptual
classification of nodes across the continuum, NEMO adopts the near, far and tiny edge computing
definitions suggested by Cloud Native Infrastructure VP, SUSE [31].
The near edge includes devices which are nearest to the centralized services provided by cloud servers.
Nodes in the near edge typically belong to the infrastructure hardware and IP space of communications
service providers.
Τhe far edge includes nodes which are typically farthest from the cloud servers and belong to the IP
space and infrastructure owned and managed at enterprise level.
The tiny edge includes fixed-function devices, such as sensors, actuators and IP cameras within the
enterprise network and infrastructure. As a result, it is a subgroup within the far edge, but the tine edge
devices have very constrained computing and storage resources. This category embraces the
introduction of the Industrial Internet of Things (IIoT) into the cloud native management world.
Last, cloud servers represent server in micro-/datacentres with significant computing capacity, which
could belong to any type of cloud, i.e. public, private, hybrid, etc.
The figure includes some indicative cases which aim to clarify and differentiate between the NEMO
network concepts. For example, an Admin Domain may include one or more clusters, which may be
formed by nodes on the same premises or in remote ones. The Admin Domain relates to the management
of the clusters, i.e. a single Admin Domain may be administered by a single entity (K8s operator). Also,
the Cluster Set denotes a group of clusters which may be belong in the same or different admin domains
and its role is purely to restrict workload execution in those.
Furthermore, a cluster may include only one (single-node cluster) or more nodes, while the nodes
participating in a cluster could belong to any level at the continuum. An implication of this setting is
that nodes of highly diverse capabilities and resources (from HPC cloud servers to constrained IoT
sensors, for example) should be able to be treated uniformly from the orchestration point of view. This
is attempted to be addressed via the various K8s distributions, either vanilla K8s compatible or managed
ones, some of which offered as lightweight K8s distributions specifically appropriate for edge
computing cases, targeting low or very constrained devices. Some indicative examples include
MicroK8s [2], K3s [3], K0s [4], minikube [5], KubeEdge [6]. Moreover, on top of that, NEMO aspires
to provide the cloud-native meta-OS that will be able to effectively manage the lifecycle of workloads
across the participating nodes and clusters, addressing security and privacy concerns, offering
orchestration at scale and in a user-centric manner.

Cluster Cluster Cluster ClusterCluster

Cluster Set

C
loud

N
ear Edge

Tiny Edge
Far edge

Cluster Shell

Node

Admin Domain #1 Admin Domain #2 Admin Domain #3 Admin Domain #N

…

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 51 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

5.2 User view
The user view aims to identify the users, in terms of roles and subroles, along with their activities within
the meta-OS. The NEMO users represent the stakeholders of the meta-OS and are described in a similar
manner to ISO/IEC 17789:2014, describing the users in the Cloud Computing Reference Architecture.
Aligned to that, Figure 25 depicts the NEMO MAF User View elements and their relations. A User is
described by a set of one or more Roles. Then, each Role is further composed on Subroles, each of which
may apply a set of Activities. An aspect refers to a cross-cutting function.

Figure 25: User view entities and their relations

The NEMO meta-OS users include the following roles:
• Meta-OS provider: This group represents parties that may host, provide and/or manage the meta-

OS.
• Meta-OS consumer: This group represents consumers of the meta-OS services, basically

referring to application and service owners wishing to run their applications on the continuum.
• Meta-OS partner: This group includes parties that may create value on top of the meta-OS,

which may result from integration of own resources, development on top of the meta-OS,
service brokerage and enablement, but also auditing.

The subroles and activities of each user role are provided in the following subsections.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 52 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

5.2.1 Meta-OS provider

Figure 26: Meta-OS provider subroles, activities and aspects

The Meta-OS provider role is further analyzed in subroles with relevant activities and aspects as shown
in Figure 26. The activities of each subrole are drawn below the relevant subrole. Also, the aspects apply
to all depicted elements. Hence, the Meta-OS provider includes the following subroles:

• Meta-OS operations manager, whose main goal is to ensure that the meta-OS is functioning
properly. The activities of this subrole include:

o Meta-OS monitoring, including metering capability and monitoring of the meta-OS
usage and performance, as well as relevant report generation

o Meta-OS billing including the definition of billing strategies for meta-OS consumers
• Meta-OS service & cluster deployment manager, who aims to ensure that consumers’ workloads

or clusters will be properly deployed and provisioned in the meta-OS. The activities of the Meta-
OS service & cluster deployment manager include:

o workload de/registration, realized as workload initialization on the meta-OS after
consumers’ relevant request for registration, as well as removal of the workload from
the meta-OS repos, again after relevant request of the owner (consumer) or decision of
this subrole, as a result of e.g. breaking meta-OS terms of use.

o cluster de/registration, similar to workload de/registration, but for clusters.
o workload provisioning, ensuring that deployed workloads are accessible by the eligible

users and/or roles.
o cluster provisioning, which includes ensuring that registered clusters are automatically

available in the meta-OS and defining rules for the orchestration of workloads on top
of them, e.g. as part of a restricted set of clusters or as part of the whole meta-OS.

o configuration, which refers to configuration options for meta-OS service updates,
upgrades and onboarding of new clusters into the meta-OS.

• Meta-OS service manager, who is responsible for the meta-OS workload’s lifecycle. Their
activities include:

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 53 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

o SLA management, including policies’ definition, monitoring and enforcement
o PRESS compliance, including enforcement of GDPR and potential customer-driven

privacy policies’ definition and enforcement
o Metering, i.e., providing a metering capability at some level of abstraction appropriate

to the type of service (e.g., storage, processing, bandwidth, and active user accounts).
o Monitoring & reporting, referring to discovery, tracing, monitoring and usage or

performance report generation.
• Meta-OS network manager, whose main goal is to ensure that secure and reliable network paths

are established for communication of microservices or other workloads across the meta-OS. The
activities of this subrole include:

o Secure network path setup, e.g., by defining the rules for the construction of network
paths, which should fulfil customer-driven requirements and ensuring that requested
network connections can be automatically set up

o Network provisioning, which includes the configuration and delivery of network
services, e.g., load balancing.

o Managing network elements and capabilities provided in the meta-OS by meta-OS
partners, including e.g., time sensitive networking (TSN) capabilities’ integration,
private 5G networks.

• Meta-OS security manager, whose main aim is to ensure end-to-end security in the meta-OS
ecosystem. Their activities include:

o Managing identity and access management solution
o Overseeing security probing, monitoring and reporting about the meta-OS workloads at

runtime
o Defining strategies, rules and tools for inducing security picks during the meta-OS

DevOps and ZeroOps lifecycle
o Managing and deploying tools that ensure cybersecure AI operations of the meta-OS.

Moreover, security, privacy and MLOps are identified as crosscutting aspects, i.e., behaviors or
functionalities which need to be coordinated by the MetaOS Provider and must be supported in the meta-
OS.

5.2.2 Meta-OS consumer

Figure 27: Meta-OS Consumer subroles, activities and aspects

The Meta-OS consumer refers to users of the meta-OS. The definition of its subroles and aspects are
depicted in Figure 27. This role includes the following subroles:

• Meta-OS workload administrator, who is the entity owning or managing a workload that is
desired to be executed on the meta-OS continuum. An example of this role would be an
application vendor, wishing to provide their application to their customers (application end-
users) via the Software-as-a-Service (SaaS) model. The activities of this role include:

o Verify and de/register workloads in the meta-OS, i.e., making the relevant request to
the meta-OS provider

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 54 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

o Selecting and using meta-OS services, related to managing their workload’s lifecycle,
definition of their workload requirements, etc.

o Accessing monitoring information about their workloads’ usage and performance
o Accessing accounting information about their workloads.

The crosscutting aspects for this role include security and privacy.

5.2.3 Meta-OS partner

Figure 28: MetaOS Partner subroles, activities and aspects

The Meta-OS partner refers to users of the meta-OS. Its subroles, activities and aspects are depicted in
Figure 28. This role includes the following subroles:

• Meta-OS developer, who builds software or “workloads” using the NEMO API, SDK and tools
available through the meta-OS. The workload could refer to horizontal services, which are
domain-independent services and are aimed to provide some basic and common functions
extending NEMO capabilities. These are considered as “plugins” in the NEMO meta-OS and
could be used for developing applications on top of NEMO or enhancing/extending user’s
experience in NEMO. In addition, the workload could refer to vertical services, i.e., domain-
specific applications. The activities of this subrole include:

o Request and access NEMO development resources, such as API, SDK and tools
o Verify and de/register workloads, after their development has been completed.

• Meta-OS cluster provider, who refers to infrastructure owners who wish to make their resources
available as nodes/clusters of the meta-OS. The infrastructure is conceived as physical or virtual
compute resources, that will be made available as one or more clusters in the NEMO meta-OS.
The activities of this role include:

o Requesting de/registration of own infrastructure into the meta-OS
o Monitoring of the cluster activity, e.g., in terms of usage or performance with respect

to defined policies and agreements between the meta-OS partner and the meta-OS
provider.

The crosscutting aspects for this role include security, privacy and MLOps.

5.3 Logical view
The first version of the logical view is depicted in Figure 29. Updates to it are expected as the
components’ roles and interactions get more mature and concrete. The figure depicts the main logical
entities identified so far and high-level dependencies.
In particular, the metaOS, ClusterShell, Cluster, ClusterSet and Node entities represent the elements
defined in the network view, while the User entity represents the three user types defined in the user
view. Moreover, the Workload entity represents an application, (NEMO core) component, plugin or
microservice, whose functionalities can be described in a WorkloadDocument and be exposed as

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 55 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Resources. The Resource entity represents the programmatic representation for such functionality
exposure. A Workload may bear a WorkloadOperation, i.e., a registration, deployment or migration
operation, as envisaged so far. A WorkloadOperation, such as deployment or migration, may be
triggered as a result of an OperationDecision. The deployment and execution of the Workload should
be governed by defined Policies. A Policy may consist of a set of Service-Level Agreements (SLAs),
which are described by a set of Service-Level Objectives (SLOs). The SLO includes a property and a
target that should be met. So, in case this target is not met or achieved, a WorkloadEvent occurs. This
could be, for example, an SLA, security or operation-related event. The performance against defined
SLOs is monitored through Metering objects (such as metrics). Last, but not least, the Accounting entity
provides accounting information for given workloads, clusters and users.

Figure 29: Logical view of the NEMO metaOS architecture

5.4 Operational view
The Operational View of the NEMO architecture is provided in the form of the NEMO Use Case
scenarios and descriptions. Thus, it has been provided in D1.1 [32].

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 56 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

5.5 Functional view
Following the NEMO functional stack vision, the functional view of the NEMO metaOS architecture is
depicted in Figure 30.

Figure 30: The functional view of the NEMO metaOS architecture.

The functional view identifies three horizontal layers:
• The infrastructure management layer, which refers to federated management and orchestration

of network resources. This layer integrates third party solutions for network and resource
management. The NEMO contribution in this layer is realized through the Federated Meta-
Network Cluster Controller (mNCC), which aims to provide transparent network connectivity
within the metaOS, supporting application-driven requirements for latency, multi-path
connectivity and service isolation through network micro-slices. The mNCC integrates Time
Sensitive Network (TSN) to support deterministic communication between wireless and fixed
devices in the context of private 5G networks.

• The NEMO kernel, which includes the core NEMO components supporting workload
scheduling and execution across the continuum. In this layer, the meta-Orchestrator has a critical
role, undertaking the workload scheduling and placement across the federated clusters,
guaranteed that agreed Service Level Objectives (SLOs) are met. The meta-orchestrator (MO)
provides a meta control plane on top of the available clusters of nodes and is assisted by the
Intent-based Migration Controller (IMC) in the execution of the service operation decision, such
deployment, migration, scaling, etc. Secure workload execution via unikernels is supported by
the Secure Execution Environment (SEE). Moreover, the Cybersecure Microservices- Digital
Twin (CMDT) caters for traceability of workloads during their metaOS lifecycle.

• The NEMO Service Management, which acts as a DevZeroOps layer offering full-stack
automated operations, greatest flexibility, improved developers' productivity and direct
monetization and sustainability. The NEMO Plugin & Applications Life-Cycle Manager (LCM)
aims to enable deployment of workloads, applications or plugins, onto NEMO, through the
user’s space. The Intent-based API/SDK (IAS) enables and facilitates third parties to develop
and deploy on top of NEMO, exposing NEMO functionalities as programmatic APIs and
providing software libraries for facilitating NEMO-compliant development. Moreover,
Monetization and Consensus-based Accountability (MOCA) aims to support monetization and
accountability for both the applications and plugins running on NEMO, but also for network
resources integrated into the NEMO infrastructure. Overall, this layer supports ZeroOps
deployment, providing service provisioning, resource configuration, applications life cycle

N
E

M
O

 K
E

R
N

E
L

IN
FR

A
S

TR
U

C
TU

R
E

M

A
N

A
G

EM
E

N
T

N
E

M
O

 S
E

R
V

IC
E

M

A
N

A
G

E
M

E
N

T

Intent-based SDK/API

Plugin & Applications Lifecycle Manager
Monetization and Consensus-

based Accountability

C
yb

er
se

cu
re

 F
ed

er
at

ed
 D

ee
p

R
ei

nf
or

ce
m

en
t L

ea
rn

in
g

meta-Orchestrator

Intent-based
Migration
Controller

Cybersecure
Microservices’

Digital Twin

PR
ES

S
&

Po
lic

y
E

nf
or

ce
m

en
t F

ra
m

ew
or

k

Federated Meta-Network
Cluster Controller

Secure
Execution

Environment

C
yb

er
se

cu
rit

y
 &

 U
ni

fie
d/

Fe
de

ra
te

d
Ac

ce
ss

 C
on

tro
l

Intent-based
Migration
Controller

Secure
Execution

Environment

Federated Meta-Network Cluster Controller

Smart IoT Device Far Edge / Near Edge / National Cloud / Federated Cloud Continuum

IoT/5G & Resources Control 5G Edge/Core Network & Resources Management

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 57 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

management and automated response to infrastructure issues in a multi-user, multi-operator,
multi-tenant environment.

The NEMO cross-cutting functions include:
• Cybersecurity and unified/federated access control, which ensures the security of metaOS

operations across the metaOS layers, in the context of cloud native cybersecurity, federated
access and identity management across the metaOS components, as well as secure and encrypted
inter-process communication.

• Data & Services Policy Compliance Enforcement via multi-faced, policies able to cope with the
different aspects of the applications life cycle (security, privacy, costs, environmental impact,
etc). These functions ensure that PRESS rules and GDPR, as well as user-defined rules, are
respected across the metaOS layers and components.

• Cybersecure Federated MLOps, which provides inherent integration of AI operations and
services into the metaOS, yielding AI-based decisions and or controls alongside the metaOS.
This function aims to support the complete Machine Learning (ML) lifecycle, e.g., from ML
development and training to serving and infeperformed within metaOS components, ensuring
AI cybersecurity.

The following subsections provide detailed description of the role of and functionality supported by
each NEMO component for the functional layers and cross-cutting functions identified. Moreover, the
interactions with other NEMO components or external users, as well as the requirements (as of D1.1)
covered by each of the NEMO components are also presented.

5.5.1 NEMO Infrastructure Management

5.5.1.1 Federated Meta-Network Cluster Controller

5.5.1.2 Description
Meta Network Cluster Controller (mNCC) is an automated, self-organizing entity conceived to facilitate
the dynamic creation and self-healing of fog IoT network clusters in the edge-cloud continuum
connectivity. This module is closely linked to the Cybersecure Federated Deep Reinforcement Learning
(CF-DRL) module and the meta-Orchestrator, which provides information on the Cybersecure
Microservices Digital Twin (CMDT) and the PRESS & Policy Enforcement Framework (PPEF)
modules.
The mNCC module is designed to address various use cases (UCs) related to connectivity and
Cloud/Edge/Fog IoT deployments. The following Living Labs’ use cases are specifically defined in the
project's Description of Action (DoA) to benefit from mNCC:

• NEMO Integration Infrastructure Technology Lab
• Smart Farming Use Case & Living Lab
• Smart Media/ City & XR Use Cases & Living Lab
• NEMO multi-Living Labs Federation

Furthermore, other use cases, such as UC4 (Smart Manufacturing & Industry 4.0 Use Cases & Living
Lab), may also require the deployment of additional features supported by this module.
To fulfill the aforementioned functionalities, the mNCC comprises seven subcomponents, as depicted
in Figure 31. The core component of mNCC is the Connectivity Controller, which establishes point-to-
point or point-to-multipoint overlays to connect the various clusters that form the NEMO’s network
functional core. This controller is intended to be based on the L2S-M solution [33], which provides
additional networking functionalities to the standard Kubernetes Container Network Interface (CNI)
approach. L2S-M enables the management of virtual networks in Kubernetes using Software-Defined
Networking (SDN) and facilitates the attachment of workloads (pods) to "OpenStack-like" virtual
networks.
The Connectivity Controller receives information from three other modules: the Network Domain, the
Compute Domain, and the Communication Endpoints. The Network Domain module collects and
integrates network topology information, creating an internal map of network resources and their

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 58 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

availability. Similarly, the Compute Domain module focuses on the computing capabilities of the pods
and identifies potential new requirements or situations of over-deployment. The Communication
Endpoints module checks the various endpoints and provides information on their properties, if
available.
These three modules are also interconnected with the Technology Adaptors module, which serves as a
southbound interface to interact with different network and compute technologies, providing the final
connectivity substrate.
To establish different types of connectivity services (e.g., micro-slices, multipath connections, etc.), the
Connectivity Controller relies on network requests. The Intent-Based System module translates
management requests received in the form of intents into service data models that can be understood by
the controller.
Finally, to expose its results and state to the rest of the NEMO system, this ecosystem incorporates the
Network Exposure module. This module utilizes the IETF ALTO technology [RFC7285], which gathers
transport and link-level information from various routing protocols (agnostic to the specific transport
protocol used to retrieve the information). ALTO integrates the network topology obtained from lower
levels and exposes it to service layer applications, providing an updated view of the network state.
Figure 31 illustrates the various subcomponents and interactions within the mNCC module.

