Next Generation Meta Operating System

D3.1 Infroducing NEMO Kernel \
N\

Document Identification \ N

Status Final Due Date 31/10/20

Version 1.0 b on Date /19%/2023

Related WP WP3 D e eference D3.1

Related

Deliverable(s) DI1.1, D1.2, D2.1 ation Leve PU

Lead Participant ead Autho Jonathan Klimt (RWTH)

> Nikos Drosos (SPACE)
Contributors , SYN, Reviewe Aitor Alcazar-Fernandez
(ATOS)

NEMO, Kernel Space, Secure Execution Environment, Privacy, Policy Enforcement Framework,
Cybersecurity, Authentication, Access Control, meta-Orchestrator, [oT, Edge, Cloud Continuum.

Disclaimer for Deliverables with dissemination level PUBLIC

This document is issued within the frame and for the purpose of the NEMO project. This project has received funding from the European
Union’s Horizon Europe Framework Programme under Grant Agreement No. 101070118. The opinions expressed and arguments employed
herein do not necessarily reflect the official views of the European Commission.

The dissemination of this document reflects only the author’s view, and the European Commission is not responsible for any use that may be
made of the information it contains. This deliverable is subject to final acceptance by the European Commission.

This document and its content are the property of the NEMO Consortium. The content of all or parts of this document can be used and
distributed provided that the NEMO project and the document are properly referenced.

Each NEMO Partner may use this document in conformity with the NEMO Consortium Grant Agreement provisions.

(*) Dissemination level: (PU) Public, fully open, e.g., web (Deliverables flagged as public will be automatically published in CORDIS project’s
page). (SEN) Sensitive, limited under the conditions of the Grant Agreement. (Classified EU-R) EU RESTRICTED under the Commission
Decision No02015/444. (Classified EU-C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified EU-S) EU
SECRET under the Commission Decision No2015/444.

&8s NEMO

Document Information

List of Contributors

Jonathan Klimt RWTH
Stefan Lankes
Aitor Alcazar-Fernandez ATOS

Ignacio Prusiel Mariscal
Enric Pages Montanera

Dimitris Siakavaras ICCS
Dimitrios Skias INTRA
Nicolas Peiffer TSG
Gianluca Rizzi WIND
Terpsi Velivassaki SYN
Harry Skianis

Norredine Abouriche STS

Vassilis Bouras

Sofia Giannakidou
Yannis Papaefstathiou
Hugo Ramon Pascual TID
Luis M. Contreras Murillo
Alejandro Muiiiz Da Costa

Document History ’
Version | Date ‘ Change editors Changes
0.1 31/05/2023 | Jonathan Klimt (RWTH) | Initial version, TOC creation
0.2 21/06/2023 | Aitor Aleazar-Fernandez | Document minor refinements, first contributions
(ATOS)
0.3 11/07/2023 | Jonathan Klimt (RWTH) |Removed Development chapter and reworked ToC
6/912023\ Dimitris Siakavaras Added first draft of ICCS contribution in 2.1.3.3
(ICCS)
04 12/10/2023 | Jonathan Klimt (RWTH) |Updated formatting and contents to new version
0.5 16/10/2023 | Aitor Alcazar-Fernandez |Last contributions for T3.4
(ATOS)
16/10/2023 | Norredine Abouriche, Updated and final version of Security Modules
Vassilis Bouras, Sofia
Giannakidou (STS)
17/10/2023 | Terpsi Velivassaki, Harry |Contribution regarding the NEMO Access Control
Skianis (SYN) component
0.6 18/10/2023 | Jonathan Klimt (RWTH) | Added missing parts of introduction, conclusion,
and T3.1 related content.
Split chapter 2 in 4 separate chapters.
Integration of different 0.5 contributions.
Formatting rework.

Document name: D3.1 Intfroducing NEMO Kernel Page: 2 0of 93

Reference: D3.1 |[Dissemination: [PU [Version: [1.0 [Status: [Final

&8s NEMO

0.7 25/10/2023 | Aitor Alcazar-Fernandez |Peer review

(ATOS)
0.8 25/10/2023 | Nikos Drosos (SPACE) |Peer review
0.9 03/11/2023 | Jonathan Klimt (RWTH), |FINAL VERSION

Dimitrios Skias (INTRA),

Yannis Papaefstathiou

(STS), Terpsi Velivassaki

(SYN), Nicolas Pfeiffer

(TSG)
1.0 03/11/2023 |Rosana Valle (ATOS) Quality check and submission to EC.
Quality Control
Role ‘ Who (Partner short name) ‘ Approval Date
Deliverable leader Jonathan Klimt (RWTH) 03/11/2023
Quality manager Rosana Valle Soriano (ATOS) 03/11/2023
Project Coordinator Enric Pages Montanera (ATOS) 03/11/2023
Technical Manager Harry Skianis (SYN) 03/11/2023
Document name: D3.1 Intfroducing NEMO Kernel Page: 30f93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

Table of Contents

Document INFOIMEAtIONcoc.iiiuiiiie ittt ettt et e b e sate et e eabeebe e bt e sbeesbeesaeesaeeenteans 2
TaADIE OF COMEENLS ...ttt ettt et b ettt a et e s bt et e et e ebe e e ebeeste bt ese et e ebeemeentesneannens 4
LSt OF TaDIES ...ttt et h ettt et et e b e sb e e shtesabeenteebe e beeebeeeaeeeateeaee 6
LSt OF FIGUIES ...ttt ettt e h e b e s et e e et et e bt e bt e sbeesheesaeeemteenteebeesbeesneesaseeane 7
LISt OF ACTOMYINISeeuvietieiiesitesttiettettesteesteesttestbessteesseesseesseesssesssessseasseessaesssesseesssesssensseessessseenseenssenssennns 9
EXECULIVE SUIMIMATY ...ceutiiiiiiiiiiie ettt ettt et ettt e b e bt e s b e e sat e et e e be e beesbeesaeesateembeenbeebeenaeas 11
O 6313 (o Ta b (o1 5 T o KOO RSSRR SRR 12
1.1 Purpose of the dOCUMENL.........ccueiiiiiiiiiiieii ettt e e st e e tee e s ebeeebaeeeaeeesraeesaseens 12
1.2 Relation to other Project WOTK.........cciiiiieiiieriieiiecie ettt e et sere s e esseessaesenas 12
1.3 Structure of the dOCUMENTcooiiiiiiiiee ettt et e sae e 13
2 Micro-services Secure Execution ENVIrONMENtccooviiiiiiiiiniiiereeeeee e 14
2.1 OVEIVIBW ..neiiiieeteeie ettt ettt et et et e bt e st esaeesateembeebeenbeanbeesseesnsesnseenseesseesseesseesnsesnsesnseebheesiben e 14
2.2 BaCKEIOUNdcccviiiiiiieriieciie ettt ere e essaessaesenesenesnseenseesseessee e 2P0 i ee ar e b ene b 14
2.3 Architecture & APProach.........ccoeeeevierireeneniensienenieneneereneeeenes e e e B 17
2.4 Conclusion, Roadmap & OutlookK.........cccccvevvieiieciieniienieniene S B N, 22
3 PRESS, Safety & Policy enforcement frameworkccooe. B e S 24
3.1 OVETVIEW .eiieiiieiiesiiesiieeie e eteesteesieeseeeeeensesangesseesnsohese Bhne s Beseesueesmseenseeseesseesneesnsesnseenseeseannees 24
3.2 BacK@round........coovieriiiiieiieiieiesee st b ettt s e e e sbeenraeneas 24
3.3 Architecture & APProachi......... o .eeeee M e it 29
3.4 Conclusion, Roadmap & QUEIOOK#........00 ..coiiiiee e 34
4 Cybersecurity & Digital Identityf ATBSTAtION.co.eeviiiiiiiiiiriicieeetetee et 35
4.1 OVEIVIEW ... e e ettt ettt ettt ettt et e et e e et et e e e bt e st et e ea e e e e eseenteseeneensesseeneansesneaneeas 35
N 2} (0 B 1 1 OSSPSR 35
453, BACKEIOUNAcceviiiiiiieciiecie ettt ettt ettt te e steesebeesbe e s e e baesseessbesssessseasseassaesseensns 43
4.4 Archifecture & APPIOACH.......coiiiiiiiiiiiiete ettt ettt et 45
4.5 Interaction with other NEMO COMPONENLScccvievieriieriieniieiieereesreesseeseesereseneesvessseesseesssesenes 55
4.6 Conclusion, Roadmap & OULLOOKcc.eeiiiiiriiiiiiiiieieieeeeeetee et 57
5 NEMO Meta-OrCRESIIALOTocuiitieiietieiieieeiiete sttt ettt e st te et e et et e e sseeaesaeeseeseeneenseeneeneenees 59
T B0 A5 % T U US 59
5.2 BACKGIOUNAoooiiiiiiiiiciicieceee sttt ettt b e e b e e b e et e e taestbessbeesbeesseessaesssesssessseasseesseesses 62
5.3 ArchiteCture & APPIOACH.......coviiiiiiiiiiieeie ettt ettt ettt eesteestre e b e esbeesbeesteestsesesessseessaesssesnas 66
5.4 Description Of COMPONENLS........cceeriirireiiieriiestiesiesteeieereeteesseeseeesseeseesseesseesseesssesssesseesseessees 69
5.5 Interaction with other NEMO COMPONENLSc.eevviirerieriarieiieiieeiireereereesreesieesereseressveeseesseesens 75
5.6 Conclusion, Roadmap & OULIOOKc.occuieiiieiiiiiiiieeieeiieee ettt 77
6 Proof of Concept: NEMO Kernel SPacCecc.eevviiviiiiiiiiiiiiieieereestee st sre et eveevee e senessnessneesveens 78
Document name: D3.1 Intfroducing NEMO Kernel Page: 4 0f 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

6.1 OVEIVIEW ..veiiieiie ettt ettt ettt e e e e e e et et e e e e e s e s e e taeeeeeesessa et steeeesssassaaseseeeesssasaassaseeessssasannes 78

6.2 Workload deplOymEnt...........cccueiiiiiiiiiieieee ettt sttt ettt e sb e st e st et be b saeas 80

6.3 WOrKIoad MIGIatiOnc.eecviiriieriieiieiie ettt esieesteste e bt esbeeseeseeeseaessseesseessaesseesssesssessseesseesseessees 81

6.4 WOrkload MONTEOTINGc.ueetiitietieiie ettt ettt ettt se e st e e e be e sbe e sate st e eabeebeenseenaeas 82

6.5 SECUIE COMMUITICATIONSeeuviuieniertieieeteettete et ete et eete e steeee bt sste st e ese et e bt eaeetesbeeneesbeeaeenseeneeneenne 83
CONCIUSIONS ...ttt ettt e b e b e e bt e e ab e e bt et e e bt e sb e e sbeesateeate e beeebeeeneesmseenbeenbeanseenneas 89
RETETEIICES ...ttt a et bt s e b e e st ettt et e et sbe et e e beest e beeneeneenee 90
AATITIEXES ..ttt ettt ettt et e e eb e e bt e e a e e a bt et e e bt e bt e eh et e a et ekt e bt e bt e eht e e a b e ea bt e bt e bt e eheeeaeeeateeteeeheeeateenteeane 92

Comparison Between Open Source and Vendor Solution of the Tetragon Kernel eBPF Probe 92
Document name: D3.1 Intfroducing NEMO Kernel Page: 50f 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

List of Tables

&8s NEMO

Table 1: Vendor CNAPP Solutions (not exhaustive)

Table 2: Short comparison between 2 Linux Kernel Monitoring probes: Falco and Tetragon.

Table 3: The Development Viewpoint
Table 4: The Process Viewpoint
Table 5: (1/2) Difference between Tetragon Open Source and Isovalent Vendor solution. This is taken as an
example of the differences between OSS and vendor solutions in the CNAPP Business.
Table 6: (2/2) Difference between Tetragon Open Source and Isovalent Vendor solution. This is taken as an
example of the differences between OSS and vendor solutions in the CNAPP Business.

41
42
66
68

92

93

Document name:

D3.1 Intfroducing NEMO Kernel

Page:

6 of 93

Reference:

D3.1 |[Dissemination: [PU

[Version: [1.0

Status:

Final

List

of Figures

Figure 1: Nemo Kernel SPACE..............c.cccoioiiiiaiieeee ettt nne e 12
Figure 2: Containerization v8 VIFtUGIIZATIONcccccoiiiiiiiii ittt 14
Figure 3: Unikernel Technology STACKcc.ocoiiiiiiiiiieeee ettt 15
Figure 4: The interaction between Kubernetes and different execution runtimes (here runc and runh) 16
Figure 5: COCO SOftWAE SIACKc.cccoeeiiiieiiee ettt be e e e eneenseense e 17
Figure 6: Secure Execution Environment - AVCRIEECIUFE................c..cccoooueeieiiaiieiieie et 17
Figure 7: Secure Execution Environment - Development Viewcccccoovieieieiieiieiieiieieeeeeees e 18
Figure 8: Secure Execution Environment - Process View (migration example)...............cc.ccoceveveviavvevienieennen. 18
Figure 9: Workflow when deploying a Kubernetes pod with VM-based TEESccccccovvveiiiviaceeieaiennin, 21
Figure 10: Workflow when deploying a Kubernetes pod with a process-based TEES..............c...c..ccccccoveevuanninn. 21
Figure 11: SLA LIfECYCLE SIEDS........coee ittt ettt ettt ettt eneeeneenne e eas 25
Figure 12: Privacy & Policy Enforcement Framework architeCture....................ccocceuveioenieiniiini i 30
Figure 13: Point-to-Point MesSAZING OVEIFVIEWc.cccueieiiiii ittt ettt eee e nne e ens 37
Figure 14: Publish/Subscribe MesSAZing OVEFVIEWcccccuiviiiiieiiesiiesit ettt 38
Figure 15: Overview of eBPF and frameworks using eBPFcc.ccoiiiiiiiiiiiieie ettt 40
Figure 16: CNCF Landscape - Focus on Cybersecurity frameworks - CNAPP and Linux monitoring probes are
highlighted (as of September 2023)cc.cccvovieiiiiiieiieieeie ettt sreese s s sasesssesseeseense s 40
Figure 17: The 2 main Linux open source monitoring solutions and vendors (parent companies) at thé CNCE.
EVL. ...ttt ettt e e e 42
Figure 18: Gartner DevSecOps Model . Development on the left, delivery release on the middle \runtime on the
FIGRE ..ottt ettt seene e snnennnenneeneenneennesneeesee T e et et Rt 43
Figure 19 : Logical View on NEMO Security Modulescccccovoeieeneo s S oo Mg 45
Figure 20: Development view of NEMO Security Modulesome - MhesbbeeseBeeese Pt 46
Figure 21: Process View of NEMO Security MOAUIEScooeioeBueies e St 47
Figure 22: Physical view of NEMO Security Modules8 .0l 47
Figure 23: Development architecture for the NEMO Access» CORtroLan ... oo ooieciiiiieiieeee e 49
Figure 24: Process diagram of NEMO Access COntrol OPeration ..L................ccoccuecieoeioenieeneae e 49
Figure 25: Topic Exchange of RADDItMQ............ 5 .cccoc.feeeeeBe ettt eaeene e 52
Figure 26: Falco Architecture Overview (taken from FalcoOAocumentation)ccccccoevveeveveeceveveenieennnans 54
Figure 27: A typical Falco probe installationson a k3s"Kubernetes Cluster's control plane node. The Operating
System is an immutable OS (either Flatcar, Fedora CoreOS or openSUSE Leap Micro).cccccovvveevvannnn.. 54
Figure 28: A 3 Nodes k3s cluster,- INk3s control plane (k3s server) - 2 k3s compute nodes (k3s agent). Each
Kubernetes node needs its‘\own, local kernel monitoring probe................cccovcveeoieiiiieiiiieiiieeeeeie e 55
Figure 29: On the'leftia demo script that performs various improper Kubernetes use and attacks to generate

events thapthe kernel menitoring probe will gather. On the right, a Grafana dashboard that shows the kernel
events MONitored DYhe FalCo Probe.cccocoiiiiiiiiiiiiiiiiiiiiiii ittt 56
Figure 30: Kernel monitoring probes (ex: Falco) export events detected to Prometheus.c..cccccceeenn. 57
Figure 31:State-of-the-art: EU Projects, Initiatives and COMMUNILIEScoccecueeiecuenininiiniiiiierenenen, 60
Figuke 32: High level view of the architecture of VMs and containers (taken from [29])........c.cccccocvvvvevieniianninn. 63
Figure 33: Difference between a monolithic application and one based on microservices (taken from [30])..... 63
Figure 34: High-level view of loT-to-Edge-to-Cloud Continuum (taken from [31]).....c..cccccoovviviiiviivienvieniiannins 64
Figure 35: Multi-Access Edge COMPULING AVCRIIECTUTE.c..ccoueeeuieaieeeiieeieeeteeiee st e et e seveeeieesreeesee s 65
Figure 36: Development Viewpoint of the meta-OFrCRESIFQLOT.................c...c..ccveeieereeirieieeiieeeeeieeeie e eiaenneens 67
Figure 37: Process Viewpoint of the meta-OFCRESIFALOTcc.cceevveeieiiecrieieeeeieeeeesseeeie e ense s ssaesseens 68
Figure 38: Meta-Orchestrator Workload Deployment: Orchestration Engine and Integration Component
microservices SubScription and depIOYIENTcoccuiiiiiiiiiiiiee ettt 81
Figure 39: Federated Prometheus setup in K8s orchestrated CIUSter................c..ccccovvviiieiieiiiiiiiiiieeeeeen 82
Figure 40: Local Prometheus eRADOINLSccoccuiiiiiieieeie ettt ettt ee e sneeeneesneeseens 83
Figure 41: Grafana visualization on collected MEtFiCS.................cocuoiecioiiiniiiiiiiiieieeeeeee e 83
Figure 42: Configuring Keycloak (oAuth 2.0) plugin in NAC through Kongacccccccecevviniiniinceiocncnenen, 84
Figure 43: Registering route for register-cluster endpoint Of MOGCAccccooeveeviieeeiieeniieeiie e 84
Figure 44: Configuring API Gateway service for protecting the register-cluster endpoint of MOCA 85
Figure 45: Registering route for retrieve-cluster-details endpoint oOf MOCAccccovveviveccieeniienieeaeeenn 85
Figure 46: Configuring API Gateway service for protecting the retrieve-cluster-details endpoint of MOCA...... 85
Document name: D3.1 Intfroducing NEMO Kernel Page: 7 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

Figure 47: Simulating client app requesting access token in POSTMANcccccccoooiioeniiniiiniiiiieiesen 86

Figure 48: NAC client app fails to access the register-cluster endpoint of MOCA due to token not provided..... 86
Figure 49: NAC client app fails to access the register-cluster endpoint of MOCA due to provided token being
e el 1 PSPPSR 86
Figure 50: NAC client app successfully registers a cluster in MOCA, as AAA controls have been passed 87
Figure 51: NAC client app fails to access the retrieve-cluster-details endpoint of MOCA due to token not
DIFOVEAR ...ttt et ettt e bt a e e e st e et e e at e sttt n b e s ekt e e te e he e beenneente et e eaeenseeaeens 87
Figure 52: NAC client app fails to access the retrieve-cluster-details endpoint of MOCA due to token provided
DOING ITACHIVE ..ottt ettt ettt et ae et e at e e st e e et e te e e st e b e enbeenbeesteeseeeseeseenbeenbeeneeeneas 87
Figure 53: NAC client app receives response by the retrieve-cluster-details endpoint of MOCA, as valid token
RS DEEH PFOVIACU ... ettt a e bbbt eae ettt et enaeeneas 87
Figure 54 : Intercommunication Management INLETfaCeccccoevieiiieiiaiieieeeie et 88
Document name: D3.1 Intfroducing NEMO Kernel Page: 8 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

&8s NEMO

List of Acronyms

Abbreviation / acronym | Description

AAA Authentication, Authorization, and Accounting
API Application Programming Interface

CFDRL Cybersecure Federated Deep Reinforcement Learning
CMDT Cybersecure Micro services Digital Twin
CNAPP Cloud-Native Application Protection Platforms
CNCF Cloud-Native Computing Foundation

CNI Container Network Interface

CoCo Confidential Containers

CRD Custom Resource Definition (Kubernetes)
CSV Comma Separated Values

DAST Dynamic Application Security Testing

Dx.y Deliverable number y belonging to WP x

EC European Commission

eBPF (extended) Berkeley Packet Filter.

HTTP Hypertext Transfer Protocol

IAST Interactive Application Security Testing

IBMC Intent-Based Migration Controller

IMS Identity Management System

IoT Internet of Things

JSON JavaScript Object-Notation

KS8s Kubernetes

meta-OS Meta-Operating System

ML Machine'Leaming

mNCC meta—Network Cluster Controller

MO meta-Orchestrator

MOCA Monetization and Consensus-based Accountability
NAE NEMO Access Control

OCI Open Container Initiative

0SS Open-Source Software

PaaS Platform as a Service

PA-LCM Plugin & Apps Lifecycle Manager

PPEF PRESS and Policies Framework

PRESS Privacy, data pRotection, Ethics, Security & Societal
QoS Quality of Service

RASP Run-time Application Security Protection
REST Representational State Transfer

SAST Static Application Security Testing

SIEM Security Information and Event Management
SEE Secure Execution Environment

SLA Service Level Agreement

Document name: D3.1 Intfroducing NEMO Kernel Page: 9 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

&8s NEMO

TEE Trusted Execution Environment
URI Uniform Resource Identifier
VM Virtual Machine

WP Work Package

XML eXtensible Markup Language

Document name:

D3.1 Intfroducing NEMO Kernel

Page:

10 of 93

Reference:

D3.1 |[Dissemination: [PU

[Version: [1.0

Status:

Final

i NEMO

Executive Summary

This deliverable presents a comprehensive overview of the significant progress made in Work Package
3 - NEMO Kernel Space, providing a holistic perspective on the advancements within the NEMO
ecosystem. It reflects the project's unwavering commitment to creating a secure, efficient, and
seamlessly integrated operating framework to meet the evolving demands of contemporary computing
environments.

As the foundational deliverable within this topic, this report focuses on elucidating the fundamental
components, architecture, and the intricate design of the solutions being developed. By emphasizing the
critical elements of the NEMO Kernel, it sets the stage for the subsequent deliverables, illustrating the
meticulous groundwork and in-depth research that underpin the project's trajectory.

o Task 3.1 Micro-services Secure Execution Environment (SEE): In this Task, a set of Kubernetes
enhancements are developed to form the “Secure Execution Environment”. These are a runtime for
the highly isolated Unikernel technology, a runtime for trusted execution environments, and the
extension of the migration capabilities of pods. So far, the background research and solution
architecture have been completed and a prototype for the Unikernel runtime exists. The next step, is
the development of all components and the validation and integration in the NEMO Kernel.

o Task 3.2 PRESS, Safety & Policy enforcement framework: The meticulous deployment ofthe
Privacy and Policy Enforcement Framework (PPEF) ensures the ethical andsSe€tureshandling of
NEMO-hosted services. Its alignment with GDPR principles and adherence(to the)insights from
prior deliverables underscores the project's commitment to maintaining the highest standards of data
protection and user privacy.

o Task 3.3 Cybersecurity & Digital Identity attestation: This Task focuses on cybersecurity aspects
including as authentication and access control with all NEMO services, as well as operating system
monitoring and network monitoring and network management and encryption thanks to cutting edge
kernel monitoring probes.

o Task 3.4 NEMO meta-Orchestrator: The NEMO meta-Orchestrator stands as a pivotal solution for
the challenges within the IoT to Edge to Cloud Continuum. Guided by intelligence, it optimizes
workflow management, €mphasizing.interoperability for seamless integration with diverse systems.
Currently, it boasts,a functional Orchestration Engine and Integration Component, with ongoing
efforts toward the implementation of the first integration Proof of Concept. The next phase involves
exploringssolutions for additional component implementation, aiming to integrate a more mature
version into they NEMO Kernel Space beta version.

The successful integration and meticulous validation of all the intricate components within the NEMO
meta-operating system reflect the project's comprehensive and cohesive approach to developing a
sophisticated and resilient infrastructure. This integrated approach, meticulously crafted with an acute
attention to detail, serves as a testament to the project's unwavering commitment to achieving excellence
in every facet of the NEMO ecosystem. By ensuring that every element operates seamlessly within the
larger framework, the project not only establishes a robust and efficient operating model but also sets a
precedent for future developments in the field.

The groundwork laid in this deliverable sets a solid foundation for the future advancements that will be
detailed in the forthcoming deliverable, D3.2. With the project's momentum steadily gaining traction
and the foundations firmly established, the forthcoming deliverable is poised to provide deeper insights
into the evolving intricacies of the NEMO ecosystem, further solidifying its position as a trailblazer in
the realm of advanced solutions.

Document name: D3.1 Intfroducing NEMO Kernel Page: 11 0f 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

1 Infroduction

In the Next Generation Meta Operating System (NEMO), the NEMO Kernel technologies are essential
in providing the necessary infrastructure for higher level logic functionalities to fully realize the vision
of a next generation loT-Edge-Cloud continuum. This document is the initial report of a series of three
reporting on the development progress of these technologies.

The work on the NEMO Kernel is structured in four main groups, which are resembled in the structure
of the Workpackage. These are the work on a Secure Execution Environment for Microservices (SEE)
(T3.1), the work on a PRESS, Safety & Policy enforcement framework (T3.2), multiple components
focussing on Cybersecurity & Digital Identity attestation (T3.3) and the development on the NEMO
meta-Orchestrator (T3.4). Figure 1 illustrates these components and their interaction — a detailed
description on their functionality and interaction is given in the following chapters. It can be seen that
the NEMO Kernel covers numerous technologies from the user to the running services, providing the
base layer for the next generation cloud services.

CF-DRL

=
loT
Security/Access Micragervide %

Block - - .
=

SEE Framework

A N
)
8 T3.1 Migration Edge
i Access Privileges/ CEEY b —1
Rl Microservice
‘ k] control (Permissions process i <
c
3 Network f-vased Qrchestratory ||
User’ 135 Security decision Deployment
support system
a
g T3.3 T3.4 L Cloud
% : " -a . Microservice
s
3
? m Main Block
g PRESS Enforcement Framework ., e 4 Secondary Block
2
g9 Policy-Agent SeCusily Cost Environmental Task
33 Controller Impact
;_é g T3.2 _'Peﬂormance Privacy P External Block

1. User / Smart loT / Near Edge / Far Edge / Nation@'@igud /Fagleraféti Cloud C@ntinuum

Figure 1: Nemo Kernel Space

1_J=, Rurpose of the document

Thi§ document reports the progress of the four tasks that comprise the work package three (WP3). Its
aim 1s to give a reader the necessary background to understand the individual tasks, as well as describing
the ideas and plans for the individual solutions. Moreover, the links between the components in the
NEMO Kernel space are described, as well as the relationship to components and solutions from other
work packages. As it contains plenty of background information, this document targets all readers that
have a basic understanding of cloud computing and service-oriented architectures.

1.2 Relation to other project work

The current document, D3.1, marks a crucial step in the development and implementation of the NEMO
project. Its significance is best understood within the context of the broader project landscape,
particularly in relation to the works outlined in D2.1 and other project deliverables.

The comprehensive analysis provided in D1.1 [1] serves as the foundational groundwork for the
establishment of the ethical, privacy, and GDPR compliance frameworks governing the Living Labs.
D3.1 builds upon this groundwork by further delving into the technical aspects of the NEMO Kernel

Document name: D3.1 Intfroducing NEMO Kernel Page: 12 of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

components, thus complementing the broader understanding of the project's ethical and technical
landscape.

The initial version outlined in D1.2 [2] sets the technical specifications and the architecture's
fundamental design principles. D3.1 aligns with D1.2 by delving deeper into the specification and initial
results of the SEE, PPEF, Cybersecure modules, and meta-Orchestrator, providing an extended
perspective on the meta-architecture and component specifics.

Concurrently submitted with D3.1, D2.1 shares a similar focus on the technical aspects of the project,
detailing the advances of CMDT, CF-DRL, and mNCC. D3.1 further contributes by reporting on the
NEMO Kernel components specification and initial results, forming a cohesive narrative of the technical
progress made in the project's development.

The seamless interplay between D3.1 and these interconnected deliverables underscores the holistic
approach taken in the development of the NEMO project, emphasizing the integration of ethical
considerations and practical implementation, all essential in achieving the project's overarching
objectives.

This integrated approach enables the project to remain in alignment with the project roadmap and the
broader objectives set forth by the European Commission, ensuring a comprehensive and coherent
implementation of the NEMO initiative.