Figure 31: Initial design of mNCC

5.5.1.3 Main functionalities
Taking as basis the needs of use cases and living labs, we have performed an initial / preliminary analysis
of expected features for mNCC. Further interactions could be required with WP2 for the refinement of
features and availability needs.
In our pursuit of network component specifications, it is crucial to consider the specific needs of real-
world use cases. The following list outlines the requirements for each use case, which will serve as key
factors in informing the development of the network component.
For the Smart Industry use case, high-speed and ultra-low latency communication capabilities,
particularly for Time Sensitive Networks (TSN), are essential to support critical industrial processes.
Additionally, the network component should have the capacity to handle massive data uploads to the
edge or cloud, enabling efficient storage, processing, and analysis.
In the context of Smart Farming, real-time video analysis capabilities are necessary to facilitate timely
monitoring and decision-making in agricultural settings. The network component should also offer
flexibility in deploying training jobs across edge and cloud resources to support machine learning tasks.
Furthermore, the ability to migrate services within and between clusters is crucial for seamless
operations and resource optimization.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 59 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

For the Smart Energy use case, the network component should provide reliable edge and cloud
connectivity. This connectivity is necessary for applications such as monitoring CCTV cameras and
conducting machine learning training for energy-related systems.
In the realm of Smart Media and Extended Reality (XR), the network component must ensure assured
high bandwidth to meet the demands of media streaming and XR applications, thus delivering an
immersive user experience. Support for multipath communication is also crucial to enhance network
reliability and performance. Furthermore, the network component should facilitate microservice
migration to enable dynamic deployment and scalability of media and XR services.
In order to satisfy these requirements, the following functionalities have been identified; Support of
(micro-)slices as connectivity service between far-edge/edge/cloud, multipath, service migration,
monitoring and accounting, capability exposure and micro-slice intents.
The mNCC will provide support for (micro-)slices as a connectivity service, enabling seamless
communication between far-edge, edge, and cloud environments. It will ensure the fulfilment of assured
Service Level Objectives (SLOs) for performance metrics such as latency, throughput, and reliability.
The specific values for these SLOs will be determined during the specification process. Additionally,
the mNCC will address the unique challenges associated with far-edge connectivity to ensure efficient
and reliable communication.
The mNCC should support multipath communication, allowing for the efficient utilization of network
resources and enhanced reliability. The main complexity of this functionality lies in handling replicas
and in the elimination of data copies, ensuring that redundant information is managed appropriately
within the network. This functionality will contribute to improved data transmission efficiency, fault
tolerance, and load balancing.
The mNCC will also enable seamless service migration to support dynamic changes in network
requirements. It will employ a "make before break" approach for network adaptation, ensuring a smooth
transition without interrupting ongoing services. The mNCC will facilitate mobility and traffic
redirection, allowing services to be relocated without disruption and enabling efficient resource
allocation and optimization.
The incorporation of robust monitoring capabilities is considered in mNCC, in order to gather network
performance data and enable efficient accounting and resource management. This functionality will
provide valuable insights into network behaviour and facilitate accurate resource allocation and
utilization analysis. Exposing the capabilities and functionalities of the managed network to other
NEMO management modules will facilitate interoperability and enable effective coordination and
collaboration within the network ecosystem. And last, but not least, the mNCC will support the
definition and enforcement of (micro-)slice intents, which specify the desired behaviour and
requirements for a particular network slice. This functionality will enable fine-grained control and
customization of network behaviour, ensuring that each slice meets its specific needs and objectives.
By incorporating these functionalities into the mNCC, we aim to develop a powerful and versatile
network cluster controller that addresses the complex demands of the NEMO management systems. The
mNCC will provide enhanced connectivity services, support critical time-sensitive applications, enable
efficient multipath communication, facilitate seamless service migration, and offer monitoring,
accounting, capability exposure, and (micro-)slice intent management capabilities.

5.5.1.4 Interactions
This is an initial understanding on interactions of mNCC with other components of the NEMO
architecture. Further refinements on architecture design or use case definition can motivate changes in
this initial approach.

Interacting with Interaction type Description of interaction
Cybersecure
Federated Deep
Reinforcement
Learning (CF-
DRL)

Input The CF-DRL module serves to enhance the intelligence
of the mNCC (more concretely, with the Connectivity
controller) by enabling network decision-making based
on anticipated scenarios and "what-if" analyses. The
primary objective of this interaction is to proactively

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 60 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Interacting with Interaction type Description of interaction
anticipate network changes before they become critical.
By doing so, it enables zero-latency network
modifications, enhancing capabilities in advance and
reducing unnecessary escalation and associated costs
over prolonged periods. This integration between CF-
DRL and mNCC enables dynamic network adjustments
to optimize performance and resource allocation,
ensuring efficient utilization of network resources and
avoiding potential bottlenecks.

Meta-Orchestrator Input/Output The meta-Network Cluster Controller (mNCC) interacts
with the meta-orchestrator in both input and output
capacities. In terms of input, the mNCC receives
network-related information from the meta-orchestrator,
including data on network availability, performance
metrics, and constraints. This information is crucial for
the mNCC to make informed decisions regarding
workload placement, resource allocation, and
optimization of orchestration processes. Also, it receives
instructions and requests that pertain to network
configurations and adjustments necessary to meet the
requirements of orchestrated workflows. The mNCC
executes these instructions, ensuring that the networking
environment efficiently supports the orchestration and
operation of distributed computing workflows. On the
other hand, as output, the mNCC exposes the different
network performance metrics and the network context to
allow the meta-Orchestrator to have an update view of
the network managed.

PRESS & Policy
Enforcement
Framework

Output The mNCC also exposes the network context to the
PRESS & PEF module, so this component could evaluate
during runtime if any of the connections violates the
policies defined and, in that case, it communicates this to
the meta-Orchestrator in order to taking corrective
actions.

Transport network
(5G network,
MANO, RAN)

Input/Output The mNCC must also interact with the underly network
through the different technology adaptors. The mNCC
will export the slice control and the network decision
requested, using the network programmability to archive
the connectivity goals for NEMO. As an input, the
mNCC will receive the topology and compute context
from different routing or state protocols. This
information allows the mNCC to have an update and
realistic network view, that will be used to taking the
different decisions.

VIM Input/Output In a same way as with the transport networks, the mNCC
will interact with the NEMO’s VIM to request for
network updates. In this case the different requests will
depend on the best places to instantiate the networking
resources on the fog or to ask for cluster modifications.
As an input, the mNCC will receive a view of how the
clusters are distributed and how much capacity they have.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 61 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Interacting with Interaction type Description of interaction
This information will be used to evaluate the best way to
deploy the different services.

5.5.1.5 Requirements
The mNCC contributes to addressing a set of the defined NEMO functional and non-functional
requirements, as defined in D1.1 [32]. Table 13 and list those functional and non-functional
requirements, respectively, following the numbering and description adopted in D1.1 and justify how
the mNCC contributes to their satisfaction.

Table 13: NEMO functional requirements addressed through the mNCC

Requirement ID Requirement description Requirement satisfaction

NEMO_FR01 The platform must provide access to
measurements.

NEMO is able to grant access to
the users to the different metrics
that has been recollected.

NEMO_FR02 The platform must provide options to
manage/view sensors/devices.

mNCC counts with a way to
extract and configure the
parameters of the network
sensors/devices monitored.

NEMO_FR07
The platform should support monitoring of
SLOs, e.g., related to energy consumption or
CO2 emissions.

mNCC has a defined process and
protocol to extract SLOs metrics
and a way to integrate them to
check the different SLOs.

NEMO_FR08 The platform must respect data sovereignty
and privacy requirements.

mNCC do not use personal data
or third-party information that it
is not strictly necessary.

NEMO_FR09
The platform must support collection of
monitoring data, such as the weather and plant
conditions.

mNCC is able to export data
from the sensors and so on to
collect and integrate them.

NEMO_FR011 The monitoring devices must support network
connectivity.

All NEMO devices (both
network transport devices and
edge-devices) support network
connectivity.

NEMO_FR013

The platform should be able to perform
alternative scheduling or geographical
distribution of smart farming services based
on user goals.

mNCC redistributes services and
load-balances on the smart
farming use case to adapt it to
the different needs presented by
each timing and geography
situation.

NEMO_FR23 The platform must provide access to collected
data.

NEMO is able to grant access to
the users to the different data that
has been recollected.

NEMO_FR27
The platform has the capability to monitor the
real-time data from the sensors deployed in the
grid.

mNCC has a way to extract and
share the parameters of the
sensors/devices monitored in
real-time.

NEMO_FR29
High-tech power sensors should be useful to
elaborate on new strategies, in order to
improve the power quality in a secure way.

mNCC is able to integrate and
share the information extracted
from the high-tech power
sensors to make it useful.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 62 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Requirement ID Requirement description Requirement satisfaction

NEMO_FR30

Based on sampled data, phasors are calculated
with high precision and the synchronization
process must be very fast.
Indeed, innovative reconfiguration and self-
healing schemas should rely on appropriate
measurements.

mNCC is able to synchronize
and reconfigure network devices
in real-time, using the collected
parameters to accelerate the
process.

NEMO_FR55
The broadcaster must be able to monitor the
signal quality and QoE parameters of the
transmission to ensure streaming quality.

NEMO broadcaster obtains QoS
and QoE metrics and is capable
to use them to ensure the
streaming quality.

NEMO_FR57

Control signals (voice and data) and
audio/video return channels are to be
transferred between the technical director
location and the venue via the cloud network.

mNCC has a defined process to
transfer control signals and
audio/video between the
technical location to the desired
destiny by using the cloud
network.

NEMO_FR58

NEMO must provide the adequate resources to
the service provider to map these requirements
onto the cloud network and perform
accordingly.

NEMO system has the capability
to provide a map with a
performance’s metrics
representation to service
providers.

NEMO_FR60 NEMO will be able to allocate and launch the
required services/VNFs on a location basis.

NEMO is able to allocate and
launch the required
services/VNFs on a location
basis.

NEMO_FR61
The service provider must be able to chain
services/VNFs with the help of a service
orchestrator.

The service provider is able to
chain services/VNFs with the
help of a service orchestrator.

NEMO_FR67

Max. end-to-end network latency (RTT) - It
comprises the latency of the whole network
path excluding end devices on-site (like the
network gateway or HW video coder) <= 50
ms.

Nemo can guarantee a maximum
end to end latency for all
communications.

NEMO_FR68

Max latency of end-to-end signal transport
(video, audio and control data) - it comprises
the latency of the whole signal path including
converting of end devices on-site and media-
specific VNFs).
Maximum E2E latency one way for video and
audio: <= 500 ms
Max. E2E latency for return video (one way):
<= 500 ms (Typically uses less bandwidth
because of low-resolution proxy transfer)
Max. end-to-end latency for intercom (if
needed): <= 100 ms (according to ITU G.114).

NEMO system provides the
required data (both for media
and communications) with a
maximum latency guaranteed
for the

NEMO_FR75
Network will support diverse devices
(wearables, AR/VR headsets) with different
performance (e.g., high throughput, low
latency and massive connection densities).

mNCC is able to interact with
different devices being the
system technological-agnostic.
These devices may have
different network requirements
or performances, but that do not

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 63 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Requirement ID Requirement description Requirement satisfaction
affect to the capability to work
with them.

NEMO_FR76
The platform must ensure the interoperability
with external systems (i.e., multi sensorial
stimuli system).

mNCC is able to interact with
different external systems and
devices using well-known and
standardized protocols.

NEMO_FR77
The platform components involving direct
interaction with the end-users should be quick
to respond to the users’ actions.

mNCC is able to interact with
the end-users in near real-time,
answering user’s request with a
maximum latency guarantied.

NEMO_FR83

Network must support diverse devices
(wearables, AR/VR headsets) with different
performance (e.g., high throughput, low
latency and massive connection densities).

mNCC can interact with
different devices being the
system technological-agnostic.
These devices may have
different network requirements
or performances, but that must
not affect to the capability to
work with them.

Table 14: NEMO non-functional requirements addressed through the mNCC

Requirement ID Requirement description Requirement satisfaction

NEMO_NFR01 The NEMO platform must respect security
and privacy requirements.

NEMO platform communications and
processes follow required security
standards and good practices.

NEMO_NFR02 NEMO should support High Availability
features.

NEMO platform has a High
Availability extension or at least has
the APIs to interact with a potential
HA extension.

NEMO_NFR04

The NEMO platform should be flexible
and scalable in the sense of exploiting
available resources according to set goals.
It should be scalable in the sense of
providing additional resources when
computationally heavy tasks are initiated.

NEMO platform scales with the
traffic and the connected devices
providing enough connectivity to all
of the network clients but also
avoiding an over-deployment when
the requested capability is low.

NEMO_NFR05
Secure communication of sensitive data
related to the infrastructure should be
provided.

mNCC does not provide sensitive
data by insecure channels nor to
unknown users.

NEMO_NFR06 The 5G availability should allow achieving
better performances in data transmission.

mNCC 5G integration optimizes data
transmission improving it compared
to traditional network paradigms.

NEMO_NFR12
Data shall be consistent, reliable,
transparent and accessible only to
authorized users.

mNCC does not provide inconsistent
or unknown data and it sends it just to
authorized users.

NEMO_NFR13 Store data in a safe and tamperproof
manner.

mNCC counts with a safe way to store
data in order to ensure consistency
reliability and privacy.

NEMO_NFR14 The platform must ensure the traceability
for the operator.

mNCC has a defined process to check
the traceability for the different
changes realized and it is also able to
export it to the network operator when
it is required.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 64 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Requirement ID Requirement description Requirement satisfaction

NEMO_NFR15 The platform must have capabilities of a
monitoring system.

mNCC has the capability to
monitoring network services and
systems, recollecting performance
metrics and creating alerts if some
network segment does not work as
expected.

NEMO_NFR18 The platform must provide mechanisms for
security and data privacy.

mNCC counts with a safe way to
exchange data and a defined process
to ensure the privacy to the network
platform.

NEMO_NFR19 The platform should support high
availability deployments.

mNCC has the ability to work with
high availability modules and
requirements.

5.5.2 NEMO Kernel

5.5.2.1 Meta-Orchestrator

5.5.2.1.1 Description
The meta-orchestrator component is designed as a highly advanced and intelligent open-source software
system. Its primary goal is to enable the decentralization and distribution of computing workflows across
the IoT to Edge to Cloud Continuum. By acting as a central orchestrator, it manages the coordination
and execution of complex distributed systems while addressing the challenges posed by their increasing
complexity and heterogeneity.

The meta-orchestrator provides a comprehensive and holistic approach to orchestration by considering
various aspects of distributed computing workflows. It conducts an in-depth investigation of the
structure and application programming interfaces (APIs) of various micro-schedulers and local
orchestrators. This analysis allows the meta-orchestrator to seamlessly integrate and coordinate with
different components within the distributed system architecture.

The intelligence capabilities of the meta-orchestrator are at the core of its decision-making process. It
considers crucial parameters such as migration time, downtime, and overhead time when orchestrating
computing workflows. By evaluating these parameters, the meta-orchestrator ensures that workflows
are orchestrated in a manner that minimizes disruption and maximizes efficiency.

In addition to the fundamental parameters, the meta-orchestrator also evaluates a wide range of
functional and non-functional requirements. Functional parameters include network and resource
availability via Intents, which are essential considerations for successful workflow execution. By
assessing these factors, the meta-orchestrator ensures that computing resources are allocated
appropriately and optimally.

Non-functional requirements play a crucial role in the decision-making process of the meta-orchestrator
as well. It considers policies, energy efficiency, CO2 footprint, and FinOps requirements such as
networking and hosting costs. By considering these non-functional requirements, the meta-orchestrator
enables the optimization of workflows based on multiple criteria, including environmental impact and
cost-effectiveness.

The meta-orchestrator acts as a central hub for managing distributed systems across the IoT to Edge to
Cloud Continuum. It provides a high-level view of the system, allowing for efficient coordination and
resource management. By leveraging the capabilities of micro-schedulers and local orchestrators, the
meta-orchestrator ensures that computing workflows are distributed effectively and executed on the
most suitable resources available within the continuum.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 65 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

The meta-orchestrator's intelligent decision-making capabilities not only optimize resource utilization
but also contribute to the scalability and adaptability of the distributed system. It can dynamically adjust
the allocation of resources based on changing conditions and requirements. This adaptability is
especially valuable in scenarios where the system experiences fluctuations in workload, availability of
resources, or environmental conditions.

Moreover, the meta-orchestrator fosters interoperability and compatibility across different components
and systems within the distributed architecture. It provides standardized interface that allow for seamless
integration and communication with other components. This interoperability ensures that the distributed
system operates cohesively and efficiently, even when composed of heterogeneous and diverse
components.

The high-level design of the NEMO meta-Orchestrator is depicted in Figure 32, identifying the main
subcomponents. The role and internal interactions among them are provided in Table 15.

Figure 32: High-level design of the NEMO meta-orchestrator

Table 15: Analysis of the meta-orchestrator elements

Meta-
orchestrator sub-
component

Role and internal interactions

Orchestration
Engine

The orchestration engine interacts with other internal components both as an
input and output. As an input, it receives information from the resource
manager, decision engine, analytics engine, and integration component. This
information includes resource availability, workload characteristics, policies,
and data related to resource utilization and performance. As an output, the
orchestration engine provides instructions and requests to other components for
resource allocation, workload placement, and integration with external tools and
frameworks. It serves as the central component within NEMO, abstracting
complexities and ensuring efficient management and control of the distributed
computing workflow.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 66 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Meta-
orchestrator sub-
component

Role and internal interactions

Resource Manager The resource manager interacts with the orchestration engine as an output by
providing information about the complete lifecycle of resources, including
provisioning, scaling, monitoring, and deprovisioning. It also receives
instructions and requests from the orchestration engine as an input for resource
allocation, scaling, and deprovisioning based on the orchestrated workflows'
requirements. The resource manager effectively manages the allocation and
deallocation of resources to ensure optimal utilization and availability for the
computing workflows orchestrated by NEMO.

Decision Engine The decision engine interacts with the orchestration engine as an output by
providing policies for policy enforcement, cost optimization, and workload
placement. It receives instructions and requests from the orchestration engine as
an input, considering workload characteristics, resource availability, and
performance metrics. The decision engine plays a vital role in providing
intelligent decision-making capabilities, ensuring efficient orchestration of
computing workflows while adhering to specified policies and minimizing
operational costs.

Analytics Engine The analytics engine interacts with the orchestration engine as an output by
providing insights and recommendations generated from collected and analyzed
data related to resource utilization, performance, and other relevant metrics. It
receives feedback and updates from the orchestration engine as an input,
regarding the effectiveness and impact of the suggested optimizations. The
analytics engine focuses on optimizing the overall orchestration process by
identifying potential bottlenecks, improving resource allocation strategies, and
enhancing the performance of the distributed computing environment.

Integration
Component
(API/Other
components)

The integration component interacts with the orchestration engine as an output
by providing connectors and APIs for seamless integration with different
orchestration tools and frameworks. It receives information and requirements
from the orchestration engine as an input for compatibility and interoperability
with various tools and frameworks. The integration component enables the
meta-orchestrator to leverage existing infrastructure and frameworks efficiently,
simplifying the adoption and deployment of NEMO within diverse computing
ecosystems.

5.5.2.1.2 Main functionalities
The following functionalities enable the meta-orchestrator to effectively coordinate, manage, and
optimize computing workflows across the distributed system, promoting decentralization and efficient
resource utilization.

• Workflow Orchestration: The meta-orchestrator is responsible for coordinating and managing
the execution of computing workflows across the IoT to Edge to Cloud Continuum. It ensures
that tasks and components within the workflow are executed in the most efficient and effective
manner possible.

• Intelligent Decision-Making: Leveraging advanced intelligence capabilities, the meta-
orchestrator makes intelligent decisions when orchestrating computing workflows. It considers
parameters such as migration time, downtime, and overhead time to optimize the orchestration
process.

• Parameter Evaluation: The meta-orchestrator evaluates various parameters to optimize
workflow orchestration. This includes assessing network and resource availability to allocate

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 67 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

resources effectively. It also considers non-functional requirements such as policies, energy
efficiency, CO2 footprint, and FinOps requirements like networking and hosting costs.

• Integration with Micro-Schedulers and Local Orchestrators: The meta-orchestrator conducts an
in-depth investigation of the structure and APIs of micro-schedulers and local orchestrators. It
integrates with these components to seamlessly coordinate and distribute computing workflows
across the continuum.

• Resource Management: The meta-orchestrator efficiently manages and allocates computing
resources across the distributed system. It ensures that resources are utilized optimally,
considering factors such as workload, availability, and non-functional requirements.

• Scalability and Adaptability: The meta-orchestrator supports the scalability and adaptability of
the distributed system. It dynamically adjusts resource allocation based on changing conditions
and workload fluctuations, enabling the system to respond to varying demands effectively.

• Interoperability: The meta-orchestrator fosters interoperability and compatibility across
different components within the distributed architecture. It provides standardized interfaces for
seamless integration and communication with other system components.

• Domain Migration: The meta-orchestrator enables the migration of workflows across different
domains within the IoT to Edge to Cloud Continuum. It facilitates the seamless transfer of
computing tasks and data between different environments, ensuring continuity and efficiency.

5.5.2.1.3 Interactions
The meta-Orchestrator interacts with other NEMO components, as described in Table 16.

Table 16: Interactions of the meta-Orchestrator with other NEMO components and external entities

Interacting with Interaction type Description of interaction
Intent-based
Migration
Controller

Input/Output The meta-orchestrator interacts with the Intent-based
Migration Controller both as an input and output. As an input,
the Intent-based Migration Controller provides migration
intents, specifying requirements and constraints for migrating
computing workflows across domains. The meta-orchestrator
considers these migration intents during the orchestration
process, ensuring seamless migration and continuity of
workflows. As an output, the meta-orchestrator provides
feedback and updates to the Intent-based Migration Controller
regarding the status and progress of the workflow migration.
This feedback helps the controller track and monitor the
migration process and make necessary adjustments if
required.

meta–Network
Cluster Controller
(mNCC)

Input/Output The meta-orchestrator interacts with the meta-Network
Cluster Controller (mNCC) both as an input and output. As an
input, the mNCC provides network-related information, such
as network availability, performance metrics, and constraints.
The meta-orchestrator utilizes this information to make
informed decisions regarding workload placement, resource
allocation, and orchestration optimization. As an output, the
meta-orchestrator provides instructions and requests to the
mNCC for network-related configurations and adjustments
based on the orchestrated workflows' requirements. The
mNCC executes these instructions to ensure the networking
environment supports the efficient orchestration and
functioning of distributed computing workflows.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 68 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Interacting with Interaction type Description of interaction
Cybersecure
Microservices’
Digital Twin
(CMDT)

Input/Output The meta-orchestrator interacts with the Cybersecure
Microservices' Digital Twin (CMDT) both as an input and
output. As an input, the CMDT provides information related
to the security and integrity of microservices within the
distributed computing environment. This input helps the
meta-orchestrator assess the security risks and vulnerabilities
associated with different microservices and incorporate
security measures into the orchestration decisions. As an
output, the meta-orchestrator provides instructions and
requests to the CMDT for security-related configurations,
monitoring, and enforcement. The CMDT executes these
instructions to ensure the cybersecure operation of
microservices throughout the orchestration process.

Cybersecure
Federated Deep
Reinforcement
Learning (CF-
DRL)

Input/Output The meta-orchestrator interacts with the Cybersecure
Federated Deep Reinforcement Learning (CF-DRL)
component both as an input and output. As an input, the CF-
DRL component provides reinforcement learning models and
insights related to security and risk management. The meta-
orchestrator incorporates these insights into its decision-
making process to enhance security measures, risk mitigation,
and policy enforcement. As an output, the meta-orchestrator
provides feedback and updates to the CF-DRL component
regarding the impact and effectiveness of the security and risk
management measures taken. This feedback helps the CF-
DRL component refine its models and strategies, resulting in
improved security and risk management within the
orchestration environment.

5.5.2.1.4 Requirements
The meta-Orchestrator contributes to the NEMO functional and non-functional requirements, listed in
Table 17 and Table 18, respectively, following the numbering and description adopted in D1.1.

Table 17: NEMO functional requirements addressed through the meta-Orchestrator

Requirement
ID

Requirement description Requirement satisfaction

NEMO_FR01 The platform must provide access to
measurements.

The meta-orchestrator provides access to
measurements by considering various
parameters for orchestrating workflows. It
assesses factors like migration time,
downtime, and overhead time for decision-
making.

NEMO_FR03 The platform must provide options to
manage users.

The meta-orchestrator supports user
management by considering functional and
non-functional requirements, including
network availability and resource
allocation.

NEMO_FR07

The platform should support
monitoring of SLOs, e.
g., related to energy consumption or
CO2 emissions.

The meta-orchestrator supports monitoring
of SLOs like energy consumption and CO2
emissions, optimizing workflows based on
environmental impact and efficiency.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 69 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Requirement
ID

Requirement description Requirement satisfaction

NEMO_FR08 The platform must respect data
sovereignty and privacy requirements.

The meta-orchestrator respects data
sovereignty and privacy by ensuring
appropriate allocation of resources and
communication while orchestrating
workflows

NEMO_FR14

The platform should be able to perform
alternative scheduling or geographical
distribution of smart farming services
based on user goals.

The meta-orchestrator enables alternative
scheduling and distribution by intelligently
orchestrating workflows based on user-
defined strategies and goals.

NEMO_FR15
The Smart Farmer should be able to
define strategies for the use of available
resources.

The meta-orchestrator allows the end-user
to define resource use strategies, guiding its
decision-making process for orchestrating
workflows.

NEMO_FR23 The platform must provide access to
collected data.

The meta-orchestrator provides access to
collected data by considering various
parameters and factors for orchestrating
workflows.

NEMO_FR24 The platform must provide access to
the devices.

The meta-orchestrator provides access to
devices by integrating and coordinating
with different components within the
distributed system architecture.

Table 18: NEMO non-functional requirements addressed through the meta-Orchestrator

Requirement
ID

Requirement description Requirement satisfaction

NEMO_NFR01 The NEMO platform must respect
security and privacy requirements.

The meta-orchestrator respects security
and privacy requirements by ensuring
secure allocation of resources and
communication while orchestrating
workflows.

NEMO_NFR02 NEMO should support High
Availability features.

The meta-orchestrator supports High
Availability by intelligently allocating
resources and adapting to changing
conditions to ensure system availability.

NEMO_NFR04

The NEMO platform should be flexible
and scalable in the sense of exploiting
available resources according to set
goals. Should be scalable in the sense of
providing additional resources when
computationally heavy tasks are
initiated.

The meta-orchestrator provides
flexibility and scalability by dynamically
adjusting resource allocation based on
goals and task demands, ensuring optimal
resource utilization.

NEMO_NFR05
Secure communication of sensitive data
related to the infrastructure should be
provided.

The meta-orchestrator ensures secure
communication by implementing
encryption and secure protocols for
sensitive data transmission within the
system.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 70 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

NEMO_NFR08
CPO platform shall be portable. So,
moving from one OS to other OS does
not create any problem.

The meta-orchestrator ensures portability
by providing compatibility with multiple
operating systems, enabling seamless
migration without issues.

NEMO_NFR13 Store data in a safe and tamperproof
manner.

The meta-orchestrator ensures safe and
tamperproof data storage by
implementing secure data management
practices within the system.

NEMO_NFR14 The platform must ensure the
traceability for the operator.

The meta-orchestrator ensures
traceability by maintaining logs and
records of system activities, facilitating
accountability and monitoring.

NEMO_NFR15 The platform must have capabilities of a
monitoring system.

The meta-orchestrator provides
monitoring capabilities by tracking
resource usage, performance, and system
health for effective management and
optimization.

NEMO_NFR16
The platform should offer the
possibility to switch from the automated
operation to manual operation.

The meta-orchestrator supports manual
operation by allowing operators to
intervene and adjust resource allocation
and workflow orchestration as needed.

NEMO_NFR18 The platform must provide mechanisms
for security and data privacy.

The meta-orchestrator ensures security
and data privacy by implementing robust
security mechanisms and privacy controls
within the system.

NEMO_NFR19 The platform should support high
availability deployments.

The meta-orchestrator supports high
availability by intelligently managing
resources and tasks to ensure continuous
operation and system resilience.

NEMO_NFR20 Live migration should be done using
specific microservices.

The meta-orchestrator supports live
migration using specific microservices,
ensuring efficient and seamless migration
of computing tasks and resources.

5.5.2.2 Intent-based Migration Controller

5.5.2.2.1 Description
The Intent-based Migration Controller (IMC) represents a pivotal component within the overarching
framework of the IoT to Edge to Cloud Continuum. Its primary purpose revolves around facilitating
seamless and efficient migration of computing workloads across distributed systems, encompassing IoT
devices, edge computing infrastructure, and cloud environments. By harnessing the power of intent-
based networking principles and capitalizing on the knowledge gained from previous experience with
the meta-orchestrator, the IMC aims to optimize resource utilization, enhance scalability, and ensure
uninterrupted service delivery throughout the migration process. Figure 33 represents the IMC in the
context of the NEMO Kernel and Continuum.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 71 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Figure 33: High-level design of the NEMO Intent Based Migration Controller

The scope of the Intent-based Migration Controller spans a wide range of migration scenarios
encountered within the IoT to Edge to Cloud Continuum. These scenarios encompass the migration of
workloads between edge devices and cloud platforms, migration between different edge computing
nodes, and the orchestration of workload migration from legacy systems to modern IoT platforms. By
effectively addressing these cases, the IMC provides an intelligent and adaptive framework that
streamlines the migration process while considering the unique characteristics, constraints, and
requirements of the IoT, edge, and cloud domains.

Within the context of IoT to cloud migration, the Intent-based Migration Controller empowers
organizations to seamlessly transfer data and computational tasks from IoT devices to cloud
environments. This migration may be driven by various factors such as resource limitations of IoT
devices, the need for advanced analytics capabilities in the cloud, or the desire to centralize data storage
and processing. By abstracting the underlying complexities and intricacies, the IMC orchestrates the
migration process, ensuring data integrity, preserving real-time capabilities when necessary, and
optimizing the utilization of cloud resources.

When operating within the realm of edge computing, the Intent-based Migration Controller plays a vital
role in managing workload migration between different edge nodes. Such migration becomes necessary
due to factors like varying resource availability, changing network conditions, or shifting workload
demands. Leveraging intent-based principles, the IMC endeavours to comprehend the desired outcomes
of migration, considering factors such as latency requirements, resource utilization, and application
dependencies. Through its orchestration capabilities, the IMC empowers organizations to dynamically
allocate and balance workloads across edge nodes, optimizing performance and resource utilization.

Drawing from the rich experience and interactions with the meta-orchestrator, the Intent-based
Migration Controller seamlessly integrates with this higher-level orchestrator. By providing migration
intents, receiving orchestration instructions, and exchanging information, the IMC collaborates with the
meta-orchestrator to achieve a holistic and optimized migration process. The IMC harnesses the
capabilities of the meta-orchestrator to effectively orchestrate and manage migration activities, ensuring
smooth transitions, minimal disruption, and compliance with specified policies and constraints.

5.5.2.2.2 Main functionalities
These functionalities focus on the core capabilities of the Intent-based Migration Controller in
facilitating the expression of migration intents, utilizing intent-based networking principles, and

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 72 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

integrating with the meta-Network Cluster Controller to enhance migration capabilities within the IoT
to Edge to Cloud Continuum.

• Migration Intent Expression: The IMC provides the capability for users or organizations to
express their migration intents at a high level. It allows them to define the desired outcomes,
constraints, and requirements of the migration process, such as latency, resource utilization, data
integrity, and security protocols.

• Intent-based Networking: Leveraging the principles of intent-based networking, the IMC
interprets the migration intents expressed by users and translates them into actionable
instructions for the migration process. It considers factors such as workload characteristics,
network conditions, resource availability, and latency requirements to optimize the migration
decision-making process.

• Integration with mNCC: The IMC integrates with the meta-Network Cluster Controller (mNCC)
to enhance its migration capabilities. It leverages the connectivity and communication with
mNCC to obtain real-time network information, such as network conditions, topology, and
available resources. This integration enables the IMC to make informed migration decisions
based on network-awareness and optimize the migration process.

5.5.2.2.3 Interactions
The IMC interacts with other NEMO components, as described in Table 19.

Table 19: Interactions of the IMC with other NEMO components

Interacting with Interaction
type

Description of interaction

meta-Orchestrator Input/Output The IMC receives migration intents and high-level
requirements from the meta-Orchestrator as input. It interprets
and processes these inputs to generate migration plans and
recommendations.

The IMC provides migration decisions and recommendations to
the meta-Orchestrator as output. It communicates the intent-
based migration plans, resource requirements, and constraints
to the meta-Orchestrator for further coordination and
orchestration.

meta-Network
Cluster Controller
(mNCC)

Input/Output The IMC receives real-time network information from the
mNCC, which includes network conditions, topology, and
available resources. This information is used to make informed
migration decisions and optimize the migration process.

The IMC communicates with the mNCC to gather network
information, including network conditions, topology, and
available resources. It provides migration requirements, such as
bandwidth and latency constraints, to the mNCC for network-
aware migration planning.

Secure Execution
Environment
(SEE)

Input/Output The IMC receives information and feedback from the SEE
regarding the security measures and protocols implemented
during the migration process. This feedback helps validate the
secure execution of migrated workloads and ensures
compliance with security requirements.

The IMC provides migration instructions and requirements to
the SEE. It communicates the necessary security protocols, data

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 73 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Interacting with Interaction
type

Description of interaction

integrity measures, and other migration-related security
considerations to ensure secure migration of workloads.

5.5.2.2.4 Requirements
Intent-based Migration Controller contributes to the NEMO requirements, listed in Table 20 and Table
21, following the numbering and description adopted in D1.1.

Table 20: NEMO functional requirements addressed through IMC

Requirement
ID

Requirement description Requirement satisfaction

NEMO_FR01 The platform must provide access to
measurements.

The Intent-Based Migration Controller
provides access to measurements as it
considers factors like resource availability,
network conditions, and workload
characteristics for migration decisions.

NEMO_FR03 The platform must provide options to
manage users.

The Intent-Based Migration Controller
supports user management by allowing users
or organizations to express migration intents,
defining desired outcomes and requirements.

NEMO_FR07

The platform should support
monitoring of SLOs, e.
g., related to energy consumption or
CO2 emissions.

The Intent-Based Migration Controller
supports monitoring of SLOs like energy
consumption and emissions, considering such
factors during migration intent interpretation
and decision-making.

NEMO_FR08
The platform must respect data
sovereignty and privacy
requirements.

The Intent-Based Migration Controller
respects data sovereignty and privacy by
considering security protocols and
requirements expressed in migration intents.

NEMO_FR14

The platform should be able to
perform alternative scheduling or
geographical distribution of smart
farming services based on user goals.

The Intent-Based Migration Controller
performs alternative scheduling and
distribution by interpreting migration intents
to meet user-defined constraints and goals.

NEMO_FR15
The Smart Farmer should be able to
define strategies for the use of
available resources.

The Intent-Based Migration Controller allows
the Smart Farmer to define resource use
strategies within migration intents, guiding its
decision-making process.

NEMO_FR23 The platform must provide access to
collected data.

The Intent-Based Migration Controller
provides access to collected data by
considering data integrity and communication
protocols during migration orchestration.

NEMO_FR24 The platform must provide access to
the devices.

The Intent-Based Migration Controller
provides access to devices by integrating with
network information from meta-Network
Cluster Controller for migration decisions.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 74 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Table 21: NEMO non-functional requirements addressed through IMC

Requirement ID Requirement description Requirement satisfaction

NEMO_NFR01 The NEMO platform must respect
security and privacy requirements.

The Intent-Based Migration Controller
respects security and privacy requirements by
considering secure migration intents and
communication protocols.

NEMO_NFR02 NEMO should support High
Availability features.

The Intent-Based Migration Controller
supports High Availability features by
considering migration intents that prioritize
availability and redundancy.

NEMO_NFR04

The NEMO platform should be
flexible and scalable in the sense of
exploiting available resources
according to set goals. Should be
scalable in the sense of providing
additional resources when
computationally heavy tasks are
initiated.

The Intent-Based Migration Controller is
flexible and scalable by interpreting
migration intents that define resource
utilization goals and additional resource
needs for heavy tasks.

NEMO_NFR05
Secure communication of sensitive
data related to the infrastructure
should be provided.

The Intent-Based Migration Controller
provides secure communication by
implementing secure protocols and
encryption for sensitive data related to
migration activities.

NEMO_NFR08
CPO platform shall be portable. So,
moving from one OS to other OS
does not create any problem.

The Intent-Based Migration Controller
ensures portability by allowing migration
intents to specify platform preferences and
constraints.

NEMO_NFR13 Store data in a safe and tamperproof
manner.

The Intent-Based Migration Controller stores
data securely by following tamperproof data
storage practices within the migration
process.

NEMO_NFR14 The platform must ensure the
traceability for the operator.

The Intent-Based Migration Controller
ensures traceability by logging and tracking
migration activities and decisions for operator
accountability.

NEMO_NFR15 The platform must have capabilities
of a monitoring system.

The Intent-Based Migration Controller has
monitoring capabilities by interpreting
migration intents that involve monitoring and
resource utilization considerations.