1.3 Structure of the document

This document mostly follows the structure of the work package. It is divided infeur chapters, each
representing one task: Chapter 2 is about the Micro-services Secure Execution Enyironment;*\Chapter 3
presents the work on the PRESS, Safety and Policy enforcement framework;{I'he work on cybersecurity
and digital identity attestation is presented in chapter 4; and chapter'$ is all,about the NEMO meta-
Orchestrator. Additionally, chapter 6 is dedicated to the prodf of coficept ‘of the technologies. A
conclusion section summarizes the major points of the deliverable:

Document name: D3.1 Intfroducing NEMO Kernel Page: 13 0f 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

2 Micro-services Secure Execution Environment

Enhancing security and isolation in modern cloud environments is paramount as it directly addresses
the escalating cybersecurity challenges prevalent in today's digital environment. Strong security not only
safeguards sensitive data but also bolsters the integrity of applications, assuring users of their privacy
and data protection. Developing a seamless solution for the migration of pods between different
instances of a cluster is imperative in addressing latency challenges in heterogeneous and distributed
setups. Existing setups encounter delays in data transfer, adversely affecting user experience.

In this section we present a solution for the creation of a secure execution environment for modern
security critical and dynamic services, the Secure Execution Environment (SEE)

2.1 Overview

The Secure Execution Environment (SEE) is the first component in the NEMO Kernel Space. It is a set
of enhancements and modifications for the common orchestration engine Kubernetes. We add two
components for enhancing the isolation and integrity of the microservices and one that enhances the
migration capabilities of Kubernetes.

The need for enhanced security was already introduced in the previous section - enabling the seamless
migration of pods between different instances of a cluster is essential in heterogeneous and distributed.
setups, to reduce latency. By facilitating dynamic pod migration, applications can dyrfamically-move
closer to the end-users, minimizing data transfer delays and significantly enhancing uset experience.

In NEMO, the SEE provides one of the basic layers for the execution of thé compenents by executing
the necessary services and providing control capabilities for the metd:operating ‘system’s higher-level
logic.

2.2 Background

To understand the concept behind the Secufe Execution Environment, it is important to have a base
knowledge of the underlying technologies. Therefore;the following sections give an introduction into
Unikernels, Kubernetes and Trusted Exeeution Efivironments.

2.2.1 Unikernels

In comparison t@ centainer technologies, using virtual machines provides strong isolation but comes
with increased,overhead. Figure 2 illustrates this problem: The VM also contains a full operating system
and oftén severalvgeneral-purpose services of which some are necessary for the application, and some
are not.

Figure 2: Containerization vs Virtualization

Document name: D3.1 Intfroducing NEMO Kernel Page: 14 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

To employ such virtualisation technologies effectively in cloud environments, where this overhead
scales linearly with the number of deployments, it's crucial to minimize this overhead. One step is the
adoption of microVMs. Instead of creating full-fledged virtual machines that emulate entire computers
to run traditional general-purpose operating systems, these microVMs are streamlined to include only
the necessary components for running specific applications efficiently. Solutions like Solo5!,
Firecraker?, uhyve®, and Qemu's microVM machine type* are already established and can significantly
reduce memory usage and boot time for such services.

The logical second step is the reduction of the software overhead introduced by the operating system
itself. In today’s cloud deployments, we can see a shift towards specialized single application service,
often focused on handling network requests. In this context, using a traditional multiprocessing,
multitasking, multi-user operating system like Linux as a guest OS introduces unnecessary overhead.
Library Operating Systems, also known as Unikernels, present an attractive alternative to mitigate this
overhead. The core concept is linking the kernel directly as a library to the application, effectively
transforming it into a bootable application bundle. This results in a single-address-space machine image
containing only the essential code for the application, thereby reducing memory usage and boot time.
Furthermore, the entire software stack, from the kernel to the IP stack to the application itself, can be
thoroughly analysed and optimized using established compiler techniques. This not only improves
performance but also reduces the attack surface of the application, enhancing security. Figure\3
illustrates this architecture.

Figure 3: Unikernel Technology Stack

22.27 Rubeérnetes

Kubernetes® (K8s) is a powerful open-source container orchestration platform that plays a pivotal role
in modern cloud computing. Its primary importance lies in its ability to automate the deployment,
scaling, management, and orchestration of containerized applications. Kubernetes provides a robust and
standardized framework for container management, allowing developers and operations teams to
abstract away the complexities of infrastructure management and focus on application development. By
offering features like automatic load balancing, self-healing, and seamless rolling updates, Kubernetes
ensures the efficient utilization of cloud resources, enhances application reliability, and enables the
seamless scaling of applications in response to varying workloads. This not only simplifies cloud

LS N N

Document name: D3.1 Intfroducing NEMO Kernel Page: 150f 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

application deployment but also facilitates the efficient use of cloud resources, ultimately driving cost
savings and accelerating the development and delivery of modern cloud-native applications.

In the latest Kubernetes and cloud native operations report [3], 43% of the participants run applications
in their organization at least partly on Kubernetes and an additional 30% are evaluating the use of
Kubernetes or are planning a migration. In the same survey, the most popular answer to the question
“What are your requirements when it comes to implementing an edge strategy?” with almost 50% of the
respondents was “Security and compliance”.

Since 2015, the Open Container Initiative (OCI) has developed a standard for integrating different
runtimes into container technologies each fulfilling different needs. Examples are the original Docker
container runtime “containerd”, the low-level runtime “crun™. Figure 4 illustrates the interaction of
different runtimes with container management tools. The separation between different runtime is partly
weak. For instance, “containerd” is a high-level runtime, which manages also container images, while
low-level runtimes like “runc” just isolate existing images from the host system and start services within
the container. A high-level runtime is able to use a low-level runtime but could also instantiate the
container by its own. The OCI standard simplifies the reusing of existing components.

Docker Kubernetes
CRI
containerd CRI-O

| |
I OCI runtime specification ‘. !

l

runc runh

e N [E
e el [

Figure 4: The interaction begween Kubernetes and different execution runtimes (here runc and runh)

2.2.3 ATrustedExecdtion Environments/Confidential Containers

Gonfidential Containers (CoCo) [4] is a cloud-native confidential computing project initiated by the
Cloud NatiVe Computing Foundation’ (CNCF), which leverages various hardware platforms and
securities technologies such as Intel SGX®, Intel TDX® and AMD SEV' in combination with new
software frameworks to secure that in use.

The project focuses on safeguarding data and application process within hardware-based Trusted
Execution environments (TEE) to ensure data integrity, data confidentiality and code integrity providing
increased security for applications and data in use. CoCo offers two approaches for confidential
containers VM-Based TEEs (i.e., Intel TDX and AMD SEV) and process-based TEEs (i.e., Intel SGX).
Both approaches aim to remove cloud and infrastructure providers from the trusted computing based
and integrate seamlessly with Kubernetes maintaining an unmodified user experience. Also, the project
provides a set of key components required for creating a holistic confidential containers platform that

o 0 9

Document name: D3.1 Intfroducing NEMO Kernel Page: 16 of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

&8s NEMO

can be use by the users to build their platform. This includes their attestation service based in the RATS
architecture, their key management service and their Image registry and build services. An example
stack is presented in Figure 5.

Enclave Enclave

Confidentia
Contairnes (CoCo)
(Process-based TEE)

Confidential VM
(VM-based TEE)

Hypervisor with CoCo support
Trusted <

Hardware with Cocco support
(SGX/TDX/SEV)

Hardware with Cocco support
(SGX/TDX/SEV)

.

Trusted

Not { | Infra (Azure, AWS, On-prem...)

Figure 5: CoCo software stack

2.3 Architecture & Approach Q E

In NEMO we want to build the Secure Execution Environment o rful and well-
established Kubernetes orchestrator. This is done by adding @i or \Unikernels and one for
Al onall

Trusted-Execution-Environments, as depicted in Figure , an enhancement of the

migration capabilities of Kubernetes is investigated, to re fine-grained control over the
localization of the services, allowing for more specialized use=cases in edge-cloud scenarios. All of these

components are explained in the next sectio
e Execution Environment

i Unike e Container TEE Runtime
ll ki ‘ime (runh) @ Runtime (runc) (Enarx)

Execution &
Management

Kubernetes

Meta Orchestrator

Figure 6: Secure Execution Environment - Architecture

Before we go into the details, we want to illustrate the interactions and usage of this component a little
more.

One of the core concepts we investigate for the SEE is the creation and management of heterogeneous
clusters. As can be seen in Figure 7, heterogeneity is understood in a 2-dimensional way. For once, we
want to execute the services on different runtimes (runc, runh, TEE-runtime), but also on different kinds
of nodes. The latter allows for modern edge-cloud scenarios, where computation can be offloaded in

Document name: D3.1 Intfroducing NEMO Kernel Page: 17 of 93
Reference: D3.1 |[Dissemination: [PU [Version: [1.0 [Status: [Final

NEMO

small systems that are very close to the user, thus providing minimal latencies. Including the loT-devices
in the cluster to benefit from the orchestration capabilities across the client-server barrier is an idea that
we are investigating.

T T
loT-Device
1 gt -

Figure 7: Secure Execution Environment - Development View

HAL + Nano
KB8s

T

As we add multiple runtimes, the execution of the respective calls might be handled differently
internally. Figure 8 illustrates exemplary: We have two Kubernetes nodes in our cluster, one providing
an edge node and the other one is an loT-Device in the field. In a stateless migration scenario of an
application running on the former, we would first stop the service and restart it on the second device.
As the service is running as a container on the edge node, runc handles the stopping whereas runh starts
the service on the [oT-Device as a Unikernel for enhanced isolation.

4

SEE Framework Edge Node runc loT-Device runh

Start Migration E . E E H E
[3 > Stop Service Stop [a]
Lo Container | i :
' '
retur) ‘ x : :

I<-

' '
return 5 3

Start

Start Service

: Unikemel &
i i return
3 : i ____retum [<oomemeeees .
- R--R------%-- bommm e R LT - CTEEPE]

Figure 8: Seécure Execution Environment - Process View (migration example)

2 3=l \Unikernel'Runtime for Kubernetes

The Afirst nee€ssary enhancement of Kubernetes necessary to form the SEE is a Unikernel runtime. By
default, Kubernetes can only orchestrate containers, but as shown in Figure 4, it is possible to exchange
the container runtime, as long as it is compatible with the OCI. The respective OCI specification can be
found in the Open Containers Github project [5].

A prototype for a Unikernel runtime was already developed: runh [6]. runh can be integrated in
Kubernetes’ container runtime CRI-O by modifying the configuration at /etc/crio/crio.conf. In that file,
the following lines have to be added:

[crio.runtime.runtimes.runh]

runtime_path = "<path-to-runh>"
runtime_type = "oci" # Type of the runtime
runtime_root = "/run/runh" # Root directory for storage of containers

In principle these lines specify the location of the container runtime handler and the interface to interact
with the handler. Consequently, this handler can be used to initiate a container. In case of Linux, runc is
the typical runtime handler and initiate the container based on Linux’ cgroups and namespaces, which

Document name: D3.1 Intfroducing NEMO Kernel Page: 18 of 93

Reference: D3.1 |[Dissemination: [PU [Version: [1.0 [Status: [Final

limits the access to the hardware and the view to the system. In case of runh, the application runs in
minimal virtual machine, which provides a stronger isolation to the hots system.

To offer a new runtime to Kubernetes, the runtime must be registered. Since Kubernetes 1.20 the
resource “RuntimeClass” is able to announce a new container handler. The following lines shows an
example for the definition of a “runh” runtime class with the name “runh”:

RuntimeClass is defined in the node.k8s.io API group
apiVersion: node.k8s.io/v1
kind: RuntimeClass
metadata:
The name the RuntimeClass will be referenced by.
name: runh
The name of the corresponding CRI configuration
handler: runh

After the registration of runh, a deployment can be defined, which used as container runtime. The
following lines show, how a simple web server can be deployed in Kubernetes:

apiVersion: apps/vil
kind: Deployment
metadata:

name: hermit-httpd
spec:

replicas: 2

selector:

matchLabels:
app: hermit-httpd
template:
metadata:

labels:
app: hermit-httpd

spec:

runtimeClassName: runh

containers:

- name: hermit-httpd
image: ghcr.io/hermit-os/httpd:latest
ports:

- containerPort: 9975
env:
- name: RUNH_USER, PORT
valuet "9975"

The differenceto the common deployments, the keyword runtimeClassName is used to specify the usage
of runhy The current version of runh requires that the container port is also specifies in the environment
of, the container. Consequently, the environment variable RUNH_USER_PORT is specified with the
samie value of containerPort. In the future, this redefinition will not be required anymore. But in the
current stage of the development, it simplifies the development process.

In other words: runh is a drop-in replacement for the common container runtimes like runc, inheriting
the standard interfaces created by the OCI. In this example, the container image is available at GitHub’s
container registry!!. However, the image is not a classical image, which based on a Linux distribution.
Only the Unikernel and the loader must be part of the image. Common tools like docker to build
container images offer the option to build an image from scratch. The following lines shows the content
of a “Dockerfile”, which creates a container image from scratch and just copy the Unikernel and the
loader to the directory hermit:

Document name: D3.1 Intfroducing NEMO Kernel Page: 19 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

i NEMO

FROM scratch

COPY rusty-loader-x86_64 hermit/rusty-loader
COPY httpd hermit/httpd

CMD ["/hermit/httpd"]

A Unikernel can be optimized by using static code analysis techniques. A nice side effect is that the
compiler is able to remove unused code of the complete image. By the usage of these optimization
techniques and the creation of container images from scratch, the resulting image is just 5.8 MB large
for a simple web server (including the complete operating system). A similar Linux container with a
small web server is 158MB large and clearly larger in comparison to a Unikernel.

The goal is, that a Unikernel Pod running on runh can run without any restrictions, when compared to a
normal container. However, there are still a number of important features missing, like the support of
micro VMs!'? and encrypted memory. In NEMO we will improve this runtime to fit the NEMO Kernel
requirements. Also, runh is currently implementing the OCI’s container specification. There exists a
VM specification as well, and it will be investigated, if this is a better fit for runh. Runh is licensed under
the Apache License, so the use and modification of the runtime is free. The nature of the software and
the chosen license still does not hinder commercial services to be executed on this runtime.

2.3.2 TEE Runtime for Kubernetes

To establish a secure environment independently on the infrastructure where the different applications
(pods) are going to be run, in NEMO we have explored the different technologies.that‘ean provide a
TEE a run time independently of the underlying technologies of the host. To run CoCo on top of a
Kubernetes Cluster, first is needed to present the compatible TEE technologies of running the pods:

e VM-based TEEs: this model encrypts memory along a traditional VM /boundatry on top of a VMM.
As traditional VMs which offer some isolation, the VMs\in jthis, TEE model are shielded by
hardware-based encryption keys. This model can be implemented directly using a confidential
containers runtime or relying in the kata hyperyiSor [7].

e Process-based TEEs: processes that need to run in @ trusted environment are divided two
components, on. The first one, resides in encryptedamemory and handles the confidential computing.
The untrusted part offers interfaces to the operating to interact with the encrypted memory. Managed
data by those services can only entet and exit the encrypted region through predefined channels with
strict checks and mustbe\enerypted=on transit so it can be only understood by the software running
in the TEE.