NEMO_NFR16

The platform should offer the
possibility to switch from the
automated operation to manual
operation.

The Intent-Based Migration Controller offers
the possibility of manual operation by
interpreting migration intents that allow for
manual intervention and decision-making.

NEMO_NFR18
The platform must provide
mechanisms for security and data
privacy.

The Intent-Based Migration Controller
provides mechanisms for security and data
privacy by interpreting migration intents that
include security and privacy constraints.

NEMO_NFR19 The platform should support high
availability deployments.

The Intent-Based Migration Controller
supports high availability deployments by

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 75 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Requirement ID Requirement description Requirement satisfaction
considering migration intents that prioritize
availability and redundancy in the migration
process.

NEMO_NFR20 Live migration should be done using
specific microservices.

The Intent-Based Migration Controller
performs live migration using specific
microservices as specified in migration
intents, facilitating seamless migration of
workloads.

5.5.2.3 Cybersecure Microservices’ Digital Twin

5.5.2.3.1 Description
In an ever-evolving digital world the direction taken in the management of complex services consists in
considering each one composed of several microservices, and this poses new challenges. It is clear in
fact that these microservices need to be organized, monitored, and managed effectively and at the same
time we need to ensure data security, providing real-time performance metrics, and maintaining
transparency.
The novelty of the CMDT architecture addresses these very challenges and takes into account the
necessity for scalability, the need for real-time monitoring and updates, and the demand for secure and
transparent operations.
Key components of this architecture, depicted in Figure 34, include:

• AAA: In the diagram shown in Figure 25 there is an Authentication and Authorization Service
responsible for handling user access to the CMDT resources. It utilizes a role-based access
control method, where different roles are assigned to users, granting them specific permissions
based on their roles. This component ensures that only authorized users can access the CMDT
resources. These functionalities can be operated by the CMDT or also be provided by an external
service depending on the UCs.

• CMDT API: The CMDT service provides APIs that enable the interaction with the micro-
services, (which can be in the form of management of packaged applications and editable
YAML files). These APIs allow users to access and utilize the services provided by the CMDT.

• Additionally, there is a CMDT Service Layer: This component is responsible for interpreting
and manipulating service descriptions for various external components.

• There is a database that stores YAML files describing microservices and what they look like.
Finally, a blockchain client is integrated to ensure the security and decentralization of critical
portions of the data descriptors that dynamically evolve over time, ultimately contributing to
service performance assurance.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 76 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Figure 34: The CMDT high-level design

The CMDT subcomponents interact with each other as listed in Table 22.

Table 22: Analysis of the CMDT elements

CMDT subcomponent Role and interactions
CMDT Service Layer The CMDT Service Layer will still parse YAML files from the database,

and it will also interact with the Blockchain Integration Module to get data
from the blockchain. Similarly, if requested, it will send data to the
Blockchain Integration Module when a YAML file needs to be updated on
the blockchain.

Blockchain Integration
module

The Blockchain Integration Module will interact with the CMDT service
layer and service impersonation as described above. It will also communicate
with the Blockchain client to do the actual reading and/or writing to the
blockchain and/or with the IPFS. Blockchain Integration Module is basically
a manager who, depending on the use case, decides which part of the Digital
Twins to store either on the blockchain and/or on IPFS

AAA module This external module will take care of enable authentication, authorization
and accountability for external component

CMDT API These APIs allow users to access and utilize the services provided by the
CMDT

Metric Handler After the performance metrics are modified and communicated by the
external component, you will need a component to update the relevant
service's YAML file with these new data.

Database YAML
Descriptor

The database is where the YAML files will be stored, so both for writing
and for reading

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 77 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

5.5.2.3.2 Main functionalities
The main functionalities of CMDT can be summarized and instantiated in the following components:

• Database: The database is where the YAML files will be stored. MongoDB or PostgreSQL
would be an appropriate choice due to their strong support for document-oriented data
structures.

• CMDT Service Level: You will need a component to parse and validate YAML files. This
component should be able to both read and write to the database and save in parallel, if required,
also to the Blockchain Integration Module

• The CMDT service provides APIs that enable the interaction with the micro-services, (which
can be in the form of management of packaged applications and editable YAML files). These
APIs allow users to access and utilize the services provided by the CMDT.

• Metrics Handler: This component collects the performance metrics of a service from different
viewpoints (for example, security, runtime, etc.) once the service has run.

• Blockchain Client: this component interacts with the blockchain network. It is responsible for
writing to and reading from the blockchain. Depending on which blockchain you choose to use
(like Ethereum, Hyperledger Fabric, etc.), the interface for this client will be different.

• Blockchain Integration Module: This component interacts with the CMDT service layer
representation and the blockchain and/or IPFS client. Decides which parts of the YAML file
should be stored on the blockchain and/or IPFS and coordinates reading and/or writing from the
blockchain.

5.5.2.3.3 Interactions
The CMDT interacts with other NEMO components, as described in Table 23.

Table 23: Interactions of the CMDT with other NEMO components

Interacting with Interaction type Description of interaction
Meta-Orchestrator Input/Output The Cybersecure Microservices Digital Twin (CMDT)

interacts with the Meta-Orchestrator as both input and
output.

As an output, the CMDT provides information related to the
security and integrity of microservices within the distributed
computing environment. This output helps the meta-
orchestrator evaluate the security risks and vulnerabilities
associated with different microservices and incorporate
security measures into orchestration decisions.

As input, the Meta-Orchestrator provides instructions and
requests to the CMDT for security-related configurations,
monitoring, and enforcement. The CMDT executes these
instructions to keep the microservices functioning safely
throughout the orchestration process.

Intent-based
Migration
Controller

Input The IMC communicates with the CMDT to gather
containers' information, network information, including
network conditions, topology, and available resources.

PRESS & Policy
Enforcement
Framework

Input The PRESS & Policy Enforcement Framework
communicates with the CMDT to ensure policy compliance
through multifaceted policies that address different aspects
of the application lifecycle (security, privacy, cost,

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 78 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Interacting with Interaction type Description of interaction
environmental impact, etc.), channeling "violations" as
input.

Plugin &
Applications
Lifecycle Manager

Input/Output The Plug-ins and Application Lifecycle Manager
communicates with the CMDT. This is a key component and
will be a flexible plug-in and application lifecycle manager,
which will enable over-the-air and timely implementation of
the required plug-ins. As input to the CMDT, the Plug-ins
and Application Lifecycle Manager provides "descriptors",
while as output from the CMDT it provides "lifecycle info".

Monetization and
Consensus-based
Accountability

Input/Output Monetization and consent-based accountability
communicates with the CMDT. As Input and Output, they
only exchange information about the payload you insert on
the blockchain.

5.5.2.3.4 Requirements
The CMDT contributes to the NEMO functional and non-functional requirements, listed in Table 24
and Table 25, respectively, following the numbering and description adopted in D1.1.

Table 24: NEMO functional requirements addressed through the CMDT

Requirement ID Requirement description Requirement satisfaction

NEMO_FR03
The platform must provide options to
manage users.

Via the AAA module that will take care
of making authentication, authorization
and accountability possible for external
components

NEMO_FR13
The monitoring devices must be able
to communicate data to and receive
control commands from the NEMO
platform.

CMDT shall be able to communicate
data and receive control commands from
the NEMO platform.

NEMO_FR08
The platform must respect data
sovereignty and privacy requirements.

Access to CMDT is granted to
authorised users only

NEMO_FR80
The solution should have an
Application Server (Rest API) for
communication between system
devices and applications.

CMDT API module: The CMDT service
provides APIs that enable interaction
with microservices (which can come in
the form of packaged application
management and editable YAML files).
These APIs allow users to access and use
the services provided by the CMDT.

NEMO_FR82
The solution could provide a UI tool
for specifying what to send to
subscribers.

The solution could possibly provide a
user interface tool for specifying what to
send to subscribers.

NEMO_FR76
The platform must ensure the
interoperability with external systems
(i.e. multi sensorial stimuli system).

CMDT will ensure interoperability with
external systems.

Table 25: NEMO non-functional requirements addressed through the CMDT

Requirement ID Requirement description Requirement satisfaction

NEMO_NFR01
The NEMO platform must respect
security and privacy requirements.

CMDT complies with all privacy and
security requirements of NEMO

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 79 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Requirement ID Requirement description Requirement satisfaction
platform, integrates identity
management and access control to
access API resources

NEMO_NFR04

The NEMO platform should be flexible
and scalable in the sense of exploiting
available resources according to set
goals. It should be scalable in the sense
of providing additional resources when
computationally heavy tasks are
initiated.

CMDT should also be scalable in the
sense of providing additional resources
when computationally heavy tasks are
started

NEMO_NFR05
Secure communication of sensitive
data related to the infrastructure should
be provided.

All communications between CMDT
and other system components will be
established over secure channels. CMDT
also integrates identity management and
access control to access API resources

NEMO_NFR12
Data shall be consistent, reliable,
transparent and accessible only to
authorized users.

The CMDT integrates identity
management and access control for
accessing the API resources, a task likely
performed by the external AAA module.

NEMO_NFR13
Store data in a safe and tamperproof
manner.

CMDT stores data securely and tamper-
proof.

NEMO_NFR14
The platform must ensure the
traceability for the operator.

CMDT will expose the services related
to the traceability of the running
microservices, eventually we will
understand if it records the operator's
activity, it (logs operator activity) will
probably be delegated to the AAA
module.

NEMO_NFR15
The platform must have capabilities of
a monitoring system.

CMDT will expose service-related
monitoring, in particular it will make use
of the "Metrics Handler" component
which collects the performance metrics
of a service from different points of view
(for example, security, runtime, etc.)
once the service is performed.

NEMO_NFR16

The platform should offer the
possibility to switch from the
automated operation to manual
operation.

The platform should possibly offer the
possibility to switch from automated to
manual operation. To be checked later
and possibly understood where feasible.

NEMO_NFR17
High accuracy of detection and
identification.

The CMDT integrates identity
management and access control to
access API resources, a task likely
performed by the external AAA module.

NEMO_NFR18
The platform must provide
mechanisms for security and data
privacy.

The use of secure execution
environments increases the security of
the NEMO platform.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 80 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

5.5.2.4 Secure Execution Environment

5.5.2.4.1 Description
The Secure Execution Environment is an extended version of the commonly used cluster orchestrator
Kubernetes. Kubernetes can orchestrate and monitor microservices using containers, however,
containers share the host’s kernel, so a vulnerability in a container might expose the host and thus all
other containers on the node.
The proposed solution enhances Kubernetes with the ability to run classical binary software in
unikernels and webassembly (WASM) programs in secure enclaves. Additionally, we investigate the
enhancement of the migration capabilities, so that new application scenarios, such as IoT-Device
clusters or location aware services are possible.
A Unikernel is a lightweight virtual machine (VM) image, containing only the application and the
necessary functions to run in a VM, but removes all other functionalities that a traditional virtual
machine has (kernel, drivers, userspace and more). The VM provides an enhanced isolation, and the
minimalistic image is more lightweight and often even faster than a container.
Trusted Execution Environments (TEEs) is an environment to run applications within a set of encrypted
memory pages to ensure the integrity of that data against modification from the host or other applications
and hide the information from these parties. This relies on hardware features and promises only a
minimal performance impact. Enarx [34] combines this technology with a WASM runtime to provide a
defined platform for applications requiring the increased integrity.
The high-level design of SEE is depicted in Figure 35.

Figure 35: High-level design of the Secure Execution Environment

The components Unikernel Runtime, Container Runtime, TEE Runtime have yet to be developed
and/or integrated.

5.5.2.4.2 Main functionalities
The secure execution environment is a drop-in replacement for Kubernetes. It inherits all functionalities,
such as orchestration, interfaces or monitoring.
Additionally, it can run unikernels for enhanced isolation and WASM in secure enclaves for increased
trust. Currently, it is not possible to control the migration of pods in a kubernetes cluster. The migration
component will grant fine grained migration capabilities of containers and unikernels for more advanced
use-cases.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 81 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

5.5.2.4.3 Interactions
The SEE interacts with other NEMO components, as described in Table 26.

Table 26: Interactions of the SEE with other NEMO components

Interacting with Interaction type Description of interaction
Meta Orchestrator

Input Control of the SEE (deployment of services, control etc)
Output Monitoring information of running services
Input Migration commands

Other Users Input/Output Other users may interact with the component manually
or potentially from other services

5.5.2.4.4 Requirements
The SEE contributes to the NEMO requirements, listed in Table 27, following the numbering and
description adopted in D1.1.

Table 27: NEMO requirements addressed through SEE

Requirement
ID

Requirement description Requirement satisfaction

NEMO_NFR18
The platform must provide
mechanisms for security and data
privacy.

The use of secure execution environments
increases the security of the NEMO
platform

NEMO_NFR19 The platform should support high
availability deployments.

The SEE component shall not reduce the
availability of the platform.

NEMO_NFR20 Live migration should be done
using specific microservices.

The SEE component shall support
migration.

5.5.3 NEMO Service Management

5.5.3.1 Intent-based SDK/API
NEMO will rely on its Intent-based Application Programming Interface (API) and Software
Development Kit (SDK) for maximizing the adoption potential by third party entities, including both
the meta-OS consumers and meta-OS partners, as well as external applications and (micro-)services. It
is aimed to expose NEMO lower-level functionality to the outside world in an easily accessible format,
minimizing the effort needed on their side to adapt applications, services and plugins to NEMO-capable
ones, but also introducing minimal distraction compared to common practice for proficient (K8s) cluster
users.

5.5.3.1.1 Description
The NEMO Intent based API/SDK scope is twofold. First, it aims to expose NEMO functionality
through a set of resources of a programmatic interface. This will be realized as both API service
description and implementation, which will facilitate external users in accessing the NEMO services,
but also the NEMO system to limit access to its resources only to eligible users and roles. Moreover, the
API/SDK offer a flexible and modular framework for developing, registering, discovering and
provisioning workloads, i.e., applications, services or plugins, through NEMO.
So, the Intent based API/SDK are aimed for meta-OS consumers (workload owners) and meta-OS
partners (plugin providers), wishing to make use of the meta-OS continuum. The API/SDK allow them
to develop new NEMO-compliant workloads, using the SDK and consuming the API services. In
addition, they may easily port their existing workloads into NEMO, making use of the SDK, relieved
from the overhead of performing the relevant integrations manually, which would potentially require
them to study NEMO documentation and familiarize with internal NEMO concepts. Instead of this, the

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 82 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

API/SDK allow the integration of existing and new services into NEMO, introducing minimal overhead
over developers’ common everyday operations as cluster users. Of course, similar operations could be
triggered by third-party applications, services or plugins. This facilitated integration capability endows
NEMO a user-centred flavour as a meta-OS, giving priority to usability goals for the meta-OS.
On the system side, the NEMO Intent based API & SDK aim to automate the processes for workload
registration and deployment to the extent possible and thus support ZeroOps deployment, eliminating
manual interventions in the NEMO DevOps cycle. The definition and adoption of common NEMO
specifications for workloads helps automating their registration, discovery, provisioning in the NEMO
meta-OS and allows for their systemic handling in a coherent way. Moreover, the API provides the logic
that ensures that desired exposable functionality of any NEMO workloads (components, applications,
services or plugins) will be automatically discovered and exposed through the API, with minimal effort
from the developer’s side (NEMO consumer or partner).

Figure 36: The NEMO Intent-based API

Intent-based API
The high-level architecture of the Intent based API is depicted in Figure 36. The API exposes NEMO
functionality in the form of resource based programmatic interfaces. Its goal is to provide a single entry
point for third-party entities to the NEMO functionalities, as offered by the NEMO framework
components, but also additional software elements (plugins) which extend the NEMO functionality and
may be added by the third parties.
Automation is at the core of the API design. So, the API handles workloads (“NEMO workloads” in
Figure 36), whether they are NEMO framework components, services or plugins, in a consistent manner.
The first step for their common handling would be to describe the workloads in a common format,
following common specifications for any workload type. This is realized through the NEMO workload
documents. There should be one workload document for each workload to be discoverable in the NEMO
meta-OS.
Then, automated workload discovery is made possible, as the exposable services for each registered
workload can be identified and exposed as Resources in the API Server. Specifically, the NEMO

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 83 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Workload Manager may check all available workloads (as recorded in the Workload Registry) for
services that could be exposed. This information could be also available in the workload document.
Before exposing those, NEMO should ensure that the named workloads and their documents are
compliant to NEMO. The compliance may be defined at communication, container, network or even
hardware level. This validity check is performed through the Workload Validator. For the workloads
that successfully pass the validity check, the exposable API services are automatically discovered and
relevant resources are automatically created to expose those services. Τhe Intent-based API Server acts
then as an API gateway to the NEMO workloads’ services, in which the endpoints (resources) are
automatically created. In this way, the API, and accordingly the NEMO services’ exposure, is fully
dynamic and scalable. As long as new workloads are registered or existing ones are updated or removed,
the API will be able to automatically update the exposed resources. This dynamicity makes NEMO
really flexible and autonomous.
An important aspect of the Intent-based API is the access control over the API endpoints. Access to each
workload endpoints should be granted based on both the permissions assigned to each user role and the
individual user per se, i.e. based on their credentials. For instance, an application owner, having their
application running on NEMO, must be able to make a registration request and access informative data
regarding only their own application. On the other hand, they must not be able to apply meta-OS wide
administrative actions about their application, such as granting registration to the NEMO meta-OS even
for their application. For this, the API relies on the Identity Management and Access Control
components of the NEMO Cybersecurity & Unified/Federated Access Control.
Last, but not least, the API supports and facilitates the workload registration into the NEMO platform.
Its role in this process would be to ensure that the NEMO consumer/partner wishing to register their
workload will be able to make the registration request and receive the required token for requesting a
workload deployment. Moreover, once a given workload is deployed, the Workload Provisioning
component of the API will ensure that access to it is provided according to the defined Role Based
Access Control (RBAC) rules.

Intent-based SDK
The SDK aims to facilitate the adoption of NEMO by third parties, mainly referring to workload owners
wishing to make their workloads compliant to NEMO and deploy them in the meta-OS continuum. The
SDK will provide a set of code libraries which will make the integration with NEMO much faster and
more efficient. This can allow workload developers easily adopt the NEMO meta-OS, saving them the
time needed to build their code from scratch for NEMO and getting aware of the NEMO specificities.
Indicatively, the Intent-based SDK will support the workload registration as NEMO-capable workload,
workload authentication, authorization and accounting into NEMO, etc.

5.5.3.1.2 Main functionalities
The functionality supported by the NEMO Intent-based API/SDK can be summarized as follows.

• Automated NEMO service discovery: The Intent-based API addresses the painful topic of
service discovery, responding to how a workload consumer could access the services offered by
a workload instance running on NEMO. The API provides a mechanism for
registering/deregistering workloads and for identifying and exposing their services as RESTful
endpoints. This process automated and simplifies access to NEMO functionalities for both the
meta-OS consumer and the meta-OS provider.

• Access control in NEMO services: The exposed NEMO services should be protected by
authorized access, as well as access by non-eligible users. The API integrates identity
management and access control, which allow restricting access to NEMO resources only to
entities that should be able to do so.

• Easy integration into NEMO: A timely topic on the adoption of new platform evolves around
how easy it is for newcomers to created platform-compliant tools or adapt their systems or
services, in order to integrate them with the platform. Both the API and the SDK aim to simplify
this process, by offering software artifacts for workload development,
registration/deregistration, validation and provisioning.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 84 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

5.5.3.1.3 Interactions
The Intent based API/SDK interacts with both external users and workloads, as well as with other
NEMO components, as described in Table 28.

Table 28: Interactions of Intent-based API/SDK with other NEMO components and external entities

Interacting with Interaction type Description of interaction
Identity
management

Input The Intent based API consumers AAA services from the
Identity Management component. Indicatively, it will
perform entities’ authentication and authorization for
API endpoints and will provide meta-OS consumers
with tokens for their workload
registration/deregistration based on the component.
Moreover, the SDK integrates the Identity Management
components for applying AAA on the provided
functions.

Access Control Input/Output The Intent-based API will rely on the Access Control
component for controlling access to the API endpoints,
based on user’s, roles’ or other criteria. Moreover, the
API will support workload provisioning, i.e. providing
access to workload information, as soon as it is up and
running. Access to the prominent users and roles will be
granted through a request (output) to the Access Control
component.

Applications &
Lifecycle Manager

Output The Application & Lifecycle Manager requires access to
the Workload Registry in order to receive information
about the workloads running on NEMO.

All NEMO
components and
plugins

Input/Output The API acts as a gateway for the NEMO components’
and plugins’ services. As such, it communicates with the
relevant components (both as input/output requests) in
order to expose their services.

Meta-OS Provider Input/Output The meta-OS Provider may use the API in order to grant
workload de/registration requests, initialize the
registration within NEMO, etc.

Meta-OS
Consumer

Input/Output The meta-OS Consumer will use the API and SDK in
order to develop new workloads or integrate existing
ones into NEMO. Also, they will use the API in order to
de/register workloads into the system.

Meta-OS Partner Input/Output Meta-OS partners, such as plugin developers/owners,
may use the API and SDK in order to develop, integrate
or de/register plugins into NEMO.

5.5.3.1.4 Requirements
The Intent-based API/SDK contribute to addressing a set of the defined NEMO functional and non-
functional requirements. Table 29 lists those requirements, following the numbering and description
adopted in D1.1 [32] and justifies how the Intent-based API/SDK contributes to their satisfaction.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 85 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Table 29: NEMO use case requirements addressed through the Intent-based API/SDK

Requirement
ID

Requirement description Requirement satisfaction

NEMO_FR01 The platform must provide access
to measurements.

The Intent-based API/SDK will expose services
related to the meta-OS continuum monitoring,
originally supported in PPEF.

NEMO_FR02 The platform must provide options
to manage/view sensors/devices.

The Intent-based API/SDK will expose
services related to the meta-OS continuum
cluster and nodes, originally supported in PPEF
or the meta-orchestrator, which may support
these operations.

NEMO_FR03 The platform must provide options
to manage users.

The Intent-based API/SDK will expose
services related to user, identity and access
management, originally supported by the
NEMO Cybersecurity & Unified/Federated
Access Control.

NEMO_FR04
The platform should support
ML/FL training and ML model
sharing/serving.

The Intent-based API/SDK will expose
services related to these operations, originally
offered by the NEMO Cybersecure Federated
Deep Reinforcement Learning (CFDRL).

NEMO_FR05 The platform should provide ML
classification accuracy probability.

The Intent-based API/SDK will expose
services related to ML inference via model
serving, originally offered by the NEMO
Cybersecure Federated Deep Reinforcement
Learning (CFDRL).

NEMO_FR07

The platform should support
monitoring of SLOs, e.g., related
to energy consumption or CO2
emissions.

The Intent-based API/SDK will expose
services related to PRESS policies and
SLAs/SLOs monitoring, originally supported
in PPEF.

NEMO_FR15
The Smart Farmer should be able
to define strategies for the use of
available resources.

The Intent-based API/SDK will expose
services related to the definition of intents
desired to be supported during workload
execution, which may include requirements for
the resource usage.

NEMO_FR24 The platform must provide access
to the devices.

The Intent-based API/SDK will expose
services related to the meta-OS continuum
cluster and nodes, originally supported in
PPEF, which covers IoT, edge and cloud
devices in the continuum.

NEMO_FR25 The platform must provide options
to manage users.

The Intent-based API/SDK will expose
services related to user, identity and access
management, originally supported by the
NEMO Cybersecurity & Unified/Federated
Access Control.

NEMO_FR26
The Smart Farmer should be able
to define strategies for the use of
available resources.

The Intent-based API/SDK will expose
services related to the definition of intents
desired to be supported during workload
execution, which may include requirements for
the resource usage.

NEMO_FR56 Several video streams are to be
transferred through the

The Intent-based API/SDK will expose services
related to the definition of intents desired to be

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 86 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Requirement
ID

Requirement description Requirement satisfaction

cloud/network. Bandwidth
requirements must be met
accordingly.

supported during workload execution, which
may include requirements on the bandwidth.

NEMO_FR58

NEMO must provide the adequate
resources to the service provider to
map these requirements onto the
cloud network and perform
accordingly.

The Intent-based API/SDK will expose
services related to the definition of intents
desired to be supported during workload
execution. The allocation of resources and
monitoring of performance is then part of the
NEMO kernel activities.

NEMO_FR60
NEMO will be able to allocate and
launch the required services/VNFs
on a location basis.

The Intent-based API/SDK will expose
services related to the definition of intents
desired to be supported during workload
execution, which may include requirements on
the location. The allocation of resources and
deployment of workloads is under the NEMO
kernel responsibility.

NEMO_FR61
The service provider must be able
to chain services/VNFs with the
help of a service orchestrator.

The Intent-based API/SDK will expose
services related to the definition of workflows
desired to be executed by the NEMO meta-OS,
which covers service chaining definitions.

NEMO_FR62

NEMO applies a central control
unit (Cognitive Network
Optimization) that is used by the
service provider to adjust/adapt the
network dynamically according to
the specific requirements and
conditions.

The Intent-based API/SDK will expose
services related to the definition of intents
desired to be supported during workload
execution, which may include specific
requirements and conditions.

NEMO_FR63

NEMO must be able to monitor and
control the network and ensure
adherence to QoS levels
(bandwidth, average bit rate, round
trip delay).

The Intent-based API/SDK will expose
services related to the definition of intents
desired to be supported during workload
execution, which may relate to network and
QoS requirements. The monitoring an d
adjustment of workload execution is under the
NEMO kernel responsibility.

NEMO_FR67

Max. end-to-end network latency
(RTT) - It comprises the latency of
the whole network path excluding
end devices on-site (like the
network gateway or HW video
coder) <= 50 ms.

The Intent-based API/SDK will expose
services related to the definition of intents
desired to be supported during workload
execution, which may include requirements on
the network latency.

NEMO_FR68

Max latency of end-to-end signal
transport (video, audio and control
data) - it comprises the latency of
the whole signal path including
converting of end devices on-site
and media-specific VNFs).
Maximum E2E latency one way for
video and audio: <= 500 ms
Max. E2E latency for return video
(one way): <= 500 ms (Typically

The Intent-based API/SDK will expose
services related to the definition of intents
desired to be supported during workload
execution, which may include requirements on
the network latency.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 87 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Requirement
ID

Requirement description Requirement satisfaction

uses less bandwidth because of
low-resolution proxy transfer)
Max. end-to-end latency for
intercom (if needed): <= 100 ms
(according to ITU G.114).

NEMO_FR70

The MEC platform and underlying
NFVI is required to deploy and run
all the needed VNFs.
The estimated use of resources is:

• High CPU power, preferably
new processor generation (>=
96 cores).

• 128 GB RAM
• 1 TB Storage SSD

Multiple 10 Gbit/s and 1 Gbit/s
interfaces.
GPU processing capability.

The Intent-based API/SDK will expose
services related to the definition of workflows
desired to be executed by the NEMO meta-OS
and of intents desired to be supported during
workload execution, which may include
requirements on the computing and network
resources.

NEMO_FR75

Network will support diverse
devices (wearables, AR/VR
headsets) with different
performance (e.g., high throughput,
low latency and massive
connection densities).

The Intent-based API/SDK will expose
services related to the definition of intents
desired to be supported during workload
execution, which may include execution on
different device capabilities.

NEMO_FR 77

The platform components
involving direct interaction with
the end-users should be quick to
respond to the users’ actions.

The Intent-based API/SDK will expose
services to end users and will introduce
negligible or no overhead in control messages’
communication.

NEMO_FR83

Network must support diverse
devices (wearables, AR/VR
headsets) with different
performance (e.g., high throughput,
low latency and massive
connection densities).

The Intent-based API/SDK will expose
services related to the definition of intents
desired to be supported during workload
execution, which may include requirements on
execution on different device capabilities.

NEMO_NFR01 The NEMO platform must respect
security and privacy requirements.

The Intent-based API/SDK integrates identity
management and access control for accessing
the API/SDK resources.

NEMO_NFR05
Secure communication of sensitive
data related to the infrastructure
should be provided.

The Intent-based API/SDK will incorporate
identity management and access control for
accessing the API/SDK resources. Moreover,
expose services related to the definition of
intents desired to be supported during
workload execution, which may include
requirements on secure execution or
communication.

NEMO_NFR09 CPO platform login shall be
processed by 3 seconds.

The Intent-based API/SDK will expose
services related to the definition of intents
desired to be supported during workload
execution, which may include relevant network
requirements.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 88 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Requirement
ID

Requirement description Requirement satisfaction

NEMO_NFR10 Charging station ping shall be
under 200 ms.

The Intent-based API/SDK will expose
services related to the definition of intents
desired to be supported during workload
execution, which may include network
requirements.

NEMO_NFR11 Electric vehicle ping shall be under
200 ms.

The Intent-based API/SDK will expose
services related to the definition of intents
desired to be supported during workload
execution, which may include network
requirements.

NEMO_NFR12
Data shall be consistent, reliable,
transparent and accessible only to
authorized users.

The Intent-based API/SDK integrates identity
management and access control for accessing
the API/SDK resources and thus data.

NEMO_NFR14 The platform must ensure the
traceability for the operator.

The Intent-based API/SDK will expose
services related to traceability of microservices
running on the meta-OS continuum, originally
supported in the Cybersecure Microservices’
Digital Twin (CMDT).

NEMO_NFR15
The platform must have
capabilities of a monitoring
system.

The Intent-based API/SDK will expose
services related to the meta-OS continuum
monitoring, originally supported in PPEF.

NEMO_NFR18
The platform must provide
mechanisms for security and data
privacy.

The Intent-based API/SDK integrates identity
management and access control for accessing
the API/SDK resources.

5.5.3.2 Plugin & Applications Lifecycle Manager
The Plugin & Applications Lifecycle Manager (LCM) is flexible mechanism for unified, just-in-time
plugins and applications life cycle management across the NEMO ecosystem. The Lifecycle Manager
(LCM) will be the interface between the NEMO ecosystem and the NEMO users, providing an interface
for seamless deployment of services and applications in the NEMO ecosystem.

5.5.3.2.1 Description
The NEMO LCM allows meta-OS consumers and meta-OS partners to install and deploy registered
applications, services, or plugins to NEMO meta-OS automated but totally transparent to the user. Based
on applications’ requirements/manifest, the NEMO LCM will gain ingress access rights, download the
necessary plugins and associated dependencies on demand, and install them on the devices while
checking for security warnings.
The Intent based API/SDK allows meta-OS consumers and meta-OS partners to develop NEMO-
compliant workloads and register them into NEMO framework. The LCM offers an interface to NEMO
users to deploy registered workloads or manage already deployed workloads while providing
information on the running services owned by the user.
Providing a seamless interface to deploy and run services in the NEMO ecosystem, the LCM interacts
with the meta-Orchestrator to communicate requested workload operations while at the same time
informs PPEF about the requested SLOs and SLA, sends accounting data for the workload in MOCA
component and registers service descriptor in CMDT to ensure traceability of the deployment activities.
While a service is running in NEMO meta-OS an event-based mechanism monitors critical events
related to the performance of the service. Moreover, a security controller monitors security related
events, alerts the user for detected abnormalities, and applies mitigation actions based on specified cyber
threats. Finally, LCM will check for available updates/bug fixing and install them over the air.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 89 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Figure 37 shows the positioning of LCM in NEMO architecture and interactions with other NEMO
components.

Figure 37: NEMO Plugin & Applications Lifecycle Manager

5.5.3.2.2 Main functionalities
NEMO LCM provides an interface to NEMO users to deploy and monitor plugins, applications, and
services deployed in NEMO ecosystem. Its main functionalities include:

• Deployment of registered workloads in NEMO meta-OS considering also dependencies, service
policies and workload accounting data.

• Manage running workloads, monitor their performance, provide security related services and
check for new versions of the deployed service.

5.5.3.2.3 Interactions
The Plugin & Applications Lifecycle Manager interacts with other NEMO components, as described in
Table 30.

Table 30: Interactions of the Plugin & Applications Lifecycle Manager with other NEMO components

Interacting with Interaction type Description of interaction
Identity
management

Input The LCM consumes AAA services from the Identity
Management component. Indicatively, it will perform
entities’ authentication and authorization to provide
meta-OS consumers access to their workload data.

Access Control Input/Output The LCM will rely on the Access Control component
for controlling access based on user’s, roles.

Intent based API Input The LCM requires access to the Workload Registry in
order to receive information about the workloads
registered or running on NEMO.

meta-Orchestrator Input/Output The LCM interacts with the meta-Orchestrator both as
an input and output. As an output, the LCM provides
installation and deployment commands such us
(install/uninstall, start/stop). As an input, the meta-
orchestrator provides feedback and updates regarding

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 90 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Interacting with Interaction type Description of interaction
the status and progress of the workflow migration in
order to track and monitor the migration process.

MOCA Output Provides accounting data related to the deployed service
and its requirements.

PPEF Output LCM provides the SLA definitions that concern the
plugins that will be deployed in NEMO meta-OS.

Event-based
response

Input LCM is getting information for workload performance
data based on detected events.

Security Controller Input LCM is getting security related notifications while
automated mitigation actions are applied when possible.

5.5.3.2.4 Requirements
LCM contributes to the NEMO requirements, listed in Table 31, following the numbering and
description adopted in D1.1.

Table 31: NEMO requirements addressed through LCM

Requirement
ID

Requirement description Requirement satisfaction

NEMO_FR01 The platform must provide
access to measurements.

The LCM will provide information on services running
in the NEMO meta-OS framework.

NEMO_FR03 The platform must provide
options to manage users

The LCM will provide services depending on user’s,
identity and access management

NEMO_FR08 The platform must respect
data sovereignty and
privacy requirements.

Access to LCM is granted to authorised users only

NEMO_NFR01 The NEMO platform must
respect security and
privacy requirements.

LMC is respecting all privacy and security
requirements of NEMO platform while it adds to
security by monitoring security issues on running
containers

NEMO_NFR05 Secure communication of
sensitive data related to the
infrastructure should be
provided.

All communications between LMC and other system
components will be established over secure channels

NEMO_NFR14 The platform must ensure
the traceability for the
operator.

LMC registers operator activity

5.5.3.3 Monetization and Consensus-based Accountability
MOCA supports the pre-commercial exploitation of the NEMO platform across the multi-
operator/multi-tenant IoT/5G continuum. This mechanism implements a consensus-based distributed
architecture for sharing networking, computing, and storage resources from various end-users and
(competing) telecom and cloud providers. This approach enables the creation of new business models
allowing volunteers and professionals to adopt the NEMO platform and offer hosting and migration
services according to the resources as a service (RaaS) paradigm. MOCA offers a traceable way to build
future business trade-offs between providers sharing bundles of computing, memory, storage resources
and I/O resources for a short period of time based on DLT-based smart contracts. To achieve its goals,
MOCA collaborates with the meta-Orchestrator, the CMDT and the monitoring framework, as
illustrated in Figure 38.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 91 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Figure 38: The MOCA component and interactions

The MOCA component provides a secure way to engage end-users and infrastructure providers to adopt
NEMO platform for deploying their services or/and offering resources. Despite the fact the MOCA will
not support financial transactions it proposes a monetization approach that can be used in the future for
financial transactions between the stakeholders. The main idea is based on the implementation of the
RaaS model, through which the shareholders can “sell” individual resources for a few seconds at a time
so that end users can benefit from a wide and dynamic continuum of heterogeneous types of resources.
Following this approach, the providers can exploit their idle resources and the end users can utilize these
resources in order to achieve their services SLOs at best prices. The system will trace all transactions
using DLT technology and Smart Contracts and will provide accounting services based on the utilization
of the resources.

5.5.3.3.1 Main functionalities
MOCA realizes specific technical functionalities to support the provided services to the NEMO
stakeholders, in terms of monetization resources, and transactions between NEMO end-users and
infrastructure providers. The main functionalities are listed below:

• Support secure resources allocation transactions. NEMO adopters offer resources to the
platform in order to be used for a specific period of time for service deployment. The exchange
process between the NEMO platform and the adopters is done via a secure and traceable way
that ensures data privacy between different infrastructure providers. These transactions can be
performed on private or public blockchain networks.

• Business models based on DLT smart contracts. The pre-commercial exploitation will be
supported by the introduction of new business models through DLT smart contracts. Each
infrastructure provider will get a specific number of "reward grades" for the resources, that has
offered to the platform. These grades can be used for service deployments of the provider’s
clients in the NEMO continuum. The business modes will calculate the number of "reward
grades" based on several aspects like the amount of offered to NEMO resources, the demand
from other users, etc.