Also, the CeCo architecture provides a set of elements that are used to ensure that the environments
where @TEEruns, can'be trusted:

. Attestation Service and Key Broker Service (KBS): these components are used to verify and
attestate the TEE following the architecture and models defined in the RATS architecture and
provide the necessary keys so they can get access to the images stored in the Containers Images
Registry after a successful attestation.

e Image build service and Image registry: both services are part of the building and storing process of
confidential containers and VM images that will be later stored in the Containers Images Registry.
Once an application is created, it will be stored encrypted and/or signed for the attested CoCo
workloads.

As an example, Figure 9 presents workflow of a deployment using CoCo in a VM-Based TEE:

e Steps 1 and 2, are part of the remote attestation procedure, where the agent request this process
following the Background-Check Model of RATS [8].

e If the evidence sent by the enclave agent are valid, the relying party (also known as Key Broker

Service) in steps 3 and 4 will ask for the necessary keys to decrypt the containers images, so they
can be forwarded to the enclave agent.

Document name: D3.1 Intfroducing NEMO Kernel Page: 20 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

&8s NEMO

e Using these keys, the enclave image management will request to the container’s registry the
encrypted container images in step 5, so in step 6 they can decrypted and start the container
workload.

ontamer
Images
Registry

(signed! encrypted
Images)

Key Broker Attestation
Service Service

Relying Party Verifier

| s
Key

Management
Service

Figure 9: Workflow when deploying a Kubernetes pod with VM-based TEEs

Another example can be found in Figure 10, where they rely in process-based TEEs using \/
example Intel SGX, where the only differences are in the last steps. Where first, i es the\container
e container’s
images registry. Then, after the runtime initiates the application enclav
container bundle from the encrypted file system, it must commence lishing a key exchange
between the agent and the application enclave. This exchange is ;

g
Registry

signed! encrypled
images)

Key Broker 2 | Attestation
Service Service

Relying Party Verifier

CC Container I 3

Runtime

Key
Management
Service

Figure 10: Workflow when deploying a Kubernetes pod with a process-based TEEs

2.3.3 Migration extension for Kubernetes

The NEMO migration extension for K8s is necessary to enable the migration of microservices across
nodes in the [oT-Edge-Cloud continuum. K8s does not currently support migration of Pods out-of-the-
box. The state-of-practice approach for migrating Kubernetes services is by stopping the pods that run
on the source node and recreating and executing them from scratch in the destination node. This is the
approach followed in the NEMO meta-OS.

The migration extension is not responsible for the migration decision (i.e., under what circumstances
should a migration occur and between which nodes) but only for the low level execution of the Pod

Document name: D3.1 Intfroducing NEMO Kernel Page: 21 of 93
Reference: D3.1 |[Dissemination: [PU [Version: [1.0 [Status: [Final

&lis NEMO

migration. It interacts with other NEMO components such as the meta-Orchestrator’s decision engine
by taking as input the migration request which includes the Pod name and the destination node.

In order to support migration of stateless services (i.e., services without persistent state that needs to be
preserved across the migration process) we exploit the K8s Application Programming Interface (API)
in the following way depending on whether the migration concerns a single Pod or a deployment. In
case we want to migrate a deployment things are simpler since we can directly edit the deployment K8s
object and change the nodeName field to match the desired destination node. After we do that the K8s
engine will by itself stop all the deployment’s Pods in the source node and start them in the destination
node. In case we want to migrate a single Pod things are slightly more complicated since K8s does not
allow to modify the nodeName field of a running Pod. To overcome this limitation, we first export the
Pod’s state yaml file, delete the Pod, appropriately modify its state yaml file and reapply the modified
config in the K8s cluster. This way the new Pod has the exact same config with the deleted one with the
only difference that it now runs on the destination node.

The above procedure is a logical and performant approach for stateless services, but it is not particularly
useful for the case of stateful services. In such scenarios we cannot just stop the service and start it on
another node since its state will be lost. For these cases several approaches use the CRIU Linux tool?.
CRIU enables to freeze a running Linux process (i.e., a container process), checkpoint its whole state to
disk, upload it to another node and restore the Linux process with its full state on the destination node.
There are already efforts that use CRIU for migration in Kubernetes [9] [10] [11] [12] [13] and our plan
is to explore whether and how this approach cab be integrated with K8s to enable stateful migration of
microservices, when possible, in the NEMO meta-Operating System.

An important aspect in the stateful migration procedure is the compatibility of the migration mechanism
(i.e., CRIU mechanism) across different node architectures. More specifically migrating a stateful
microservice from an Edge node to a Cloud node, and vice versa, with CRIU{might be challenging, or
even impossible, due to different architecture characteristics (e.g§, x86 tofaarch64).

2.3.4 Interaction with other NEMO components

In Nemo, the SEE provides a fundamental building block that can execute the relevant microservices.
As such, it provides three major interfaces forother'‘components, as can be seen in Figure 1.

The first is a control interface for cofifiguring andsstarting the microservices. This interface is inherited
by Kubernetes, as such it mostly\consistsjof the well-known yaml files that configure a service. The
components using this interfacevare the=security and access control technologies developed in task 3.3,
as well as the meta<Orchestrator developed in task 3.4.

The second dnterfaceyis for controlling the migration of the tasks. This is planned to integrate seamless
in the Kabernetes, API;but in contrast to the first interface it is a new interface. The exact definition of
thisimtesface isynot defined yet.

Aswa'microService orchestrator, the SEE does of course also interface with the microservices it executes.
The"API for this depends on the kind of service (VM vs Container vs Unikernel), but in all cases contains
functionality for controlling and monitoring the service.

2.4 Conclusion, Roadmap & Outlook

The presented architecture is the outcome of this project with regards to task 3.1. The SEE will be a
collection of Kubernetes enhancements to enable modern security technologies for this crucial building
block in today’s cloud environment. Furthermore, the migration capabilities of Kubernetes are under
investigation, so that it fits better into the edge-cloud paradigm, promising lower latencies for critical
services.

So far, task is well in schedule and no major roadblocks were encountered. The next period of the task
will focus on the implementation and refinement of the architecture in an iterative manner to present a

13 Checkpoint/Restore in Userspace:

Document name: D3.1 Intfroducing NEMO Kernel Page: 22 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

&8s NEMO

final picture in the upcoming deliverables of work package 3. Specifically, it is planned to provide a
prototype of the components for deliverable D3.2 and refine and finalize the implementation for

deliverable D3.3.

Document name:

D3.1 Intfroducing NEMO Kernel

Page:

23 of 93

Reference:

D3.1 |[Dissemination: [PU

[Version: [1.0

Status:

Final

3 PRESS, Safety & Policy enforcement framework

The PRESS, Safety & Policy Enforcement framework delivers two distinct functionalities. The first one
described by PRESS and safety concerns Privacy, data pRotection, Ethics, Security & Societal aspects
associated with next generation AloT, especially related with personalized sensing and potential privacy
and ethical intervention to the human life. The latter tackles the Policy Enforcement compliance of the
NEMO-hosted micro-services with regards to the policies defined by the service and the application
providers. Hereinafter, we refer to the PRESS, Safety & Policy Enforcement framework as the Privacy
and Policy Enforcement framework (PPEF).

3.1 Overview

The PPEF’s main objective is to safeguard security, privacy, ethics, cost, performance, environmental
requirements and associated concerns that are defined for each of the NEMO-hosted services by the
service provider. Subsequently the PPEF should be able to monitor and enforce these dynamically
defined services’ requirements expressed by the NEMO user in the form of a Service Level Agreement
(SLA). At the same time the PPEF safeguards the provisioning of user and data privacy preservation
characteristics that should always be offered by any system such as NEMO meta-OS.

Therefore, Privacy and Policy enforcement is not only crucial for guaranteeing the optimal performance
of the NEMO-hosted services, but it is also mandatory for safeguarding the privacy, integrity and ethieal
aspects of NEMO-user data. As NEMO meta-OS concerns the deployment and optimalmanagement of
the hosted third-party applications in the continuum of [oT, edge and cloud underlying infrastructures,
it is evident that privacy and policy enforcement endeavour is a rather challenging and.demanding task.

NEMO puts a significant effort to be fully compliant with General"Data\Rrotection Regulation (GDPR)
directives and relevant legislations. In D1.1 [1], section 6aprovides anyoverview of the compliance
management activities regarding ethical issues that the NEMO,project addresses. In addition, D5.1 —
“Data Management Plan”, focuses on the management of ‘the tresearch information as well as the
processing of personal data in the context of the NEMO Living Labs.

From the point of view of PPEF, we gotisider the aforementioned work that has been presented in D1.1
and D5.1 [14] a mandatory prerequisitesthat has‘already been achieved, thus enabling the orchestration
of the policy enforcement adtivities that will be managed in practical terms from the PPEF dynamically
in NEMO meta-OS.

The GDPR proyides seyvens principles of personal data processing: 1) lawfulness, fairness and
transparencys 2),purposefimitation; 3) data minimization; 4) accuracy; 5) storage limitation; 6) integrity
and.confidentiality“and 7) accountability. The PPEF by design aims to address the aforementioned
principles in the framework of its monitoring and policy enforcement activities pertaining to the NEMO-
hosted services lifecycle management. Having said that, SLA management as a contractual agreement
between a service provider and a customer that outlines the level of service that will be provided is the
main focal point of PPEF.

3.2 Background

Service Level Agreements (SLAs) has been initially incorporated by telecom operators in the late 1980'*
as means of an agreement between the service provider and the customer. SLAs specify in short,
particular aspects of the quality and performance of a service. Nowadays, SLAs definition is a common
tool and is usually established in order to help reassure the Quality of Service (QoS) amongst different
parties.

SLAs typically include details such as uptime guarantees, response times, support availability, and
penalties for not meeting the agreed-upon service levels. A particular, quantifiable objective which is

Document name: D3.1 Intfroducing NEMO Kernel Page: 24 of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

derived from an SLA is known as a Service Level Objective (SLO). It establishes the performance or
quality standards that a service provider must meet in order to provide a given service. Typically, SLOs
are described in terms of one or more metrics, such as uptime, response time, error rate, or throughput.
They offer a measurable indicator of how well the service is performing at the specified level. A specific
metric or group of metrics known as a Service Level Indicator (SLI) are used to assess the functionality
or behaviour of a service. SLIs are frequently created from monitoring data and offer a numerical
illustration of the service's effectiveness.

SLAs define the specific metrics, targets, and responsibilities related to the service being provided. An
SLA can most commonly concern the (1) Service description, (2) Service metrics, (3) Performance
targets, (4) Responsibilities, (5) Reporting and monitoring, (6) Remedies and penalties, (7) Termination
and dispute resolution. In the light of the above, SLAs are necessary for defining expectations and
establishing accountability between service providers (NEMO meta-OS) and clients (3 parties —
NEMO users). They provide as a benchmark for evaluating and controlling service performance,
enabling mutual evaluation and enhancement of the level of service being rendered. Steps in SLA
Lifecycle are presented in Figure 11 and described in detail below. SLA lifecycle, as stated above,
concerns to roles. The first one refers to the organization that has adopted NEMO meta-OS and the
service provider that refers to the 3™ party that aims to deploy a service (app provider) or offer
infrastructure resources (infrastructure provider).

1.Discover
Service
Provider
6. Enforce 2. Define
penalties for ELA
SLA Violation
SLA
Lifecycle
5. Terminate 3.Establish
SLA Agreement
4 Monitor
SLA
Violation

Figure 11: SLA lifecycle steps'>
Ifi more 'detail, the SLA lifecycle steps can be described as follows.

1. Discover service provider: This step involves identifying a service provider that can meet the needs
of the organization and has the capability to provide the required service.

2. Define SLA: In this step, the service level requirements are defined and agreed upon between the
service provider and the organization. This includes defining the SLOs, metrics, and targets that will
be used to measure the performance of the service provider.

3. Establish Agreement: After the service level requirements have been defined, an agreement is
established between the organization and the service provider outlining the terms and conditions of
the service. This agreement should include the SLA, any penalties for non-compliance, and the
process for monitoring and reporting on the service level objectives.

4. Monitor SLA violation: This step involves regularly monitoring the service level objectives to ensure
that the service provider is meeting their commitments. If any violations are identified, they should
be reported and addressed in a timely manner.

Document name: D3.1 Intfroducing NEMO Kernel Page: 25 of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

i NEMO

5. Terminate SLA: If the service provider is unable to meet the service level objectives, or if the
organization is not satisfied with the service provided, the SLA can be terminated. This can be done
through mutual agreement or through the enforcement of penalties for non-compliance.

6. Enforce penalties for SLA Violation: If the service provider is found to be in violation of the SLA,
penalties can be imposed as outlined in the agreement. These penalties can include financial
penalties, reduced service level objectives, or termination of the agreement.

With respect to the NEMO project technical orientation needs and due to the complex nature of a
thorough SLA template description, the work presented in this report focuses on the SLA definition and
Monitor SLA violation steps (2 and 4 respectively). A main limitation of current Platform as a Service
(PaaS) offerings is that the provided guarantees are based exclusively on resource availability (e.g.,
number of virtual machines, memory size), rather than on application QoS properties (e.g., response
time, throughput), which are more meaningful and useful to the user. As a result, it used to be
responsibility of PaaS user to ensure QoS properties for their applications, which limits the value of
PaaS systems. The NEMO project attempts a deep dive into QoS workload performance requirements’
definition, management and monitoring enhancing the Quality of Experience (QoE) of the users of a
NEMO meta-OS adopted platform.

3.2.1 State-of-the-art

The PPEF design and development capitalizes on a thorough research on Cloud Native! Cloud
Foundation (CNCF) policy definition and enforcement tools. A thorough investigation ‘of state-of-the-
art Cloud Native technologies and practices tailored for SLA definition and resource monitering have
been conducted as presented in the following paragraphs.

Kubernetes admission control'®

Kubernetes Admission Control is a feature in Kubernetes, that\allows,administrators to define and
enforce policies on the cluster. It acts as a gatekeeper, determining whether requests to create or modify
resources in the cluster are allowed based on defified policies. "Administrators may enforce uniform
policies across the cluster, enhance securitys”and avert misconfigurations by employing admission
control. It aids in keeping the cluster in the desiréd cendition and guarantees that resources are created
and updated in accordance with the gstablished‘rules.

Kubernetes API"

The Kubernetes APLenables users'to carry out a variety of tasks on a Kubernetes cluster, including the
deployment andymanagement of applications, resource scaling, networking configuration, and cluster
health moniforingy It'effers a uniform interface for communicating with the cluster and abstracts away
the underlying difficulties of maintaining a distributed system. The Kubernetes API adheres to the
Representational State Transfer (REST) principles and is hence RESTful. It makes use of JSON or
YAML for data serialization and the HTTP methods GET, POST, PUT, and DELETE to conduct
operations on resources.