• End-to-end consensus-based accounting mechanism. Each running service in the NEMO
platform consumes computational, networking, and storage resources from several types of
multi-tenant, multi-operator IoT/5G cloud continuum. MOCA provides an accounting
mechanism based on DLT technology that collects information regarding the life cycle of each
running service in order to provide accounting information for each user. Based on this
mechanism future business models will be defined in order to support the sustainability of the
project.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 92 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

• Resource utilization in infrastructure levels. MOCA interacts with the monitoring framework
of PRESS in order to determine the operational status along the IoT/5G continuum in terms of
CPU, memory, and storage usability. This information is very helpful to the meta-orchestrator
in order to decide the optimal location for the service deployment and for the accounting
mechanism to calculate the amounts of “reward grades” per provider.

5.5.3.3.2 Interactions
MOCA interacts with other NEMO components, as described in Table 32.

Table 32: Interactions of MOCA with other NEMO components

Interacting with Interaction type Description of interaction
Meta-orchestrator output MOCA provides the list of available infrastructures in the

continuum for service deployment, according to their
current resource availability in terms of CPU, memory,
and storage usage.

CMDT input MOCA receives information about the owner, the
deployment location, time, and scaling and migration
actions that took place during the life cycle of each
service.

PRESS input MOCA receives monitoring information about the
performance status of infrastructure and service levels.

5.5.3.3.3 Requirements
MOCA contributes to the NEMO requirements, listed in Table 33, following the numbering and
description adopted in D1.1.

Table 33: NEMO requirements addressed through MOCA

Requirement
ID

Requirement description Requirement satisfaction

NEMO_FR01 The platform must provide access to
measurements.

MOCA will communicate directly with
the monitoring system and will retrieve
performance information related to the
usability levels of the continuum.

NEMO_FR08
The platform must respect data
sovereignty and privacy requirements.

MOCA will use DLT technology to ensure
data security, privacy, and traceability.

NEMO_FR25 The platform must provide options to
manage users.

MOCA supports several user roles.

NEMO_FR58 NEMO must provide the adequate
resources to the service provider to map
these requirements onto the cloud
network and perform accordingly.

MOCA will keep track of all the available
resources in the NEMO continuum and
will retrieve their current status from the
monitoring system.

NEMO_FR63
NEMO must be able to monitor and
control the network and ensure
adherence to QoS levels (bandwidth,
average bit rate, round trip delay).

MOCA will keep track of all the available
resources in the NEMO continuum and
will retrieve their current status from the
monitoring system.

NEMO_FR70
The MEC platform and underlying NFVI
is required to deploy and run all the
needed VNFs.

MOCA will keep track of all the available
resources in the NEMO continuum and
will retrieve their current status from the
monitoring system.

NEMO_NFR01
The NEMO platform must respect
security and privacy requirements.

MOCA will use DLT technology to ensure
data security, privacy, and traceability.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 93 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Requirement
ID

Requirement description Requirement satisfaction

NEMO_NFR05
Secure communication of sensitive data
related to the infrastructure should be
provided.

MOCA will use DLT technology to ensure
data security, privacy, and traceability.

NEMO_NFR13
Store data in a safe and tamperproof
manner.

MOCA will use DLT technology to ensure
data security, privacy, and traceability.

NEMO_NFR14
The platform must ensure the traceability
for the operator.

MOCA will use DLT technology to ensure
data security, privacy, and traceability.

5.5.4 NEMO PRESS & Policy Enforcement
The PRESS & Policy Enforcement Framework (PPEF) associated procedures in NEMO will be
delivered as a framework that aims to address two main objectives. On one hand the project envisages
to analyse the PRESS (Privacy, data pRotection, Ethics, Security & Societal) concerns associated with
the next generation AIoT, especially related with personalized sensing and potential privacy and ethical
intervention to the human life. On the other hand, the abovementioned framework projects to materialize
a by-design police enforcement set of technical solutions which will enforce compliance of the NEMO-
hosted micro-services to the policies defined by the service and the application providers. The policies
will be multi-faced, able to cope with the different aspects of the applications life cycle (security,
privacy, costs, environmental impact, etc.).
The PPEF design and development will capitalize on a thorough research on Cloud Native Cloud
Foundation (CNCF) [35] policy definition and enforcement tools. The monitoring of the underlying
NEMO infrastructures’ resources will be orchestrated by Prometheus [36], which is a proven CNCF
accepted, systems monitoring toolkit. Additional CNCF approaches and/or tools might be selectively
adopted. Moreover, AI/ML solution, provided through the CF-DRL component will be incorporated
into the PRESS & Policy Enforcement framework to enhance the quality of the policy related decision
making towards NEMO hosted micro-services.

5.5.4.1 Main functionalities
The definition of the high-level architecture of the PRESS & Policy Enforcement framework is driven
by the 4+1 architectural model. The logical view of the framework underlines the key functionalities
that the framework aims to deliver as presented in Figure 39. In addition, the main actors of the
framework, namely the “Service & Application provider” and “Policy Makers” are also illustrated.

Figure 39: PRESS & Policy Enforcement framework logical view

More specifically, starting with PRESS, internal or external policy makers will provide a set of
benchmarking criteria and processes that aim to assess the impact of NEMO-hosted services limiting

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 94 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

the exposure of their ethics, privacy, societal and privacy aspects to third parties. The objective here is
to design and implement a toolkit that will safeguard the aforementioned PRESS concerns.
Then, with respect to the Policy Enforcement aspect of the framework the NEMO Policy Makers will
define the context of the policies that will be monitored. The policies that will be defined will cover
security (e.g HTTPS), privacy (e.g. GDPR), cost, performance (e.g. availability, latency, bandwidth)
and environmental impact (e.g. CO2, energy) related properties. In addition, these policies will structure
a set of Service Level Objectives (SLOs) that will be monitored by the NEMO adopted monitoring
framework, Prometheus.
Then, the NEMO Service and Application provider (or NEMO adopter) will define the preferred policies
boundaries in a Service Level Agreement (SLA). The NEMO meta-OS, through the PRESS & Policy
Enforcement framework will monitor the associated services or application and will safeguard the
compliance against the agreed SLA. Finally, the policy enforcement process will be enhanced by AI-
based decision support feedback.
The interactions of the PRESS & Policy Enforcement framework are presented in tabulated format
below.

5.5.4.2 Interactions
PPEF interacts with other NEMO components, as described in Table 34.

Table 34: Interactions of the PPEF with other NEMO components

Interacting with Interaction
type

Description of interaction

Plugins Engine Input PRESS & Policy Enforcement framework will take as an input
the SLA definitions that concern the plugins that will be
deployed in NEMO meta-OS.

MOCA input, output PRESS & Policy Enforcement framework will receive policy
requirements by 3rd parties and will provide to the MOCA
infrastructure resource utilization metrics that concern the
resource that were made available by 3rd parties through
MOCA.

Migration as a
Service (MaaS)

output The PRESS & Policy Enforcement framework will provide as
an output migration requests. The decision for these requests
will be driven by the framework policy enforcement procedures.

Meta-Orchestrator Input The PRESS & Policy Enforcement framework is tightly
interconnected with the NEMO kernel and meta-orchestrator.
Through the established interfaces the meta-orchestrator will
receive input that describes the underlying infrastructure
resources that host NEMO micro-services and applications.

CF-DRL Input The PRESS & Policy Enforcement framework will incorporate
a trained AI/ML model that will enhance the decision-making
process. More specifically, the model will receive as input
monitoring data of the underlying infrastructure that are
collected via Prometheus and given on the specific SLA that is
defined by the NEMO adopter will assist the actions that need to
be taken in order to ensure the conformance towards the defined
SLA.

5.5.4.3 Requirements
Table 35 below lists the requirements that are related to the NEMO pilots’ use cases and are addressed
by the PRESS & Policy Enforcement framework.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 95 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Table 35: NEMO pilots requirements correlation with PPEF

Requirement
ID

Requirement description Requirement satisfaction

SF_01_FR01 The platform must provide access to
measurements.

The PPEF will capitalize on the
measurements collected by the Prometheus
deployments.

SF_01_FR07

The platform should support
monitoring of SLOs, e.g., related to
energy consumption or CO2
emissions.

The SLOs that will be monitored by the
PPEF will include energy related metrics.
Kepler and/or Scaphandre will be utilized
for that reason.

SF_01_FR08 The platform must respect data
sovereignty and privacy
requirements.

The PPEF will verify and validate data
sovereignty and privacy requirements. If
required the deployment of a service will be
conducted in SEE.

SF_01_FR013 The platform should be able to
perform alternative scheduling or
geographical distribution of smart
farming services based on user
goals.

The PPEF will dictate the deployment
requirements based on the agreed SLA. In
view of that, the deployment of a service
will take into account the user goals
including energy consumption related SLOs.

SF_01_FR014
The Smart Farmer should be able to
define strategies for the use of
available resources.

The PPEF through the description of the
services’ SLAs will take into account
optimal strategies defined by the user.

SF_02_FR05

The platform must respect data
sovereignty and integrity.

The PPEF will verify and validate data
sovereignty and privacy requirements. If
required the deployment of a service will be
conducted in SEE.

SF_02_FR06
The platform must provide access to
collected data.

The PPEF will capitalize on the
measurements collected by the Prometheus
deployments.

SF_02_FR012
The Smart Farmer should be able to
define strategies for the use of
available resources.

The PPEF through the description of the
services’ SLAs will take into account
optimal strategies defined by the user.

SM_01_NFR02 The platform must have capabilities
of a monitoring system

The PPEF will capitalize on the
measurements collected by the Prometheus
deployments.

SC_01_FR08
NEMO will be able to allocate and
launch the required services/VNFs
on a location basis.

The PPEF will dictate the deployment
requirements based on the agreed SLA. In
view of that, the deployment of a service
will take into account the user goals
including energy consumption related SLOs
and optimize the deployment of the service
on a location basis.

SC_01_FR11

NEMO must be able to monitor and
control the network and ensure
adherence to QoS levels (bandwidth,
average bit rate, round trip delay).

The PPEF will capitalize on the
measurements collected by the Prometheus
deployments, ensuring the adherence to QoS
levels agreed with the user.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 96 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

5.5.5 NEMO Federated MLOps

5.5.5.1 NEMO Cybersecure Federated Deep Reinforcement Learning

5.5.5.1.1 Description
The CFDRL component is a component that learns a decision-making model. The learning is
collaborative and distributed between multiple entities that learn their own local models. The entities
also share their experiences in order to build together a common open model. Each entity will use a
Reinforcement Learning (RL) algorithm to learn its model. The learning aims to preserve the privacy of
the data gathered by each entity. For that, the entities coordinate using Federated Learning routines. We
also address several security concerns. External attackers need to be prevented from interfering with the
learning by protecting the data stored and the communications. Ill-intentioned entities need to be
guarded from poisoning the model. To this end, encryption, anomalies detection, as well as their
associated counter measures, will be implemented.
The CFDRL is connected to the Meta orchestrator for decision making. Given a state of orchestration
characterized by a description of the micro-services, actions would be decided by CFDRL and would
include migration, placement and scaling and reward take into account the migration time, downtime
and overhead time.

Figure 40: The NEMO Cybersecure Federated Deep Reinforcement Learning component

5.5.5.1.2 Main functionalities
The main functionalities of the CFDRL component are:

• Learning from distributed data: Multiple entities build their local model from interacting with
the environment. They store the history of interactions in a replay buffer that is collection of
episodes where each episode is composed of a list of (state, action, reward) triplets describing
the state of the environment, the action taken by the agent and the reward feedback generated.
The learning will be in charge of a RL Trainer. The entities are either capable of generating their
own replay buffer from an interaction with the environment (or a simulator of it) or are provided
with off-line data logs (the replay buffer of another agent).

• Aggregating the models: The models learned by each entity are aggregated to build a final
model. The simpler way to do this is to have a central server in charge of collecting the models
of each entity and merge them into one model.

• Ensuring privacy of the data: By design all entities do not communicate their private data,
following the Federated Learning they only communicate what is necessary to update the global
model. The privacy can be also ensured by encrypting the communication between the server
and the entities.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 97 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

• Serving the model for sequential decision making. The model, once learned, is stored so that it
could be shared or served to other components.

• Detecting attacks on the model and data: The CFDRL is composed of a detection module that
is able to scan the data and the communication of the models to see if attacks have occurred. If
the diagnostic of the detected attack requires it, countermeasure will be implemented.

• Generating attack scenario: To test the robustness of the learning procedure, attacks are
generated. Standard scenario includes poisoning the data or serving wrong models to the server.

5.5.5.1.3 Interactions
Interactions of CFDRL have been defined so far only with the meta-Orchestrator, as described in Table
36.

Table 36: Interactions of the CFDRL with other NEMO components

Interacting with Interaction type Description of interaction
Meta orchestrator Input/Output For learning, inputs are historical data of nodes’ and

services’ activity.
For deployment, the inputs are the current state.
The output is a model in model sharing or actions in
model serving.

5.5.5.1.4 Requirements
CFDRL contributes to the NEMO requirements, listed in Table 37, following the numbering and
description adopted in D1.1.

Table 37: NEMO requirements addressed through CFDRL

Requirement
ID

Requirement description Requirement satisfaction

NEMO_FR04
The platform should support ML/FL
training and ML model
sharing/serving.

CFDRL will leverage the use of federated
learning for collaborative ML training and
model sharing.

NEMO_FR08
The platform must respect data
sovereignty and privacy requirements.

CFDRL will guarantee data privacy
through the use of privacy preserving
Machine learning.

NEMO_NFR05
Secure communication of sensitive
data related to the infrastructure
should be provided.

CFDRL will implement secure and private
communications through the use of
efficient secure mechanisms.

NEMO_NFR18
The platform must provide
mechanisms for security and data
privacy.

CFDRL will provide secure innovative
mechanisms to detect attacks and guarantee
data privacy through, for instance, privacy
preserving machine learning, and
generative adversarial networks.

5.5.6 NEMO Cybersecurity & Unified/Federated Access Control
The high-level conceptual view of the Cybersecurity & Unified/Federated Access Control module of
NEMO is given in Figure 41.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 98 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Figure 41: The NEMO Cybersecurity & Unified/Federated Access Control

All the sub-modules of the cybersecurity module are analytically described in the next sub-sections.

5.5.6.1 Identity Management

5.5.6.1.1 Description
The access control of NEMO will implement an Identity and Access Management’s (IAM) system
which role is to ensure that the right individual has access to the right resources. This is achieved with
the combination of the two main components of the IAM system: Identity Management focuses on the
provisioning and de-provisioning of identities and Access Management targets authentication,
authorization, and policy management.

5.5.6.1.2 Main functionalities
The NEMO IAM system will offer the following services:

• Authentication Services: Authentication involves verifying the user’s credentials to permit
access to protected resources. Apart from the traditional authentication method of using
usernames and passwords for user verification, IAM offers multi factor authentication such as
hardware tokens, OTPs and more things that we are going to analyze later on.

• Authorization Management services: Authorization policies guarantee that users can only
access the resources and services they are entitled to. According to the role assigned by the
organization, a user is given certain privileges and levels of access.

• Identity Management: Identity provisioning describes the procedure of assigning unique
credentials to the user such as digital ID or account. De-provisioning is the opposite of
provisioning, where the user’s account is revoked. LDAP and Active directories are used to
manage this process.

• Federated Identity: Federated Identity Management is the process of linking a user’s digital
identity and attributes between multiple applications through a third-party provider. The identity
provider saves user data and login credentials and enables single sign-on without requiring a
password. This process is achieved through the exchange of tokens between the identity
provider and the service provider using standard identity protocols which we are going to
analyze later in this paper.

• Compliance Management: Every system needs to be monitored and reviewed to ensure it’s
working properly. That also applies to IAM systems, to ensure that it complies with the desired
security standards and policies.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 99 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

The IAM architectures provide a collection of policies, standards, and procedures to ensure that the users
are authentic.
The NEMO authentication process (including the services and the management) cover the steps and
procedures taken to verify an identity or characteristics claimed by an entity. It can be described as the
process that lets us confirm who the user is. There are many policies and standards used to achieve this
goal.
The NEMO identity management is based on LDAP which stands for Lightweight Directory Access
Protocol, and it is used to manage access credentials stored in Directory Services. In LDAP the
information is stored in a tree data structure with different hierarchical levels, commonly at the top level
is the root node, below are more nodes representing the groups of objects and at the lower levels are
unique objects. An object stored in this structure is called an entry. An entry is composed of data and a
unique DN (Distinguished Name). DN is the full address of an entry in the LDAP tree, for example a
DN can be composed of an ID which is unique to the entry, the group unit which refers to the group the
entry is part of and all the other groups above this subgroup in the hierarchy. We can view the DN as a
path to access a specific object. The data referring to an entry are called attributes; attributes are of
different types and values depending on the information stored. The client server interaction goes like
this:

• A user sends a request to access information stored in an LDAP Server
• The server requires the user to provide the necessary credentials for authentication.
• If the authentication is successful, the server responds with an answer pointing to the location

of the information the client requested. Otherwise, access id denied to the client.
LDAP can be a useful addition to an IAM system as it offers a way to manage data centrally and securely.

The federated identity subsystem of NEMO is based on a Single Sign-On (SSO) mechanism and is an
authentication method that grants access to the user in different applications with a single set of
credentials. SSO as a service helps users get rid of the hassle of entering their credentials every time,
they want to use a different application, resulting in an improved experience and in better time
management. There are three forms of SSO systems.
In local SSO, the authentication starts when the user logs on to their system. After the user provides the
necessary credentials, the system creates a cookie or a token that contains authentication and
authorization information. The token is stored in the system, so later when the user attempts to access
an application/microservice, the user’s token is provided t to the application. If the token is valid the
user gain access to the service without having to enter his username and password
Moreover, in NEMO’s Federated SSO the authentication process is done through a third-party identity
provider (IdP). When a user wants to access a resource of a service provider (SP), the SP sends an
authentication request, the authentication request is forwarded to the IdP, which shows a login page to
the user, after the user enters the correct login credentials the IdP returns a token containing the necessary
authentication and authorization information. The generated token is forwarded to the SP, which
validates the information and gives the user permission to access their resources. SAML and OpenID
Connect are the protocols mostly used for SSO implementations. Analysing these two protocols will
provide us with a better understanding of the SSO process.

5.5.6.1.3 Interactions
The IAM component interacts with other NEMO components, as described in Table 38.

Table 38: Interactions of the IAM component with other NEMO components

Interacting with Interaction
type

Description of interaction

Digital Twins
Services

Input NEMO users’ credentials

Reinforcement
Learning Services

Input NEMO users’ credentials

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 100 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Interacting with Interaction
type

Description of interaction

Privileges/Primitives
Control

Output Metadata/Tokens for authenticating NEMO users

5.5.6.1.4 Requirements
IAM contributes to the NEMO requirements, listed in Table 39, following the numbering and
description adopted in D1.1.