The Kubernetes API is structured around resources, which stand in for various components of a cluster,
including pods, services, deployments, and namespaces. Users can interact with these endpoints to add,
read, update, or delete resources because each resource has a distinct endpoint in the API.

Open Policy Agent (OPA)'®
An open-source policy engine called Open Policy Agent (OPA) offers a declarative language for

establishing and enforcing policies throughout different software systems. It allows for flexible policy
enforcement, policy-based decision-making, and fine-grained access control in cloud-native systems.

Document name: D3.1 Intfroducing NEMO Kernel Page: 26 of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

OPA is intended to be a multifunctional policy engine that can be linked with a variety of platforms,
such as Kubernetes, microservices, API gateways, and more. It offers a standardized method for defining
and managing policies across different systems, encouraging uniformity and minimizing complexity.
Some key features and concepts of OPA include:

1. Declarative policy language: OPA uses a high-level declarative language called Rego to express
policies. Rego allows users to define rules and constraints in a human-readable and expressive
manner.

2. Policy evaluation: OPA evaluates policies against incoming requests or data to make policy-based
decisions. It performs efficient and fast evaluations by using a rule-based evaluation engine.

3. Policy data model: OPA provides a flexible data model that allows policies to be written against any
data structure. It supports JSON, YAML, and other data formats, allowing policies to be written
based on the specific data being evaluated.

4. Policy enforcement points: OPA can be integrated into various systems as an external authorization
component. It can intercept requests and provide fine-grained access control by evaluating policies
before allowing or denying access.

5. Dynamic policy updates: OPA supports dynamic policy updates, allowing policies to be updated
and reloaded without restarting the system. This feature enables real-time policy changes and
reduces downtime.

6. Policy composition: OPA allows policies to be composed and organized into modules. This
facilitates policy reuse, modularity, and separation of concerns.

Kubernetes Scheduler Extender'’

Kubernetes Scheduler Extender is a feature in Kubernetes that allows users to customizeithe scheduling
process by extending the existing scheduler functionality. It enables users‘to influence how pods are
assigned to nodes based on their specific requirements and constraint§, The Kubegnetes scheduler first
examines the default scheduling algorithm when making a scheduling\deeision.The extender is invoked
to offer extra input or overturn the default choice if the default seheduler is unable to make one or if
there is a registered scheduler extender. Users havesthe freedom to modify the scheduling process in
accordance with their particular needs thanks to the Scheduler Extender function. In addition to taking
into account certain restrictions and preferences, it enables more intelligent and effective pod placement.

The Kubernetes scheduler first exandines the default scheduling algorithm when making a scheduling
decision. The extender is invoked to Offer extra input or overturn the default choice if the default
scheduler is unable to make onewr'if ther€ is a registered scheduler extender. Users have the freedom to
modify the schedulifighprocess in accordance with their particular needs thanks to the Scheduler
Extender function. In addition to taking into account certain restrictions and preferences, it enables more
intelligent and*effective.pod placement.

Promethets?’

Prometheus”is a Cloud Native Computing Foundation (CNCF) accepted, open-source monitoring and
alerting system. It is a commonly used tool for gathering and analyzing metrics from multiple systems
and is one of the most well-liked monitoring solutions in the cloud-native ecosystem. Prometheus is
appropriate for monitoring containerized applications running on Kubernetes because it is made to
monitor highly dynamic and dispersed settings. It operates according to a pull-based approach,
periodically scraping metrics from targets that have been set up, such as applications, services, or
infrastructure parts.

Key features of Prometheus include:

e Data model: Prometheus stores time-series data in a compressed and efficient format. It uses a
multi-dimensional data model, allowing metrics to be identified by a combination of labels. This
enables flexible querying and filtering of metrics.

20

Document name: D3.1 Intfroducing NEMO Kernel Page: 27 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

e Metrics collection: Prometheus can collect metrics from various sources, including
instrumentation libraries, exporters, and service discovery mechanisms. It supports multiple
protocols for metric ingestion, such as HTTP, SNMP, and remote write.

e Query language: Prometheus provides a powerful query language called PromQL (Prometheus
Query Language) for analyzing and aggregating metrics. PromQL allows users to perform
complex queries, calculations, and transformations on the collected time-series data.

e Alerting and notification: Prometheus has built-in support for defining alerting rules based on
metric thresholds or patterns. It can trigger alerts and send notifications via various channels
like email, PagerDuty, or other custom integrations.

e Visualization: Prometheus has a basic built-in web-based graphical interface called the
Prometheus Expression Browser. However, it is often used in conjunction with other tools like
Grafana for more advanced and customizable visualization of metrics.

e Integration with Kubernetes: Prometheus has native integration with Kubernetes, allowing it to
automatically discover and monitor Kubernetes services, pods, and nodes. It can gather metrics
from the Kubernetes API server and other components, providing insights into the health and
performance of the cluster.

Prometheus is highly extensible and has a rich ecosystem of exporters and integrations with various
systems and frameworks. It is widely adopted by organizations for monitoring and observability in
cloud-native environments, providing valuable insights into the performance and behaviour ‘of
applications and infrastructure components.

Scaphandre?!

Scaphandre is an open-source energy monitoring tool which is designed to measure and analyse energy
consumption in a data center or server infrastructure. Scaphandre collects\encrgy-related data from
servers and provides insights to help optimize energy usage and improyve efficiency. More specifically
Scaphandre provides:

e Real-time energy monitoring: continuously collects energy-related data from servers, including
power consumption, CPU utilization, temiperature, ‘and ‘other metrics. It provides real-time
visibility into energy usage at the seryer level.

e Alerts and notifications: can be-configlired to"Send alerts or notifications when certain energy-
related thresholds are exceeded./This enables proactive monitoring and helps detect anomalies
or potential issues.

e Integration with monitoring systems: can integrate with existing monitoring systems, such as
Prometheu§, or Grafana, to visualize and analyse energy-related metrics alongside other
infrastructure, monitoring data. This allows for a holistic view of the infrastructure's performance
and cnergy\effiCiency.

¢\ 'Historical data and reporting: can store historical energy consumption data, allowing for trend
analysis and long-term energy usage monitoring. It can generate reports and visualizations to
help track energy efficiency improvements over time.

Kepler*

Kepler is an open-source energy monitoring tool designed to measure and analyse energy consumption
in computing systems, with a particular focus on high-performance computing (HPC) environments.
Kepler collects energy-related data from various sources, such as power meters, energy sensors, and
system-level measurements, to provide insights into energy consumption and efficiency. It is primarily
used in HPC clusters and data centers to understand and optimize energy usage. Kepler’s key features
include:

e Energy data collection: Kepler gathers energy-related data from different sources, including
power meters and sensors, to monitor and measure energy consumption in computing systems.
It can collect data at various levels, from individual nodes to entire clusters.

21
22

Document name: D3.1 Intfroducing NEMO Kernel Page: 28 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

e Real-time monitoring: Kepler provides real-time visibility into energy consumption, allowing
users to monitor and analyse energy usage in their computing infrastructure. It enables
administrators to identify energy-intensive applications or inefficient nodes.

e Energy efficiency analysis: Kepler analyses the collected energy data to identify energy
inefficiencies and opportunities for optimization. It can help identify resource-intensive tasks,
bottlenecks, or areas for improvement to enhance energy efficiency.

e Visualization and reporting: Kepler offers visualizations and reports to present energy
consumption trends and patterns. It allows users to track energy usage over time, compare
different nodes or applications, and generate reports for further analysis and decision-making.

e Integration with HPC systems: Kepler integrates with HPC management tools and frameworks
to collect energy data and correlate it with other system metrics. It can work with job schedulers,
resource managers, and monitoring systems commonly used in HPC environments.

Grafana?®

Grafana is an open-source data visualization and monitoring tool. It is commonly used to create
interactive dashboards and visualizations for time-series data, making it popular for monitoring and
observability purposes. Grafana supports a wide range of data sources, including databases, cloud
services, and monitoring systems. Grafana is widely used in various domains, including IT operations,
DevOps, I0T, and business intelligence. It provides a flexible and intuitive platform for visualizing and
analysing data, enabling users to gain insights and make data-driven decisions.

Keycloak (policy driven authorization)*

Keycloak is an open-source identity and access management (IAM) solution that pfovides features like
authentication, authorization, and user management. Policy-driven authorization is a key aspect of
Keycloak that allows administrators to define fine-grained access contrel rulés,based”on policies. In
policy-driven authorization, access control decisions are based onpelicies.that'are defined and enforced
by Keycloak. These policies can be created and managed within Keycloak's administration console.

The abovementioned technologies and tools have been reviewediand either inspired the development
of the PPEF particular modules or were adapted to/meet the framework’s functional needs or were
integrated into the framework as is. Additional details omsthe utilization of specific technologies by the
PPEF are provided in the following seetions.

The monitoring of the underlying NEM@infrastructures’ resources will be orchestrated by
Prometheus, which is a provemCNCFaceépted, systems monitoring toolkit. Additional CNCF
approaches and/or toels,mightibe selectively adopted. Moreover, AI/ML solution, provided through
the CF-DRL component will\be*investigated in the context of the PRESS & Policy Enforcement
framework torenhance the quality of the policy related decision making on NEMO hosted micro-
services.

3.8/ Arefiitecture & Approach

The PPEF architectural description has been defined based on the meta-OS meta-Architecture
Framework (MAF) which aims to facilitate the design of meta-OS ecosystems, in a way that they will
be scalable, extensible, modular and interoperable. The MAF incorporates a set of meta-Architecture
viewpoints that PPEF capitalizes in order to structure and refine its particular reference architecture. The
MATF viewpoints are presented in D1.2 [2]. This section introduces the high-level architecture of the
PPEF, focusing on the high-level description of the PPEF architectural layers and the respective
functionality that they deliver. At the same time the placement of the PPEF within the NEMO meta-OS
architecture is discussed.

23
24

Document name: D3.1 Intfroducing NEMO Kernel Page: 29 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

The Logical viewpoint of the PPEF has been described in detail in D1.2 (section 5.5.4). The purpose of
this viewpoint is to highlight on one hand the required functionalities that need to be delivered by the
system and on the other to identify some high-level relationships and associated workflows including
the actors who is envisioned to interact with the system. For the sake of completeness, the high-level
functionality that is offered by the PPEF can be summarized below:

e By design provisioning of Privacy, data pRotection, Ethics, Security & Societal aspects
(PRESS). These PRESS considerations are incorporated into the SLA template that is negotiated
and subsequently agreed by the NEMO meta-OS enabled organization and the 3™ party (meta-
OS consumer). The majority of the PRESS considerations should be by design provided by the
PPEF. However, for security related PRESS considerations imposed by a 3™ party NEMO-user,
this would potentially lead to the utilization of particular secure-oriented resources and tools
that are inherited to NEMO meta-OS functional stack (e.g. SEE).

e SLA definition. A service level agreement (SLA) is a written contract that specifies the services
needed and the expected quality of service between NEMO meta-OS enabled organization or
Platform as a Service (PaaS) provider and a consumer.

e Monitor SLA violations (Step 4 of the SLA lifecycle). Concerns the monitoring of the
performance and usage of various resources inside a distributed and NEMO meta-OS enabled
heterogeneous infrastructure environment the covers the IoT to Edge to Cloud continuum.

The PPEF architecture presented in Figure 12, is driven by the functional requirements |that were
introduced during the logical design of the framework. The list of the requirements, that the PPEF aims
to address were presented in D1.2 (section 5.5.4).

| APl (northbound interface)

Privacy, Data SLA definition, @nakytics,
protection, Ethics alers, monit@ringk

Wisualization

Analytics ——
e Engine

PRESS manager [«—

Ralicy Agent Controller -
Analyigs Engige | SLA stora

Resource monitoring
(merics, analytics,)

| APl (southbound interface)

i—T

Monitoring cluster

T—\

Continuum

| loT Device 1 | | Edge Node 1 | | K&s Node 1 |

| IoT Device N | |EdgeNndeN | | K3s Node N |

Figure 12: Privacy & Policy Enforcement Framework architecture

The PPEF consists of various of modules that deliver a specific set of functionalities facilitating the SLA
definition by the NEMO user, the underlying infrastructure resource monitoring, the NEMO-hosted
micro-services performance monitoring, including the provisioning of this information back to the user

Document name: D3.1 Intfroducing NEMO Kernel Page: 30 of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

i NEMO

and also the inter and intra communication through REST APIs and the storage needs of the framework.
The PPEF architectural components are described in the section below.

The PRESS manager facilitates the SLA definition process by providing to the user GDPR, privacy,
confidentiality and security enablers. The PRESS manager handles the consensus decision making
agreement in view of the SLA negotiation a dynamic way guarantying the ethical, confidential and
secure utilization of the NEMO meta-OS capabilities both by and the 3™ party service provider and
by the NEMO meta-OS enabled platform. The PPEF aims to investigate the possibility to extend
the PRESS manager functionality through the Verification and Validation component that aims to
test the security aspects of the NEMO-hosted applications, thus offering an additional layer of
privacy and security protection.

The Policy Agent Controller (PAC) is the core of the PPEF. The PAC facilitates the SLA definition
process in coordination with the PRESS manager. Its main role is to manage the monitoring process
of the NEMO-hosted services which is driven by the SLAs’ specified QoS properties. The PAC
realizes the SLA definition procedures that handle the SLA’s performance targets’ definition as
part of the SLA negotiation process. The module interfaces internally of the PPEF with the
visualization engine, providing analytics that are collected by the underlying infrastructure and
through the southbound interface with the deployed Prometheus cluster. In addition it interfaces
with an relational database (PostgreSQL) that holds the SLA manifests. Lastly, the PAC
communicates its NEMO-hosted service monitoring analysis and notifies the meta-orchestratortiin
case of an SLA breach.

The PPEF Analytics Engine projects to finetune the SLA compliance endeavour by utilizing
predictive analytics based on the collected resource monitoring data and communicate the
potentially problematic performance targets to the meta-orchestrator allowing for corrective actions
before an SLA breaks. Thus, optimizing both the performance of-the, NEMO-hested services and
the monetary benefit of the platform.

The Monitoring Cluster follows a federated resource monitoring architectural approach enabling
NEMO services’ policy enforcement in the Cloud-Edge-TeT ‘continuum. The Prometheus cluster
closely interacts with additional resource monitoring tool§ such as Kepler and Scaphandre allowing
for rich resource monitoring data collection addressing the SLA-defined performance targets of a
NEMO-hosted service.