Table 39: NEMO requirements addressed through IAM

Requirement
ID

Requirement description Requirement satisfaction

NEMO_FR03
The platform must provide options to
manage users.

The NEMO identity management system
will allow for the handling of several users
with different privileges/access rights/etc

NEMO_FR08
The platform must respect data
sovereignty and privacy requirements.

Through the NEMO identity management
and access control modules each user will
have access only to the specified
resources/data and no user will be able to
access other’s users resources and/or data

NEMO_FR23
The platform must provide access to
collected data.

Through the identity management and
access control modules each user will be
able to access the collected data allowed

NEMO_FR24
The platform must provide access to
the devices.

Through the identity management and
access control modules each user will be
able to access the allowed devices

NEMO_FR25
The platform must provide options to
manage users.

The NEMO identity management system
will allow for the handling of several users
with different privileges/access rights/etc

NEMO_NFR18
The platform must provide
mechanisms for security and data
privacy.

Through the NEMO identity management
and access control modules each user will
have access only to the specified
resources/data and no user will be able to
access other’s users resources and/or data

5.5.6.2 Access Control

5.5.6.2.1 Description
The NEMO Access control management system will be based upon control policies. They define the
rules and conditions that determine how access rights and permissions are granted or denied to users,
resources, or functionalities within a system. These policies play a crucial role in maintaining the
security, confidentiality, integrity, and availability of sensitive information and resources.
Within NEMO we will investigate the following set of access control policies:

• Policy Definition: Access control policies are typically defined by administrators or security
experts within an organization. They are documented and implemented as a set of rules that
dictate the behavior of the access management system. Policies can be expressed in a formal
language or represented through graphical interfaces, depending on the complexity and
requirements of the system.

• Access Control Models: Access control policies are based on different access control models,
which provide a framework for enforcing access control decisions. Common access control
models include:

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 101 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

o Discretionary Access Control (DAC): In DAC, the owner of a resource has control
over granting or revoking access rights to other users. Each resource can have different
access rules defined by its owner.

o Mandatory Access Control (MAC): MAC enforces access control based on a set of
predefined rules and labels assigned to users and resources. It is commonly used in
high-security environments, where access decisions are determined by security
classifications and clearances.

o Role-Based Access Control (RBAC): RBAC assigns permissions to roles and then
assigns roles to users. Access decisions are based on the roles assigned to users rather
than their individual identities. This model simplifies administration and improves
scalability.

o Attribute-Based Access Control (ABAC): ABAC considers various attributes, such
as user attributes, resource attributes, and environmental attributes, to make access
control decisions. It provides fine-grained control over access based on multiple factors.

o Rule-Based Access Control (RuBAC): RuBAC uses a set of rules or conditions to
determine access rights. These rules can be based on various factors, including user
attributes, time of day, location, or any other contextual information.

• Conditions and Factors: Access control policies take into account various conditions and
factors to determine access rights. These factors may include:

o User Identity: Policies can consider the user's identity, such as username, role, group
membership, or user attributes, to grant or deny access.

o Resource Identity: Policies can define access rights based on the identity or attributes
of the resource being accessed.

o Contextual Information: Policies can consider contextual information, such as time
of day, location, device used, network characteristics, or any other relevant information,
to make access control decisions.

o Relationships: Policies can define access rights based on relationships between users,
resources, or entities within the system. For example, granting access to a resource
based on a user's manager or team membership.

o Security Classifications: In some cases, access control policies may consider security
classifications or labels assigned to resources and users to enforce stricter access control
in high-security environments.

• Policy Enforcement: Access control policies are enforced by the access management system.
When a user requests access to a resource or functionality, the system evaluates the relevant
policies and determines whether access should be granted or denied. This evaluation process
involves matching the user's attributes and contextual information against the defined policies.

• Policy Management: Access control policies require ongoing management and maintenance.
Administrators are responsible for reviewing, updating, and refining policies as the system's
requirements evolve. They may need to adapt policies to new regulatory standards,
organizational changes, or security threats.

• Auditing and Compliance: Access control policies play a crucial role in auditing and
compliance efforts. By enforcing policies and logging access.

5.5.6.2.2 Main functionalities
The designed NEMO Access control management system will support the following functionalities.

• RBAC: RBAC will allow for the definition of roles with specific permissions and assign users
to those roles. It simplifies access control by managing permissions at the role level rather than
assigning them individually to each user.

• Authorization and Access Policies: The system will support the definition and enforcement of
a number of other access policies; the list of potential candidates includes Attribute-based access
control (ABAC), Context-based access control (CBAC), Rule-based access control. Together

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 102 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

with the identity management system the NEMO security module will be able to specify
granular access rules, conditions, and restrictions based on user attributes, roles, or other factors.

• Audit Logs and Reporting: The system will maintain comprehensive audit logs of user activities,
authentication attempts, and access control events. These logs are used for security monitoring,
compliance audits, and forensic analysis.

• API Security and Authorization: The system will provide security mechanism for securing APIs
(Application Programming Interfaces) and enforcing authorization policies for API calls. This
will ensure that only authorized applications and users can access and interact with APIs.

5.5.6.2.3 Interactions
The Access Control component interacts with other NEMO components, as described in Table 40.

Table 40: Interactions of the Access Control component with other NEMO components

Interacting with Interaction type Description of interaction
Identity
Management Input Metadata/Tokens for authenticating NEMO users

NEMO Resources Output Allowing/Denying access to resources
Network
Management Output Network packets coupled with user metadata

5.5.6.2.4 Requirements
The Access Control component contributes to the NEMO requirements, listed in Table 41, following
the numbering and description adopted in D1.1.

Table 41: NEMO requirements addressed through the Access Control component

Requirement
ID

Requirement description Requirement satisfaction

NEMO_FR08
The platform must respect data
sovereignty and privacy requirements.

Through the NEMO identity management
and the access control modules each user
will have access only to the specified
resources/data and no user will be able to
access other users’ resources and/or data

NEMO_FR23
The platform must provide access to
collected data.

Through the identity management and
access control modules each user will be
able to access the collected data allowed .

NEMO_FR24
The platform must provide access to
the devices.

Through the identity management and
access control modules each user will be
able to access the allowed devices

NEMO_NFR18
The platform must provide
mechanisms for security and data
privacy.

Through the identity management and
access control modules, each user will have
access only to the specified resources/data
and no user will be able to access other
users’ resources and/or data.

5.5.6.3 Network management and Security

5.5.6.3.1 Description
The network security module will be based on a message broker, which will be the NEMO kernel
component which will play a crucial role in facilitating communication and coordination among
distributed systems or applications. The message broker serves as an intermediary for message
exchange, providing features such as message routing, queuing, and transformation. By employing

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 103 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

asynchronous communication patterns, message brokers enable loose coupling between senders and
receivers, allowing them to operate independently and asynchronously.
Message brokers implement advanced queuing mechanisms to ensure reliable and efficient message
delivery. They store messages in queues, providing persistent storage that can withstand system failures,
network interruptions, or temporary unavailability of recipients. This ensures message durability and
enables fault-tolerant communication.
In addition to queuing, message brokers provide sophisticated message routing capabilities. They
employ predefined rules, often based on content-based or header-based filtering, to determine the
appropriate destination for each message. These rules allow for flexible and dynamic message
distribution, ensuring that messages reach their intended recipients or are processed by specific
components within the system.
Message brokers also offer message transformation capabilities to address the heterogeneity of
communication protocols, data formats, or message structures. They facilitate seamless interoperability
by converting messages from one format to another as they traverse the broker. This enables integration
between disparate systems and enhances the flexibility and adaptability of the overall messaging
infrastructure.
Security is a critical aspect of message brokers. They employ authentication mechanisms to verify the
identity of message senders and recipients, ensuring that only authorized entities participate in message
exchange. Encryption techniques may be utilized to protect the confidentiality and integrity of messages
during transmission. Access control mechanisms are enforced to govern the permissions and privileges
associated with sending, receiving, or processing messages, bolstering the overall security posture.
Message brokers often offer management and monitoring capabilities, providing insights into message
flows, performance metrics, and system health. Administrators can track message activity, monitor
queue depths, and diagnose potential issues, enabling efficient troubleshooting and system optimization.
Scalability features, such as clustering, load balancing, or replication, are often incorporated to handle
increasing message volumes, distribute the load across multiple broker instances, and ensure high
availability.
Overall, message brokers serve as a critical middleware infrastructure for achieving robust, scalable,
and reliable communication in distributed systems. They enable loose coupling, asynchronous
communication, and seamless integration, while addressing challenges related to message persistence,
routing, transformation, security, and management. Researchers in the field leverage message brokers
to design and implement distributed architectures, enabling efficient communication among diverse
components and systems.

5.5.6.3.2 Main functionalities
The main functionalities of the NEMO message broker (NMB) which will also handle the network
security part will be the following:

• Message Routing: The NMB will allow messages to be sent from a sender to one or more
receivers based on predefined rules or routing criteria. It will provide flexible routing
mechanisms to direct messages to the appropriate destinations, ensuring that they reach the
intended recipients.

• Message Transformation: The NMB will perform message transformation or enrichment of
tasks allowing messages to be translated from one data format to another, ensuring compatibility
between different microservices that may use different message formats or protocols.

• Message Queuing: The NMB will provide queuing capabilities, enabling asynchronous
communication between sender and receiver.

• Message Filtering and Content-Based Routing: The NMB will support filtering and routing of
messages based on their content or attributes. It will be able to examine message properties or
payload contents and selectively route them to different destinations based on predefined rules
or conditions.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 104 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

• Message Acknowledgment and Delivery Guarantees: The NMB will support acknowledgment
mechanisms to ensure reliable message delivery. It will track whether messages have been
successfully received and processed by the intended recipients and can provide guarantees
regarding the delivery status.

• Scalability and Load Balancing: The NMB will be designed in such a way so as to handle high
message volumes and support the NEMO highly distributed end-platform. It will provide
mechanisms for load balancing, distributing message processing across multiple nodes or
instances to achieve scalability and performance.

• Security and Authentication: The NMB will enforce security measures such as authentication
and authorization, using the identity management and access control units to ensure that only
authorized systems or components can send or receive messages as well as encryption and
decryption of messages. This will help protect against unauthorized access or tampering of
messages.

• Monitoring and Management: The NMB will include monitoring and management
functionalities, providing insights into message flow, performance metrics, and system health
which will allow for identifying anomalies which can be cause either by performance issues
and/or by security attacks.

5.5.6.3.3 Interactions
NMB interacts with other NEMO components, as described in Table 42.

Table 42: Interactions of the NMB with other NEMO components

Interacting with Interaction
type

Description of interaction

Network
Management Input/Output Network packets sent/received by Network Management

systems running on other nodes
Access Control Input Network packets coupled with user metadata

5.5.6.3.4 Requirements
NMB contributes to the NEMO requirements, listed in Table 43, following the numbering and
description adopted in D1.1.

Table 43: NEMO requirements addressed through NMB

Requirement
ID

Requirement description Requirement satisfaction

NEMO_FR08
The platform must respect data
sovereignty and privacy requirements.

The NMB in collaboration with the NEMO
identity management and the access control
modules will allow each user to have access
only to the specified resources/data while no
user will be able to access other’s users
resources and/or data

NEMO_FR23
The platform must provide access to
collected data.

The NMB in collaboration with the identity
management and access control modules
will allow each user to access the
corresponding collected data

NEMO_FR24
The platform must provide access to
the devices.

The NMB in collaboration with the identity
management and access control modules
will allow each user to access the
corresponding devices

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 105 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Requirement
ID

Requirement description Requirement satisfaction

NEMO_NFR18

The platform must provide
mechanisms for security and data
privacy.

The NMB in collaboration with the identity
management and access control modules
will allow NEMO users to have access only
to the specified resources/data while no user
will be able to access other’s users resources
and/or data

5.6 Process View
The process view in the NEMO meta-OS architecture is realized through sequence diagrams, which are
presented in the following subsections.

5.6.1 Workload Deployment
The first interaction of third-party users with NEMO, when referring to metaOS consumers and partners,
is the registration of workloads, which are candidate applications or plugins, which may be later
executed in the metaOS.
The sequence diagram in Figure 42 depicts the workflow suggested for NEMO components in order to
deliver these capabilities.

Figure 42: Sequence diagram for workload deployment

As a first step, the user should communicate with the Intend-based API, in order to receive a token and
place the workload registration request. This follows internal processes within the API, including the
verification from the meta-OS provider, validation of compliance to NEMO rules and specifications
and, in case these are successful, registration in NEMO’s registry for workloads. Then, a deployment
request may be issued (e.g. through kubectl CLI), which reaches the Plugin & Applications LCM. As
part of its admission controller functionality, LCM checks the admissibility of the request and
communicates workload description details to the CMDT. Moreover, LCM communicates with the
PPEF about the workload policies, reflecting user-defined or workload -specific requirements, which
may relate to performance, PRESS, environmental or other objectives. PPEF ensures that policies, SLOs
and probes are in place, in order to support metering of those objectives. In parallel, the LCM has
communicated the workload deployment request to the meta-Orchestrator, which retrieves the workload

Intent-based
API

Plugin &
Apps LCM

CMDT meta-
Orchestrator

PPEF mNCCCFDRL IMC SEE

Deploy
service

(workflow)

Keep
service

descriptor
Deploy service

Store service policy

Allocate (services, nodes)

Retrieve
service

descriptions

Infer allocations

Retrieve
service
policies

Prepare PRESS &
SLAs

Allocations(services, nodes)

Create intent-based network paths
(services, workflows)

Paths
created

Create paths

Deploy(services,
nodes)

Services
deployedServices

deployed

MOCA

Retrieve nodes

Execute
service
deploy-
ment

Services
deployed

Update
service

info

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 106 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

descriptor via CMDT and the workload policies’ information via the PPEF. Moreover, the meta-
Orchestrator retrieves nodes’ information via MOCA, in order to take nodes’ and clusters’ availability
into account during the workload placement decision. Then, the meta-Orchestrator consults CF-DRL in
order to take the placement decision, as CF-DRL implements the intelligence for such a decision,
through an appropriate ML model development, training and serving. Upon receiving the placement
suggestions from CF-DRL, the meta-Orchestrator communicates with the mNCC in order to create
appropriate network paths or micro-slices, ensuring that the network-related aspects of the workload
execution will be appropriately addressed. The mNCC creates the paths that will provide the required
network connectivity and notifies the meta-Orchestrator accordingly. Then, the meta-Orchestrator asks
the IMC to execute the deployment request on the selected cluster. If it requires secure execution, this
is done through SEE. Upon the workloads get deployed, both the meta-Orchestrator, the CMDT, the
LCM and, eventually, the user get notified.

5.6.2 Workload Migration
The sequence diagram in Figure 43 describes the flow of interactions among NEMO components for
delivering the workload migration capability. In this case, workloads are already running, and a
migration need might arise as a result of service or resource monitoring.

Figure 43: Sequence diagram for workload migration

During workload execution, PPEF continually monitors the metrics, quantifying the performance, usage,
PRESS, environmental or other objectives set for the execution of the workloads. Once a potential SLA
break is forecasted, PPEF notifies the meta-Orchestrator and the CMDT accordingly. The latter will
record the event, while the meta-Orchestrator will take action in order to not let the SLA break event
happen. It retrieves the required information, i.e., service descriptions, policies and nodes’ information
via the CMDT, PPEF and MOCA, respectively. Then, it triggers a new suggestion on workload
placement from CF-DRL. Based on CF-DRL’s outcome, the meta-Orchestrator will identify the
migrations that need to be make and will ask from mNCC to create the relevant network paths. As soon
as they are ready, the migration request is forwarded to the IMC, in order to execute it, i.e., migrate a
running workload from one cluster to another. Once the migration is completed, the meta-Orchestrator,

Update
service info

PPEF CMDT meta-
Orchestrator

mNCCCFDRL IMC SEE

Retrieve
service

descriptions

Infer allocations

Monitor PRESS
& SLAs

Paths created

Create paths

Migrate(services, nodes)

Services
migrated

SLAs violation prediction
SLAs

violation
prediction

Retrieve
service
policies
(intents)

Identify
migrations

Retrieve service
policies (intents)

Execute
migration

Intent-based
API

Plugin &
Apps LCM

Services
deployed

Services
migrated

MOCA

Allocate (services,
nodes)

Retrieve nodes

Allocations (services,
nodes)

Create intent-based
network paths (services,

workflows)

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 107 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

the CMDT and the LCM are informed accordingly, including whether the migration has been successful
or not.

5.7 Development view
The development view in NEMO provides technical implementation details for the NEMO components.
It will be provided in forthcoming deliverables of WP2, WP3 and WP4, which will detail the design
options and development activities for the individual components.

5.8 Physical view
The physical view represents a topology map, guiding the deployment of the NEMO meta-OS. It will
be part of WP4 deliverables.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 108 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

6 NEMO Validation & Verification Benchmarking
Framework

Validation & Verification (V&V) is an intrinsic component to establish a software model’s simulation
and prediction capacities with set parameters for the planned use case. Validation is not limited to
success/failure exercise for the software simulation rather assesses the uncertainty in the prediction
capacities after crunching the data. Then it can be manually judged regarding the suitability and
sustainability for the given software application of the NEMO use cases. Ultimately, it provides a
structured, documented, transparent approach to integrating the use cases across scales.
In this section, we provide the appropriate guidelines which are going to be used for the implementation
of the V&V framework in the context of Task 4.4. The goal of the V&V is two-flowed (i) to support
developers in evaluating the performance of their services and (ii) to address the concerns that services
operators have in hosting 3rd party services upon their infrastructure. For these reasons, NEMO V&V
will provide a well-structured framework, as part of the DevOps approach, that facilitates several tests
per each new service from the development, integration, and deployment phases ensuring on one hand
that the new service addresses the requirements and Key Performance Indicators (KPIs) and on the other
hand that is compatible with the innovative features that NEMO platform offers (i.e. resource scaling,
high availability, full-stack automated operations, etc.). One of the essential characteristics of the NEMO
V&V framework is modularity meaning that the system should be flexible enough to integrate new
services and test tools easily. Considering the heterogeneity of modern network services, it is obvious
that each service requires different testing approaches and tools. So, the V&V should provide some
common tests applicable to all services (i.e., NEMO platform compatibility tests) but should also support
the integration of services’ specific tests that verifies specific aspects of each service.