The SLA registry realized as @ relational‘\database interfaces with the PAC and provides SLA
storage, filtering and sorting ‘capabilities.

The southbound interfacefacilitates the communication of the PPEF with the deployed Prometheus
cluster. In addition, the'southbound interface allows for the communication with the NEMO kernel
and thegMeta-Otchestrator component.

The€ northbound initerface of the PPEF is the user-facing layer of the PPEF which provides main
abstraction mechanisms allowing for the definition of the SLAs between the NEMO meta-OS
¢onsumer and the NEMO meta-OS provider®. Through the northbound interface the NEMO meta-
OS consumer is able to access PPEF resources, visualized in the visualization engine. Moreover,
the northbound interface is protected through authentication and authorization capabilities,
provided by the NEMO Access Control service.

The visualization engine is realized through a Grafana open source analytics and interactive
visualization web application that provides to the NEMO users means of NEMO-hosted services’
resource monitoring.

3.3.1 PPEF Service Level Agreement

Regarding SLA definition (Step 2 of the SLA lifecycle) the following high-level template is adopted by
the NEMO project focusing on its technical and functional aspects. The NEMO project will investigate

25 Meta-OS Provider and Consumer user roles are defined in D1.2.

Document name: D3.1 Intfroducing NEMO Kernel Page: 31 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

i NEMO

the business and operational aspects of an SLA definition and plans to incorporate them into the adopted
template that is presented in this section.

1.

332

Service description: Describes the service that is provided by the organization. It should also
include information about the service criticality in terms of security, performance and
availability.

PRESS: Data protection processes, GDPR compliance, security and encryption practices,
including backup and disaster recovery approach, should also be addressed.

Performance targets (Service Level Objectives - SLOs):

a. Availability: The NEMO meta-OS enabled organization must ensure high availability.
Typically high availability for the NEMO meta-OS operated cloud infrastructure should
be in the magnitude of 99.5% (monthly basis). Optionally information regarding the
mean time between failures (MTBF) or mean time to repair (MTTR) can be included.

. Scalability: Details the ability to scale up and down.

c. Additional objectives: Including statistically predefined SLOs on security, privacy,
cost, environmental impact and workload requirements SLOs.

Service metrics (Service Level Indicators - SLIs): Monitoring metrics that address the defined
and agreed SLOs.

Reporting and monitoring information: Describes the monitoring process and capabilities of the
system.

SLA Performance targets (SLOs)

The PPEF considers a series of performance targets for managing the NEMO-h6sted sexvices. This
section summarises the collection of the SLOs and the associated metrics thatyithe PPEF envisages to
capture through its resource monitoring tools. These qualitative captured-data,can provide insights from
the point of view of the infrastructure, the NEMO-hosted applicatien, the/deployed IoT devices or the
network.

Latency: It refers to monitoring the latency of a systempineluding the response times for APIs
and database queries. IT is achieved by measuring the delay or response time between a request
being sent and the corresponding response being seceived. This metric is important for real-time
applications, such as video conferencing or XR applications, where low latency is crucial. SLOs
for latency can specify the maximum ace€ptable delay in milliseconds.

Error Rates: It concérns monitoring error rates concern the health and reliability of a system.
These metrics=can\bejusedito calculate error based SLOs and trigger alerts when error rates
exceed defined thresholds.

Thréughput:\It refers to monitoring the throughput or request rates of the deployed services.
This metri¢, examines if the expected workload and can handle the desired traffic volume by
tracking the number of requests processed over time.

Capacity: It refers to monitoring resource utilization metrics, can help identify bottlenecks or
capacity issues in a system. It optimizes resource allocation, avoids bottlenecks, and minimizes
wastage. Associated metrics include the CPU usage, memory usage and disk space storage.
Scalability: 1t focuses on the ability of an infrastructure to scale and handle increased workload
or traffic. It ensures that the underlying infrastructure can scale up or down based on demand
and that it maintains performance and availability under varying loads.

Availability: Tt concerns the collection of metrics related to the uptime or availability of the
deployed services.

Disaster Recovery/Backup: Measures the effectiveness of a systems disaster recovery and
backup processes. It ensures that the infrastructure has appropriate backup mechanisms in place
and can recover quickly in case of data loss or system failures.

Security: Monitors the security of an infrastructure and includes measures such as access
controls, encryption and also vulnerability management.

Document name: D3.1 Intfroducing NEMO Kernel Page: 32 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

333

Incident Response.: monitors the effectiveness and efficiency of your incident response process.
ensuring a timely response and resolution of issues. Associated metrics are the mean time to
detect (MTTD) and mean time to resolve (MTTR).

PRESS compliance: Focuses on adhering to regulatory and compliance requirements ensuring
that both the infrastructure and the NEMO-hosted service meets the necessary compliance
standards, such as GDPR.

Energy consumption: It aims to evaluate the percentage of renewable energy utilized by the
infrastructure. It considers metrics such as CO2 footprint and NEMO-hosted service/application
specific energy consumption.

Cost optimization: Focuses on optimizing the cost of the platform. It ensures that the platform
infrastructure is cost-effective, avoids unnecessary expenses (use of resources), and maximizes
return on investment (ROI).

Packet Loss: Packet loss SLOs define the acceptable percentage of lost or dropped packets
during data transmission. Packet loss can degrade network performance and impact the quality
of applications. SLOs for packet loss typically aim for a very low percentage, such as 0.1% or
lower.

Bandwidth: SLOs for bandwidth specify the minimum or maximum bandwidth capacity
guaranteed for a particular service. This ensures that the network can handle the required data
transfer rates without congestion or performance degradation. SLOs for bandwidth gan be
expressed in terms of minimum or maximum Mbps (Megabits per second).

Jitter: Jitter SLOs measure the variation in latency or delay between packets=within a network.
It is particularly important for real-time applications where consistent packet deliverys critical,
such as voice or video communications. SLOs for jitter can specify, the maximum acceptable
variation in milliseconds.

Interaction with other NEMO components

The PPEF is established as a vertical over the NEMO architecttiral*horizontal layers. The PPEF interacts
with the NEMO service management, NEMO ketnel and the underlying infrastructure layers. More
specifically, PPEF communicates with.the folleWwing'eemponents:

Plugins & Application LifeCycleManageér: The PPEF receives as an input SLAs definition that
concern the plugins that will be deployed in NEMO meta-OS and also the PPEF will initiate the
SLA negotiation process pon a service deployment request.

Monetization and ‘Consensus-based Accountability (MOCA): The PPEF receives policy
requirementsiby third-parties resource owners (metaOS partners) and communicates back to the
MOCA reseurce utilization metrics that concern the resources that were made available in the
framework of the MOCA.

Meéta-Orchestrator: The PPEF is tightly interconnected with the NEMO kernel and meta-
orchestrator component. Through the established northbound interface, the PPEF communicates
to the meta-orchestrator NEMO-hosted resources monitoring analytics, alerts and notifications.
meta—Network Cluster Controller (mNCC): The PPEF collects network related resource
monitoring input that are captured by the NEMO underlying network component. The mNCC
communicates this data through the PPEF’s southbound interface.

Cybersecure Micro-services Digital Twins (CMDT): The PPEF monitors services’ health and
performance based on defined SLAs and identifies potential or incidents of violations. Such
SLA violation information is communicated to CMDT, in order to ensure traceability of NEMO
workloads’ lifecycle, which is further supported by CMDT’s integration with distributed
ledgers.

NEMO Intent-based API: The PPEF services are exposed through the NEMO Intent-based API
to external meta-OS users, such as meta-OS partners, wishing to integrate PPEF functionality
in their applications or plugins, such as SLA/SLO definition, service analytics, etc.

Document name: D3.1 Intfroducing NEMO Kernel Page: 33 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

3.4 Conclusion, Roadmap & Outlook

The PPEF envisages to realize a rather complex system which will be used to define rules, standards,
and guidelines for service provisioning, usage, and management and subsequently enforce policies
related to the provisioning, management, and usage of the NEMO-hosted services. The PPEF facilitates
the SLA compliance by enforcing policies related to performance, availability, and quality of service. It
ensures that services within NEMO adhere to predefined policies maintaining also consistency, security,
and regulatory compliance across their service offerings. The PPEF provides a centralized mechanism
for governing and controlling the performance of a deployed service promoting consistency and
reducing the risk of non-compliance or misconfiguration. In addition, the PPEF plays a crucial role in
enhancing security by enforcing policies related to access control, data protection, and authentication.
It helps prevent unauthorized access, ensure the confidentiality and integrity of data, and enforce security
best practices across services.

At the time of writing these lines, the PPEF has a well-defined architecture, has identified the internal
and external interfaces within the PPEF and within the NEMO meta-OS. Moreover, it has a mature
resource monitoring toolset setup and configured, which is designed as a federated monitoring solution
that covers the Cloud-Edge-IoT continuum, thus supporting the resource monitoring and management
needs of the project. In the following period the PPEF will focus on the acquisition of the metrics that
will be utilized to capture the NEMO-hosted services and application performance addressing the
requirements set in SLA agreements. At the same time, the PPEF development will proceed, and
preliminary integration activities within NEMO meta-OS will be established. Lastly, additional.epen
source tools and technologies will be investigated and potentially incorporat€d™inte, the |PPEF
component.

Document name: D3.1 Intfroducing NEMO Kernel Page: 34 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

4 Cybersecurity & Digital Identity Attestation

NEMO incorporates a set of modules to provide high levels of security and privacy which are essential
for an effective OS, which will mainly support efficient Identity Management, Access Control
Management and Intercommunication Security

4.1 Overview

The access control framework within NEMO will deploy an Identity and Access Management (IAM)
system, designed to enforce precise access rights for users/groups of users to designated resources. This
objective is realized through the synergistic operation of the two principal facets of the IAM system:

e Identity Management, which handles mainly the establishment and removal of user identities
and manages the provisioning and de-provisioning processes.

e Access Management, which is responsible for tasks encompassing authentication, authorization,
and policy management, ensuring that only authorized users can access specific resources.

The access control management system within NEMO relies on control policies. These policies establish
the guidelines and criteria governing the allocation or refusal of access privileges and permissions, to
users, resources, or functionalities within the system. The security, confidentiality, integrity, and
accessibility of sensitive information and resources of NEMO are based on those policies.

The intercommunication security module of NEMO is based on a message broker, serving'as the ¢entral
kernel component enabling communication and synchronization among distributed\ systems and
applications. This message broker acts as an intermediary, facilitating message exchange'while offering
essential capabilities like message routing, queuing, and transformation) By, adepting asynchronous
communication patterns, message brokers promote loose coupling between message senders and
receivers, enabling them to function independently and asynchronotisly.

4.2 State-of-the-art

The following section explains the state-of-the-art regarding the Cybersecurity and Digital Identity
Attestation Technologies

4.2.1 State-of-the-art for Identity Management and Access control

Identity Management and Agcess Control are critical components of modern digital security systems,
ensuring thatenly,authorized individuals or entities gain access to protected resources. Keycloak®is a
state-of-the-art, open-source solution that addresses these essential aspects of security by providing a
comprehensivetand flexible identity management and access control platform. To understand the
significane€ of Keycloak within the NEMO project, it is crucial to delve into the background and current
statesof identity management and access control.

Background:

The Evolution of Identity Management: In the early days of digital systems, identity management
primarily relied on basic username and password combinations. As technology advanced, more complex
systems emerged, including LDAP directories, Single Sign-On (SSO), and multi-factor authentication
(MFA) [15]. These solutions were effective but often fragmented, making integration and management
challenging.

Challenges in Access Control: The growing complexity of digital ecosystems, including web
applications, APIs, and cloud services, has made access control a complex challenge. Traditional
approaches were often unable to cope with dynamic access requirements and lacked centralized
administration. Emergence of Identity and Access Management (IAM): The need for unified and
comprehensive solutions led to the emergence of Identity and Access Management (IAM) systems.
These systems aimed to provide a unified approach to identity management, access control, and security

Document name: D3.1 Intfroducing NEMO Kernel Page: 350f 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

policy enforcement. However, many commercial IAM solutions were costly, complex, and not easily
accessible to smaller organizations.

Keycloak?®

Keycloak, developed by Red Hat, is an open-source IAM solution that has gained significant attention
and adoption in recent years. It offers several key features and benefits which fully address the identity
and access management requirements of NEMO as listed in D1.2 while it reflects the state of the art in
identity management and access control, making it an ideal choice for NEMO:

1. Single Sign-On (SSO): Keycloak provides SSO capabilities, allowing users to access multiple
applications with a single set of credentials. This not only enhances user experience but also
strengthens security by reducing the reliance on passwords.

2. Identity Federation: It supports identity federation, enabling the integration of external identity
providers, like social media accounts, enterprise directories, or third-party IAM systems. This
simplifies user authentication and access management.

3. User Authentication: Keycloak supports a wide range of authentication methods, including MFA,
biometric authentication, and OAuth2/OpenlD Connect. These mechanisms enhance security by
providing adaptive and context-aware authentication.

4. Role-Based Access Control (RBAC): Keycloak offers RBAC, enabling organizations to define fine-
grained access policies based on roles, attributes, and permissions. This granular control over access
ensures security and compliance.

5. Adaptive Access Control: Keycloak incorporates adaptive access control policies, allowing for real-
time risk assessment and adaptive responses to security threats, based on user behayiour and
contextual information.

6. Open Source and Community-Driven: Keycloak's open-source natureand a thriving community
ensure that it is continuously evolving to meet the changing needs of thelindustry. This makes it a
cost-effective and future-proof solution.

7. Scalability and Integration: Keycloak is designed for s€alability and'can be easily integrated into
various platforms, including web applications,mobile lapps, and microservices. It also supports
integration with modern container and orchestration technologies like Docker and Kubernetes.

In summary, within the context of the NEMO‘project, Keycloak represents the state of the art in identity
management and access control. It addresses the evolving challenges of security in a digital world by
providing a comprehensive, open-squrce,iand adaptable solution. With its emphasis on SSO, identity
federation, robust authentication, ‘and=adaptive access control, Keycloak is a crucial component of
modern security infrastructures, enabling organizations to protect their digital assets and ensure the right
individuals have'thewrightiaceess.

4.2.2 \Statesof-the-art for Intercommunication Security

A\ Message Broker is a software component that operates as a middleware solution, facilitating
communication and data exchange among heterogeneous applications, systems, and services. Its
primary function involves the mediation of messages, converting them between distinct formal
messaging protocols. This enables disparate services to establish direct communication channels,
overcoming language and platform disparities.

Message brokers are essential components of Messaging Middleware or Message-Oriented Middleware
(MOM) systems. This middleware category provides to developers a standardized framework for
managing data flow between the different components of an application while they serve as a distributed
communication layer, enabling seamless interaction among applications deployed on different
platforms.

Message Brokers include a comprehensive array of functions, encompassing message validation,
persistent storage, intelligent routing, and guaranteed delivery to their designated endpoints. Acting as
intermediaries, they enable message senders to dispatch messages without any knowledge of recipient

26

Document name: D3.1 Intfroducing NEMO Kernel Page: 36 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

specifics such as location, availability, or quantity. This decoupling of processes and services enhances
system scalability and maintainability.

The key Technical Concepts in Message Brokers are the following:

1. Producer: The Producer represents an originating endpoint responsible for emitting diverse data
types, all of which are destined to be processed and distributed by the message broker.

2. Consumer: On the opposing end, a Consumer designates a recipient endpoint that actively requests
data, typically in the form of messages, from the message broker.

3. Queue: In the context of message brokering, a Queue functions as a data structure optimized for
First In, First Out (FIFO) message storage and retrieval.

4. Exchange: An Exchange assumes a higher-level role within the message broker's architecture. It
configures and oversees the creation of message routing rules, effectively governing the creation of
communication groups to which consumers and producers can publish or subscribe for message
transmission.

Message Brokers support two main message distribution patterns (also referred to as messaging styles):

1. Point-to-Point Messaging
2. Publish/Subscribe Messaging

4.2.2.1 Point-to-Point messaging

This distribution pattern corresponds to the utilization of message queues, wherein a sender and reegiver
establish a strict one-to-one relationship. In this paradigm, every individual message within the queueiis
exclusively directed to and consumed by a single recipient. Point-to-point messaging is,mainly utilized
when a given message triggers an action precisely once.

[e\
{Qu b4 @]«—-
=

Queus
d

(O DR |

) /

Figure 13: Point-to-Point Messaging Overview

4.2.2.2 @Lublish{Subscribe Messaging

In the €ontext, of'message distribution, this pattern, commonly referred to as "publish/subscribe" or
"pub/sub," is characterized by the message producer disseminating each message to a specific topic,
with’multiple message consumers selectively subscribing to topics for message reception. Within this
paradigm, all messages posted to a given topic are broadcasted to every application or entity that has
subscribed to that particular topic. Consequently, this architecture embodies a broadcast-style
distribution mechanism, establishing a one-to-many relationship between the message publisher and
several consumers.

Document name: D3.1 Intfroducing NEMO Kernel Page: 37 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

Message broker

Topic

Figure 14: Publish/Subscribe Messaging Overview

4.2.2.3 Widely used message brokers
Message brokers have several advantages such as:

1. Producer Persistence: Independent of the consumer's liveness state, message producers can transmit
messages with the sole prerequisite of a functioning message broker, thus the consumer's operational
status does not affect the sender.

2. Elevated Asynchrony: Message Brokers introduce asynchronous processing, optimizing \system
performance by subdividing tasks into discrete processes. This allows for more efficient application
execution.

3. Augmented Message Reliability: Message Brokers augment system dependability \by supporting
rigorous message transmission assurance. They incorporate mechanisms fordmmediate or scheduled
message redelivery following consumer failures. Additionallysthey facilitate management of non-
deliverable messages via a dead-letter mechanism, significantly, increasing message routing
resilience.

As a result there are numerous message brokers that have been introduced, the most important of which
are the following:

Amazon SNS (Simple Notification Service)*"

Amazon SNS is a cloud-based service ‘designed to orchestrate the delivery of push notifications from
software applications to subscribed endpoints and clients. It facilitates direct notification delivery to
customers and suppotts both individual message delivery and a publish-subscribe pattern. It's an integral
component of Amazen Web Services (AWS), notable for its cost-effectiveness and automated workload
scaling capabilities.

Aamazon-SQS (Simple Queue Service)?®

Amazon SQS is a fully managed message queuing service tailored for decoupling and scaling
microservices, distributed systems, and serverless applications. It can dynamically adapt to workload
sizes. Amazon SQS employs a pull mechanism, requiring message receivers to autonomously retrieve
messages from SQS queues. This service simplifies the complexities of managing message-oriented
middleware, allowing developers to focus on innovation. It supports seamless message transmission,
reception, and storage between software components at any scale without message loss or dependency
on additional services.

Redis®

Redis is an in-memory data store claiming that it provides high-performance while serving as both a
key-value store and a message broker. It operates as an in-memory data structure store, though it does

27
28
29

Document name: D3.1 Intfroducing NEMO Kernel Page: 38 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

not guarantee message durability. Redis supports various abstract data structures, including strings, lists,
maps, sets, sorted sets, hyperlogs, bitmaps, and spatial indexes.

Apache Kafka®

Apache Kafka represents a robust queue broker and open-source messaging system designed for
distributed event streaming. It can efficiently handle high message volumes and stores messages on disk
to ensure durability. Kafka also supports seamless message transmission from one point to another.
Messages within the Kafka platform are replicated across the entire cluster, safeguarding against data
loss. Kafka's primary focus is on real-time event streaming, data pipelining, and efficient data replay for
swift and scalable operations.

RabbitMQ*:

RabbitMQ stands as the most widely adopted and popular open-source message broker software.
Implemented in Erlang and supported by the Pivotal Software Foundation, it provides a standardized
platform for processing modules to send and receive messages securely. RabbitMQ can handle intricate
routing scenarios and offers four types of exchanges, which are very important in message routing.
Unlike other message brokers, RabbitMQ first routes messages to exchanges, which then direct them to
appropriate queues. RabbitMQ's main advantages are its exceptional performance, reliability, high
availability, clustering, and federation capabilities. It also offers a user-friendly management interface
for monitoring and controlling the message broker.

4.2.3 State-of-the-art and background for CNAPPS

This section describes what Gartner™ calls a CNAPP (Cloud-Native Application Pfotégtion Platform).
CNAPPs are assemblies of frameworks and tools, which provide security_featutes at all steps of an
application life cycle: development, release delivery and runtime. To understand, what.a®CNAPP is, the
following subsections give an overview on some CNAPP components such as'Linux kernel monitoring
probes. First, eBPF is introduced as the enabler of system monitoring features. Then, frameworks that
use eBPF are described, because they are used by CNAPPs|solutions. The concept of CNAPPs is then
explained.

4.2.3.1 eBPF - Extend the Capabilities ‘@f.the kinux Kernel without Kernel Modules

eBPF! is one technology that enablé system monitoring in CNAPPs solutions. eBPF is a cutting-edge
technology that allows for the execution of sandboxed programs within the Linux kernel without the
need to modify the kernels sotree\code”or add additional modules. eBPF does not stand for anything
anymore and is a stahdalene tetm, but it was previously known as (extended) Berkeley Packet Filter.

eBPF technelogy'proyides a safe and efficient way to enhance the kernel’s capabilities at runtime. As a
result, ¢here has*been @ surge in eBPF-based projects that address a wide range of use cases, such as
advancedhetworking, system observability, and security features.

Forg€xample, eBPF can be used for container runtime monitoring. CNCF Projects like Falco, Tetragon®?
or Cilium** uses eBPF to monitor kernel events or network traffic. eBPF monitoring agents can be used
in a Kubernetes environment to monitor the Kubernetes node host itself and containers and pods running
on this Kubernetes node.

eBPF can also be used to implement other features than system or network monitoring. For example,
the project LoxiLB** is an eBPF based cloud-native load-balancer for 5G Edge. A list of opens source
projects that use eBPF is available on the eBPF website®.

30
31
kY)
33
34
35

Document name: D3.1 Intfroducing NEMO Kernel Page: 39 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

Use
Cases

User
Space

Kernel

Networking Security Observability &
Tracing
HeBPF b #
Projects Katran % O MI%IE
WHeBPF 5 G0 G®
SDKs
Verifier & JIT 0s
Runtime
WeBPF
Kernel Helper API ar

Kernel Runtime

&3¢ NEMO

Applicatic;n

Figure 15: Overview of eBPF and frameworks using eBPF

- Observability

- Security Controls

- Networking

- Network Security

- Load Balancing

- Behavioral Security

It is worth mentioning that a developer or a DevSecOps does not need an extensive knowledge of the
eBPF framework to use it. Indeed, the eBPF feature can be used by higher-level tools, like Ciliumtor
Falco®®, which will leverage eBPF and an eBPF plugins. From the developer and DevSecOps point of
view, the complexity of the eBPF plugin used by tools such as Falco is transparent.

4.2.3.2 State of the Art Linux Kernel Monitoring and Detection Agent
Several projects and frameworks propose to build tools on top of eBPE-to leverage.eBPF features but

masking complexity to its users. This section describe the landscape,ofithese tools:

Before introducing the concept of CNAPP?’ in the next section, it is uséful to describe modern Linux
kernel monitoring solutions. Indeed these Linux kernel monitoting\solutions or probes are often at the
center of the CNAPP solutions for the runtime moditoring asdesctibed in the next section.

Figure 16 below is a screenshot of the Cloud-Native\Computing Foundation or CNCF Landscape, which
is a taxonomy of all the projects relatedto the €NCF. Figure 16 focuses on the Security frameworks.

‘ Security & Compliance

u

3 o‘)
A \
Gpen wl-a -
CNCF Incubating CNCF Incubating CNCF Incubating

in-toto

CNCF Incubating

o

Kyv

Rk

1
o ©

I,

erno

CNCF Incubating

AIRLOCK®

9».

’ emmno|

o=

anohora waquallarmo | F 4 m‘.‘ M‘ ‘ ”; Besron ’chtc.k_oy CHEF| | @ clair || X H l
apolicy Aserto e 3
5) I
!5 5 owtes & | B |l eeen =N | |7 | [Fossal|FQssiD| |Fugue | |avsioks| | 7 YKics
oty dctree dex posec Hexa | Kevlime ==
e, ksoc| V @ o Kt wm: @ Q Mmatano 09 rmonoo| | DB * a e ‘ @
aubis-banch | liae-hustes laibearmor arity KubeLin Kubescape | | KUBEWARDEN nirmata opcr OpenFBA OpenSCAP
....... y s i s e | |TBAC, b | [rbae (7 i ~
‘OI’CO‘ ‘Oomzye € e pA;:‘Lus EARSEC plute | |pelaris| | <portsnie §| 275700 O = Logykup || manager nﬁr cribe m%re ¥ slim'
5ny'l(@ ‘((‘ &)syﬁdig 0 o @ ﬁ w V ﬁ h‘ ‘
ackrawicl|stackRox st B retragon | |Jeesttapeer | | TiERA || TOPAZ "'E“

(D

Figure 16: CNCF Landscape’® - Focus on Cybersecurity frameworks - CNAPP and Linux monitoring probes are highlighted
(as of September 2023)

3¢ Falco can use both an eBPF probe or a Kernel module as a driver to access syscalls and kernel events. See the
dedicated Falco section.
37 CNAPP Cloud-Native Application Protection Platform

38

(screenshot from 2023-09-12)

Document name:

D3.1 Intfroducing NEMO Kernel

Page:

40 of 93

Reference:

D3.1 |[Dissemination: [PU

[Version:

[1.0

Status:

Final

i NEMO

Figure 16 and Table 1 are non-exhaustive lists of CNAPP vendor solutions. A more exhaustive market
analysis is available on Gartner’s website [16]. The NEMO project will not perform its own CNAPP
market analysis.

Sysdig

\ Vendor solution. Its probe agent
H (eBPF based) is opensource and
@ sysc"g called Falco.
Isovalent Vendor solution. Other solutions from
ISOVALENT Isovalent remain open source like
G Cilium (CNI), Hubble (cloud-native

troubleshooting tool) and Tetragon

(eBPF based monitoring agent).

AWk NeuVector | Vendor solution. Also the vendor of

oW SUSE ‘E Kubernetes Rancher distributions

and Suse OS distributions.

PaloAlto Network , ® | Vendor solution. The solution is
Prisma Cloud }, pa Ioalto mainly a SaaS. It will not be suited for

Defenders NETWORKS disconnected and airgaped

environments.

Vendor solution. Most of their tools

Ll Oquo for benchmarks, SAST, DAST“and

runtime monitoring remain
Opensource.

SUSE Neuvector

Aqua Security

Table 1: Vendor CNAPP Solutions (not exhaustive)

The purpose of this document is not to have a holistic view of_the, CNARP business and market.
Therefore, the next paragraphs focus on two different communities, which are responsible for two open
source Linux kernel monitoring solutions: Falco and Cilium)|

Cilium’s parent company is Isovalent®. Cilium stafted as a|eOntainer network interface with network
observability feature. Recently in 2022, Isovalént started to work on Tetragon®® , which is a Kubernetes-
aware security observability, and runtime enfore€menttool that applies policy and filtering directly with
eBPF, allowing for reduced observation overhead;tracking of any process, and real-time enforcement
of policies. Tetragon extends,the network observability features already provided by Cilium to a broader
Kernel events monitoring Tetrdgon cafi'be used as a standalone solution without Cilium®*!.

Falco’s parent company is Sysdig. Falco!” is a cloud-native security tool designed for Linux systems. It
employs custem rules on kernel events, which are enriched with container and Kubernetes metadata, to
providereal-timewalerts.

Falcojand Cilium have in common that they are open source, and they can rely on eBPF plugins to
monitor Lihux kernel events. However, Cilium is not a direct competitor to Falco, but Tetragon is. The
solutions have also in common that their respective companies provide vendor solutions with more
features. Table 5 and Table 6 in section Annexes are example of the kind of differences that can exist
between the open source community version of a kernel monitoring probe like Tetragon and its vendor
counterpart with support.

For the NEMO project, Falco has the advantage to be more mature than Tetragon. However, the two
competing projects are evolving quickly, and Tetragon has arguments when it comes to network related
events, especially thanks to the experience with the CNI** Cilium.

39
40
41

42 CNI Container Network Interface

Document name: D3.1 Intfroducing NEMO Kernel Page: 41 of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

\
Parent Company G ISOVALENT &)sysdig Parent Company

CNCF Incubating 8%? Cl I | um §/< Fa lco

CNCEF Incubating

CNCF Subsidiary Project : Tetragon https://github.com/falcosecurity/falco/

CNCF Subsidiary Project »%"‘ Hubble O Sysdig

) . Sysdig OSS # Sysdig Secure (Vendor Product)
https://github.com/cilium https://github.com/draios/sysdig

Figure 17: The 2 main Linux open source monitoring solutions and vendors (parent companies) at the CNCF level.

‘ Falco Tetragon

License Apache 2.0 Apache 2.0

CNCEF Status Incubating (production ready) Subsidiary Project (spinoff project
from Cilium) - not production
ready yet (need Isovalent support)

Linux Kernel Driver eBPF or Kernel Module eBPF

Policy Rules Configuration Format | Custom YAML manifest with | A Kubernetess CRD | Custom
custom rule grammar (not a K8S | Definition Ressource

CRD)
Kernel Events Monitoring YES YES
SIGKILL NO (needs Sysdig Secure) YES
Network Protocol Awareness ++ +++

Table 2: Short comparison between 2€inux Kernel Monitoring probes: Falco and Tetragon.