6.1 Overall Verification and Validation strategy

6.1.1 User Service Validation
In modern times, each service is a collection of multiple microservices that are attached to the same
virtual network and collaborate with each other to provide specific services to the end users. In the
NEMO context, each application should be able to be verified in both service and microservice levels
in such a way that ensures it is able to cope with changes in the traffic load of infrastructure. The most
common approach to achieve this is to create specific tests per service investigating the behavior under
stress by creating artificial load. This approach aims to stress each service in a sandbox environment
and validate that the SUT (System Under Test) performs as expected under stress and provides
guaranteed level of QoS under any situation taking advantage of the innovative features that NEMO
meta-orchestrator provides (i.e., high availability, intent based migration, resource scaling, etc). Without
this, it is not possible for a developer and a service provider to know if a service is safe to be deployed.
So, the service validation should include tests for service compliance with NEMO orchestrator,
functionality validation (Data in/Data out), security tests, and performance testing based on KPIs.

6.1.2 Testing Results
The V&V benchmarking is not intended as a debugging solution for the developers, this activity requires
a plethora of information from low-level metrics, logging, system reporting, system load when the issue
occurred, and captured input and output information. Then all of this data needs to be presented in an
easy-to-use human readable format. It quite simply is a huge task, one worthy of detailed analysis in its
own right and it is beyond the scope of NEMO.
On the other hand, the V&V benchmark is expected that when a service fails on one or more tests a brief
report is provided and stored in the system for future reference and further analysis. The full details and
root cause of the failure will be useful for the developer to understand via their own development and

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 109 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

debugging environment. It is clear that the developer plays a critical role in this approach as he needs to
design and provide specific test scripts tailored to the features and characteristics of his application.
Furthermore, generic tests will be provided that can be applied to all services. The test results are going
to be used to generate the benchmark certificate for each service, which is mandatory for the safe
deployment of the service to the NEMO platform. The execution of the tests will be fully integrated
with the CI/CD/CP pipelines which are going to automatically invoke each time the developer pushes
new code or manually before each new service release.

6.2 Verification and Validation methodology
NEMO V&V framework is essential to ensure software quality, version control, automated testing and
V&V process administration. In this direction, there are some open-source tools that support automated
scheduling actions and can be easily integrated into DevOps approaches. Some of these tools are
mentioned below and they can be part of the core components of the V&V scheduling process.

Git [37] can be considered the best version control system that records changes to a file or even a set of
files over time in case it is needed to recall any specific version of the code. GIT strongly supports non-
linear development and is compatible with multiple protocols such as HTTP, FTP, and SSH. It has been
adopted from the most known DevOps platforms (i.e., Github, Gitlab, Bitbucket, etc.) that provide a
distributed cloud repository model with cryptographic and user authentication. The toolkit-based design
allows pluggable merge strategies with periodic explicit object packing.

Selenium [38] testing framework allows web application testing across multiple web browser platforms
and supports multiple modern programming languages. it is an umbrella project for a range of tools and
libraries that enable and support the automation of web browsers by providing extensions to emulate
user interaction with browsers, a distribution server for scaling browser allocation, and the infrastructure
for implementations of the W3C WebDriver specification that lets you write interchangeable code for
all major web browsers. Selenium brings together browser vendors, engineers, and enthusiasts into an
ecosystem for the automation of web application testing and development.

Jira [39] is a software application developed by the Australian software company Atlassian that allows
teams to track issues, manage projects, and automate workflows. It can be considered as a process
administration and work management tool to support various use cases in NEMO which has varied
requirements and can act as test case management in an agile software development scenario.

Jenkins [40] offers a simple methodology to set up a CI/CD environment which can have any
combination of languages with different source code repositories and automates the routine software
development tasks using pipelines. When the software change management type is decided upon,
Jenkins can also be distributed as a docker image.

Ansible [41] sets itself apart from other tools as other than being automation platform, it is also an
orchestration and deployment tool offering CI/CD with zero downtime. The IT ecosystem can have
standardised configurations which reduces operational overhead while implementing DevOps strategy.

V&V systematic approach is imperative for ensuring that NEMO technology is cost-effective and
provides risk free credible results. The acceptability criteria revolve around the decision to validate the
use case industry’s needs and evaluation of the components in the software development paradigm.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 110 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

Figure 44: V&V phases

V&V Experimental framework should contain the underlying framework to evaluate the evidence
solutions provided by the components, where the reasoning is transparent, traceable, and reproducible.
Starting with an acceptance goal in mind, the evaluation criteria are set in accordance with the evidence
solutions in the experimental framework. This undergoes the testing framework where the use case
requirements are mapped to acceptable test results in the execution stage. The traceability matrix
provides a more complete picture as it encapsulates and consolidates the evidence available to develop
appropriate and valid results which can be claimed to have acceptable test results.

6.2.1 Testing Approaches
Software testing is a most often used technique for verifying and validating the quality of software and
plays a significant role of the software development life cycle (SDLC). The main objective of software
testing is to affirm the quality of software system by systematically testing the software in carefully
controlled circumstances, another objective is to identify the completeness and correctness of the
software, and finally it uncovers undiscovered errors. The most important techniques that are used for
finding errors are:

• Blackbox testing refers to examining the System Under Test (SUT) regarding its capabilities
without the knowledge of its internal structure, which means that given an input following some
specification, blackbox testing verifies whether the SUT behaves correctly and emits the
expected output. Therefore, the blackbox testing is most suitable for interface conformance
testing as the specification of an interface is exactly a description of expected input and output
without considering the implementation that realizes such behavior. As long as the SUT returns
the correct output upon a given input regarding to the specification, the tester concludes that the
test is successful no matter how the SUT implements this behavior. Functional and non-
functional tests are both possible using the blackbox approach.

• White-box testing consists of testing the internal structure of the SUT. It requires a good
knowledge of the internal design or code of the SUT but it can give more insight into the SUT's
behavior or performance by knowing how the behavior is implemented or how the performance
is achieved. In NEMO, the white-box testing will mostly be applied to V&V which refers to
testing and analyzing the performance of a service knowing its internal graph. We consider a
network service (graph) definition that follows a microservices-based approach that can be
functionally decomposed into a set of loosely coupled collaborating functions that interact
through well-defined interfaces and possibly depend on themselves. The whitebox testing takes
into account monitoring data from the decomposed functions and analyze them to identify how

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 111 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

graph relationships affect the overall performance, and where is the bottleneck deteriorates the
performance of the overall service.

It is obvious that each testing approach services different purposes. Table 44 presents the most common
testing types with the appropriate approach.

Table 44: Common testing approaches

Testing type Objective Testing Approach
Functional Testing Test functions of the

software
Blackbox testing

Performance Testing Testing software
responsiveness and
stability under a particular
workload

Blackbox testing

Security Testing Protect data and maintain
software functionality

Whitebox testing

Usability Testing Check ease of use of
software

Blackbox testing

6.2.2 Testing Categories
We can distinguish different types or categories of tests. The following is an indicative list of categories
that can be facilitated by the V&V platform.

• Requirement Analysis. It includes a thorough understanding of the requirements and
specifications of the SUT and the NEMO platform. Next, the functional and non-functional
requirements should be documented and prioritized, ensuring they are clear, measurable, and
testable.

• Functional testing. It consists of testing a slice of functionality in a system. The slice of
functionality can be a unit of system behaviour, a complex behaviour composed by many unit
micro-services, and also can be the whole system's behaviour. It aims to test whether the
expected behaviour is successfully done by the system rather than how the behaviour is done
with which quality.

• Performance testing. It is a non-functional testing technique performed to determine the
system parameters in terms of responsiveness and stability under various workload.
Performance testing measures the quality attributes of the system, such as scalability, reliability,
latency and resource usage.

• Syntax testing. It is a static testing which means it does not test the behaviour of the SUT during
runtime. It tests the static information associated to the system such as the description files, the
metadata, etc.

• API testing. It is part of the functional testing that aims to test the implemented API behaves as
expected in the specifications.

• Acceptance Testing. Involves stakeholders and end-users in defining the acceptance testing
which validates that the SUT meets the requirements and expectations of NEMO platform. The
acceptance test reflects real-world usage scenarios.

• System Testing. It is a comprehensive system testing to evaluate the overall functionality of the
SUT. This type of testing verifies that the system meets all the specified requirements and
performs as expected in terms of robustness and reliability.

• Security testing. This testing technique consists of determining if an information system
protects data and maintains functionality as intended. It can involve the above testing techniques
to test for example: 1) if an authentication functionality is correctly implemented, 2) if the
security policy description is correctly written, 3) if the consumption of resource faced to an
attack is controlled and isolated,4) if the SUT vulnerable to penetration attacks, etc.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 112 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

6.2.3 Test Execution phases
The best way to describe the V&V framework is to define the mechanism that supports the execution of
each test by identifying the steps that the framework goes through as it executes it. The tests can be
triggered manually by the users, or they can be part of an automated sequence of actions that can be
triggered automatically in a periodic way after a specific action i.e. push of new code, release of new
component version, etc. All tests will be fully integrated with the CI/CD framework and implemented
as executable scripts by well-known automation tools like GitLab runners, Jenkins servers, Ansible, etc.
In its general form, a test will consist of the following phases:

• Test Preparation. In test preparation the test environment must be setup, this involves deploying
an instance of the SUT in the test environment (i.e., stage, sandbox, etc) and loading all the
necessary additional test libraries and tools. Once this is complete the V&V framework is ready
to start executing the tests.

• Test Execution. Once the environment is configured and setup the tests are executed in a serial
way in order to ensure that the generated results are not affected by parallel test executions.

• Documentation and Reporting. All test plans, test cases, test results, and any issues encountered
during testing are documented. Comprehensive reports that provide an overview of the V&V
activities and their outcomes are generated and provided to relevant stakeholders.

• Test Shutdown. Once the tests are completed the V&V shutdown the SUT and stores the reports
for future reference. Finally, it releases all the allocated resources (i.e., containers, K8s pods,
instances of testing and benchmarking tools, memory, etc) and prepares the system for the
execution of the next test.

6.2.4 Certification and Labeling
Certification processes are used all over the world in mostly all industrial domains either for regulators
or for organizations on a voluntary basis. The aim of a certification process is to ascertain conformity
which is defined as the fact that a product, system, body, or even a person meets specified requirements,
and which can improve the business interests with regard to products, goods and services. The NEMO
V&V framework aims to deliver a base mechanism that can be used for service certification. If the
under-test services successfully pass all the predefined tests, then it can be considered a certified service
and it can be safely deployed in the NEMO continuum.
A group of stakeholders, including NEMO infrastructure providers and operators, is responsible for
defining the specifications and requirements that need to be met by services in order to ensure the
compatibility of each 3rd party service with the NEMO platform. The V&V framework will be
responsible to execute the tests and collect/store the test results in the V&V for further processing. If the
results are satisfactory to conclude the conformity of the services, the services are labelled as “passed”,
and should be made available for deployment by the m-orchestrator.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 113 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

7 Conclusions

The present document has provided the NEMO metaOS architectural specifications. The document
presents both the NEMO metaOS meta-architecture and its instantiation for the NEMO metaOS.
Through the proposed metaOS meta-architecture, NEMO aims to facilitate design and development of
higher-level (meta) operating systems for the smart Internet of Things with strong computing capacity
at the smart device, system and edge-level, embedded in a compute continuum from IoT-to-edge-to-
cloud. The NEMO meta-architecture is proposed as a Reference Architecture on top of existing
reference architectures, which aims to provide guidance on evolving or creating new meta-OS
architectures. In order to achieve this, NEMO in this document presents the Meta-Architecture
Framework (MAF), following the conceptual model defined by ISO/IEC/IEEE 42010 for architecture
descriptions.
Then, the proposed MAF is instantiated for the description of the NEMO metaOS architecture. The
document provides the Network, User, Logical, Functional and Process views of the architecture, while
the Operational views is provided as use case scenarios’ descriptions, which have been provided in D1.1.
Moreover, the Development and Physical views refer to future work of the project and will be reported
in future deliverables of WP2, WP3 and WP4.
Moreover, the document presents the NEMO Validation & Verification (V&V), presenting the general
strategy and methodology in terms of testing approaches, categories and phases, as well as certification
& labelling, to be considered during the project’s verification and validation activities.
An updated version of this deliverable is expected on M24, within the tentative deliverable D1.3
“NEMO meta-architecture, components and benchmarking. Final version”.

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 114 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

8 References

[1] Kubernetes, 2023. [Online]. Available: https://kubernetes.io/.
[2] Canonical, "MicroK8s - The lightweight Kubernetes," 2023. [Online]. Available:

https://microk8s.io/.
[3] Rancher Labs, "K3s - Lightweight Kubernetes," 2023. [Online]. Available: https://k3s.io/.
[4] Mirantis, "K0s," 2023. [Online]. Available: https://k0sproject.io/.
[5] The Kubernetes Authors, "minikube," 2023. [Online]. Available:

https://minikube.sigs.k8s.io/docs/.
[6] The KubeEdge Project Authors, "KubeEdge," 2023. [Online]. Available: https://kubeedge.io/.
[7] Akri, "Akri website," 2023. [Online]. Available: https://docs.akri.sh/.
[8] Red Hat, "Where the kernel fits within the OS," 2023. [Online]. Available:

https://www.redhat.com/en/topics/linux/what-is-the-linux-kernel.
[9] R. Cloutier, G. Muller, D. Verma, R. Nilchiani, E. Hole and M. Bone, "The Concept of Reference

Architectures," Systems Engineering, vol. 13, no. 1, pp. 14-27, 2010.
[10] ISO, "ISO/IEC/IEEE 42010:2011 Systems and software engineering — Architecture

description," 2011. [Online]. Available: https://www.iso.org/standard/50508.html. [Accessed
2023].

[11] ISO, "ISO/IEC/IEEE 42010:2022 Software, systems and enterprise — Architecture description,"
2022. [Online]. Available: https://www.iso.org/standard/74393.html. [Accessed 2023].

[12] ISO/IEC, "JTC 1 SC7 Software and Systems Engineering Brochure," 2020. [Online]. Available:
https://www.iso.org/files/live/sites/isoorg/files/developing_standards/who_develops_standards/
docs/ISO_IEC_JTC%201_SC%207%20Brochure.pdf.

[13] ISO/IEC/IEEE, "A Conceptual Model of Architecture Description," [Online]. Available:
http://www.iso-architecture.org/42010/cm/. [Accessed 2023].

[14] Gaia-X, "Gaia-X website," [Online]. Available: https://gaia-x.eu/. [Accessed 28 08 2023].
[15] IDSA, "International Data Spaces," [Online]. Available: https://internationaldataspaces.org/.

[Accessed 29 08 2023].
[16] BDVA, "Big Data Value Association," [Online]. Available: https://www.bdva.eu/. [Accessed 29

08 2023].
[17] OpenDEI, "Open DEI website," [Online]. Available: https://www.opendei.eu/. [Accessed 29 08

2023].
[18] AIOTI, "Alliance for IoT and Edge Computing Innovation," [Online]. Available:

https://aioti.eu/. [Accessed 29 08 2023].
[19] FIWARE, [Online]. Available: https://www.fiware.org. [Accessed 2022].
[20] IoT-NGIN, "IoT-NGIN project website," H2020 957246, [Online]. Available: https://iot-

ngin.eu/. [Accessed 29 08 2023].
[21] ASSIST-IoT, "ASSIST-IoT project website," H2020 957258, [Online]. Available: https://assist-

iot.eu/. [Accessed 29 08 2023].
[22] INGENIOUS, "INGENIOUS project website," H2020 957216, [Online]. Available:

https://ingenious-iot.eu/web/. [Accessed 29 08 2023].
[23] INTELLIOT, "INTELLIOT project website," H2020 957218, [Online]. Available:

https://intelliot.eu/. [Accessed 29 08 2023].
[24] VEDLIOT , "VEDLIOT project website," H2020 957197, [Online]. Available:

https://vedliot.eu/. [Accessed 29 08 2023].

Document name: NEMO meta-architecture, components and benchmarking.

Initial version Page: 115 of 115

Reference: D1.2 Dissemination: PU Version: 1.0 Status: Final

[25] TERMINET , "TERMINET project website," H2020 957406, [Online]. Available:
https://terminet-h2020.eu/. [Accessed 29 08 2023].

[26] IoT-NGIN, "D1.2 - IoT meta-architecture, components, and benchmarking," H2020 957246 -
IoT-NGIN Deliverable Report, 2021.

[27] IoT-NGIN, "D1.3 - IoT meta-architecture alignment and continuous technology watch," H2020
957246 - IoT-NGIN Deliverable Report, 2022.

[28] P. Radoglou-Grammatikis, T. Lagkas and P. Sarigiannidis, "Next Generation IoT Reference
Solution: The TERMINET Project," Adjacent Digital Politics Ltd., 2021. [Online]. Available:
https://www.openaccessgovernment.org/terminet/126273/. [Accessed 29 08 2023].

[29] "ZDNET," 2020. [Online]. Available: https://www.zdnet.com/article/what-is-microsofts-
metaos/. [Accessed 2023].

[30] ROS, "Robot Operating System," [Online]. Available: https://www.ros.org. [Accessed 2022].
[31] B. Keith , "Near, Far or Tiny: Defining and Managing Edge Computing in a Cloud Native

World," 2021. [Online]. Available: https://vmblog.com/archive/2021/04/27/near-far-or-tiny-
defining-and-managing-edge-computing-in-a-cloud-native-world.aspx.

[32] NEMO, "D1.1 - Definition and analysis of use cases and GDPR compliance," HORIZON -
101070118 - NEMO Deliverable Report, 2023.

[33] UC3M, "L2S-M," 2023. [Online]. Available: https://github.com/Networks-it-uc3m/L2S-M.
[34] Enarx, "Enarx," [Online]. Available: https://enarx.dev/. [Accessed 29 08 2023].
[35] The Linux Foundation, "Cloud native computing foundation," [Online]. Available:

https://www.cncf.io/. [Accessed 29 08 2023].
[36] The Prometheus Authors, "Prometheus," [Online]. Available: https://prometheus.io/. [Accessed

29 08 2023].
[37] git, " Git --distributed-is-the-new-centralized," [Online]. Available: https://git-scm.com/.

[Accessed 29 08 2023].
[38] Software Freedom Conservancy, "selenium," [Online]. Available: https://www.selenium.dev/.

[Accessed 29 08 2023].
[39] Atlassian, "Jira," [Online]. Available: https://www.atlassian.com/software/jira. [Accessed 29 08

2023].
[40] Jenkins, "Jenkins," [Online]. Available: https://www.jenkins.io/. [Accessed 29 08 2023].
[41] RedHat, "Ansible," [Online]. Available: https://www.ansible.com/. [Accessed 29 08 2023].