More details on how Linux kernel mOnitoring,cyber probes works are available in the section below
NEMO CNAPPS: Falco - LinuxKetnelFfMonitoring Cyber Probe and Detection Agent.

4233 CNAPR.Cloud\Natiye Application Protection Platform

CNAPP standsqfor, Cloud=Native Application Protection Platform. CNAPPs are assemblies of
frameworks‘and teols such as eBPF-based tools described in previous sections. The term is used by
Gartnet to identify=solutions and frameworks that cover the full protection of a containerized or cloud-
native application during its entire lifecycle. However, all CNAPP solutions are different, and their
scope can*vary from one solution to another. However, the main idea is that these solutions will be
implemented and used during every phase of an application lifecycle.

Figure 18 describes a DevSecOps loop, which shows both the development time, the delivery release
time and runtime phase of an application. CNAPP frameworks operates at every step of these three
phases.

Within the DevSecOps toolbox, the following terms are used:

e SAST Static Application Security Testing: search for vulnerabilities during build or
development time.

e DAST Dynamic Application Security Testing: search for vulnerabilities during runtime.

e RASP Run-time Application Security Protection: search for vulnerabilities during runtime and
provides mitigations.

e JAST Interactive Application Security Testing: combine SAST and DAST.

Document name: D3.1 Intfroducing NEMO Kernel Page: 42 of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

The DevSecOps Toolchain

1. Address Technical 10. Security
Security Debt, Technical Debt, 6. Signature Verify, 7. RASP, UEBA/
DevSec Metrics, Modify Incident Integrity Checks, Network
2. IDE Security Threat Modeling, Response, Defense In- Menitering,
Plug-Ins Security Tool Training Modify DND Depth Measures Penetration Test

! | |

Prevent

Log and Perimeter
Monitoring

Dev Ops
Security Monitoring Monitoring RASP Feedback
Champs and and
Analytics Analytics AP Gateway
Security and
Performance Logs
Preprod Predict Respond
3. SAST/DAST/ 4. Chaos Monkey, 5. Software 9. Dev Consumable, 8. Security Orchestration,
IAST, SCA Input Fuzzing, Signing Correlated RASP/WAF Shielding,
Integration Test Vulnerability Analysis, Obfuscation
1oC/TI STIX TAXII

Source: Gartner
ID: 377293 ‘

Figure 18: Gartner DevSecOps Model* . Development on the left, delivery release on the middle, runtime on|the tight

Those terms SAST, DAST, RASP or IAST and the tools associated are not ne€essary ‘warking on
container images only. However, applications are often packaged as contairer images/and deployed
thanks to Kubernetes manifests files.

To sum up, CNAPPs solution are an assembly of the following sub-components:

e Runtime Kernel Monitoring Cyber Probe. These prebesiCan use eBPF plugins like described
in previous sections or kernel modules to perform the monitoring. Example: Falco + Sysdig
Secure, Cilium, Tetragon.

e Container Image Vulnerability Scanning Tools. SAST, DAST, RASP, IAST.

GitOps Interfaces, to be connected with.CICD pipelines.

Where & Why Should we Use CNAPP forIoT? One should understand that CNAPPs are a collection,
an assembly of multiple comporients that intervene at different moment of an application lifecycle. On
resources constraineéd deyices like loT, some components like the vulnerability scanner of a CNAPP
solutions will be'deployed on the development environment, and not on the IoT device itself. On the
contragy”Other components like the cyber runtime monitoring probe will be deployed on the [oT device
itself;

For the NEMO project, and especially for the NEMO Kernel and operating system, the focus will be on
the'Runtime Kernel Monitoring Cyber Probe rather than on SAST and vulnerability scanning.

4.3 Background

The underlying architectural patterns and design options within the meta-OS ecosystem are significant
factors to be considered in the selection of appropriate security measures and modules to ensure secure
communication among diverse workloads comprising or hosted in the developed meta-OS. In the cloud
and edge native world of the NEMO meta-OS ecosystem, infrastructure and business logic are provided
by a set of seamlessly integrated, interoperable and cloud native microservices. Core design principles
for delivering such structure of functionality include the modular design for workloads’ architecture
and, largely, synchronous communication. Moreover, plugin-based architectures are becoming
increasingly popular as flexible approaches for modular software frameworks. These architectural styles
are briefly presented below.

43

Document name: D3.1 Intfroducing NEMO Kernel Page: 43 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

i NEMO

Modular Design

Modular Design is a system’s architecture in which a complex system is composed of a set of
independent, interchangeable modules plugged together. Each module is developed on the premise to
be able to execute a single clearly defined aspect of the desired functionality; yet all modules function
together as a whole. Modular design and programming in software development emphasises on
separating a program’s functions into independent pieces or building blocks, each containing all the
parts needed to execute a single aspect of the functionality [17]. In a second step, putting the different
modules together, the complete functionality is composed and implemented. Modular design refers to
decomposing large and complex systems into smaller and more manageable parts. Modules provide the
necessary methodology for abstracting arbitrary complexity, behind clean and simple interfaces. Thus,
functionality can be enriched incrementally, as the project progresses.

Industry has experienced previously unimaginable levels of innovation and growth by embracing the
concept of modularity. Modularity allowed designers to experiment with different approaches, as long
as they obeyed the established design rules [18]. Three groups of elements are basically needed for the
modular design realization:

e Modules
e Interfaces
e A set of protocols for interconnecting those modules

As long as these elements are defined and respected, the merits of modularity can be exploited“in
systems’ development, integration, update and extensions with minimum overhead o the whole system.
The components under development, test or experimentation can be plugged=er unplugged with no or
limited effects on the rest system’s functionality.

Plug-in architecture

Aligned to modular architecture design, plug-in-based architectur€s address the need for separating
application functionality into standalone functional units. As statedin [19] plugins are a cohesive, self-
contained unit whose dependencies to other components and services are already predefined. A plug-in
is a bundle that adds functionality to an application, called the host application, through some well-
defined architecture for extensibility? This allows, third-party developers to add functionality to an
application without having access tQ the”Sourcecode. This also allows users to add new features to an
application just by installing'@new,bundle’in the appropriate folder.

The plug-in architeetirérconsists of two components: the core system and the plug-in modules.

In that respect additionall features are added as plugins to the core application and such an approach
provides“extensibility,flexibility, and isolation of application features and customs processing logic.

The specific rules and the processing tasks are separate from the core system; thus, the designer can add,
remove, and change existing plugins with little or no effect on the rest of the core system or the other
plugsin modules.

Plugin architecture entails significant benefits for developers, as well as for the application/service users.
The developers’ benefits include:

Reduced development and deployment time for new application features

Deployment at runtime with no need to stop the host application

Enhanced troubleshooting through feature isolation

Increased application security through functionality isolation from the core functionality
Opening development opportunities for third parties regarding additional features without
requiring awareness of the source code of the host application or any interaction with the
original application developer.

e Code language independence, as plugins can be written in different languages, wrapped with
well-defined interfaces.

Document name: D3.1 Intfroducing NEMO Kernel Page: 44 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

&8s NEMO

Synchronous communication

The adoption of the REST (REpresentational “State” Transfer)-ful architectural style is common in the
modular microservices-oriented cloud/edge native world. REST APIs facilitate development,
integration and testing, as outlined below:

e Greater support for interoperability: Through reliance on well-defined, universally understood
communication interfaces, like the ones composing RESTful APIs, software components’
implementation details are truly hidden from the client, providing real platform and language
independence for developed code.

e Scalability: REST is stateless by design, as implied by the full term, as no state about the client
session is stored on the server-side. Persistence and management of client session data is up to
the client per se. Moreover, the uniform interface specification through universal Uniform
Resource Identifiers (URI) does not require individual definitions of operations for every
resource or server, allowing for using a multitude of tools compatible with HTTP and for
uniform caching. Clients do not need to understand the URI structure, which means that
awareness of just the URI link and the data format makes application processing, even after
updates, possible.

e Data format: REST supports different data format for the provided response, e.g., JavaScript
Object Notation (JSON), Extensible Markup Language (XML), Comma Separated| Value
(CSV). This provides flexibility to developers in parsing the response in the-desired language
or format that best suits their application/service.

The design approaches presented will be considered for addressing se€urity in communications among
the NEMO components and with external entities, applying the defined aCcess control measures for the
NEMO endpoints/interfaces.

4.4 Architecture & Approach

The overall architecture of the main Seeurity Modules 6f NEMO from a user perspective is demonstrated
in the following MAF (refer to DJ.2) diagrams starting from the logical view diagram. The user will be
assigned access to certain résourcesithrough the access management and privileges/permission sub-
system while the intercommunication between the NEMO components will be handled and secured
through the developed messagetbroker which handles the intercommunication/network management of
NEMO.

Access
Control

Network
Management

Privileges/
Permissions

Figure 19 : Logical View on NEMO Security Modules

In order to provide the required functionality to the NEMO end user, the security modules will be
interfaced with the NEMO microservices developed in WP2. Moreover, each block in the logical view
is implemented in a corresponding NEMO module, while, in order to provide even higher levels of
security an additional module which monitors all the services and module execution of NEMO so as to

Document name: D3.1 Intfroducing NEMO Kernel Page: 45 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

&8s NEMO

identify potential attacks is also being implemented (i.e. CNAPPS module). In the following figure the
development view of the Security/Access block of NEMO is demonstrated.

CNAPPS (added
feature)
Micro Services — .
Identity
Management

Digital Twins

Access
Reinforcement Management

Learning

Network
Security
Figure 20: Development view of NEMO Security Modules \/
de pE g the

In order to be able to efficiently incorporate all those modules we have also work
(

process view of the NEMO block which is demonstrated below. The m el .e. within the
a
e

int
Security block) interfaces of the modules are the following : The I gemént and Access
control modules are combined into a single module, will provide e eta-data which contain
the user identity and the access privileges to the network manag t system which is responsible for
the reliable and mainly secure intercommunication between ules. Regarding the interface to the
NEMO microservices, the security block will get requests forydser ereation/deletion/handling from them
and will provide the meta-data needed for allewingthe microservices to implement the required access
policies to the different resource while.also any“acc the NEMO resources that is restricted is also
handled by the security modules. [The_same k is also responsible for the secure and reliable
intercommunication between,the 'di icroservices; in that respect each microservice module can
g the identity of the service as well as the unencrypted data to be

send the required meta-d

sent and their destinationyand the interconnection management module of NEMO is responsible to send

them encrypted \to 0 destination; in the destination another instance of the interconnection
e Nt

manag% sponsible to decrypt and send them to the corresponding microservice module.

Document name: D3.1 Intfroducing NEMO Kernel Page: 46 of 93
Reference: D3.1 |[Dissemination: [PU [Version: [1.0 [Status: [Final

&8s NEMO

P p——

Modules

/ N Network
. Identity Access \
Managemen‘ Managemenl
ispatch H i
C N A P PS dlpi th M dispaich M dispaich
Ik fck callback callback
[l Encrypted Network Streams C NA P PS
Meta fata Authenticated User Metadata, Network Streams _ | - -- .} ______%
----------- B . | LIRSk et | Bt Rk N >
sst ts Assets Network Streams Encrypted Network Sert
[emmmemeees | e - S I i B ety
Identity and Access
Management
Security Models Security Models | Microservices
dispatch E dispatch E dispatch
dispatc
callbadk cafpack
<
Metadat]), Netw rk Streams Encrypted Network Streams Metadz!a, Nftwork Streams [
e |
Ne work[Streams
......................... Encrypted Network Sert bl

CNAPPS | | : Q

Figure 21: Process View of NEMO Security Modules
ed,virtually in any NEMO

In terms of how the Security Blocks will be deployed, there wil
% while it will also be deployed in

device that requires secure communication and access the resou
any possible centralized node (if there is such). This is requir e to the fact that the developed module
will handle the encrypted intercommunication as well as the d global resource allocation/access.
In the Figure 19 a simple deployment view oftthe Securit dules is demonstrated.

Mic 'oSeqvices

NEMO Devices

Figure 22: Physical view of NEMO Security Modules

4.4.1 Identity Management and Access control

The growing number of networked devices, connected across [oT, edge and cloud computing clusters,
entails increasing and more comprehensive threats for cybersecurity of such systems. The vast number
of diverse devices, as well as their integration in the IoT, edge and cloud continuum, has expanded the
attack surface, with increasing numbers and types of vulnerabilities. Consequently, additional
challenges arise for secure access in the integrated clusters’ resources when such access is required both
for external users and services and for core NEMO components.

Document name: D3.1 Intfroducing NEMO Kernel Page: 47 of 93
Reference: D3.1 |[Dissemination: [PU [Version: [1.0 [Status: [Final

Within the NEMO meta-OS, different types of functionalities are exposed through a set of programmatic
endpoints, providing access to monitoring information, control actions, as well as configuration options
in the meta-OS. NEMO considers a flexible mechanism for Access Control, aiming to secure these
endpoints in a coherent manner across the continuum, facilitating security management while
minimizing the attack surface. NEMO Access Control (NAC) allows to implement a comprehensive
approach to applying flexible, easily configurable, granular privileged access to NEMO resources by
either internal components or, beyond the perimeter, to external entities. NAC provides a security
substrate to NEMO resources, enforcing that any attempted connection is brokered through a common
API gateway. Then, access control is applied based on a set of modular criteria, which may include
identity management, catering for Authentication, Authorization, and Accounting (AAA), but also
traffic flow controls and universal controls for specific IPs through whitelist and blacklist rules.

Specifically, the NEMO Access Control (NAC) component aims to apply an access control mechanism
which will only permit access to users and services based on their roles. Access will be provided only
to the level of information or resources that are eligible for the relevant roles. In fact, the security
administrator (in line with the “MetaOS Security Manager subrole of the MetaOS Provider user, as
defined in D1.2 [2]) may define the access control criteria per endpoint and per user role.

NAC protects internet-exposed endpoints from unprivileged data breaches and is appropriate for the
hybrid and highly diverse environment within the meta-OS. Access control is applied uniformly whether
access is attempted by an external user (through any device type) or service or even an inherent NEMO
workload.

In the following subsections, we delve into architectural description of the NAC module,*following the
NEMO Meta-Architecture Framework defined in D1.2; in particular, the development, view and the
process view with regards to NAC are presented.

Development & Process view

The defined NAC functionality will be offered through the modular.design of the architecture depicted
in Figure 23.

NAC design follows a modular plugin architecture,/which allows isolation of the core functionality from
separate features. The core functionality levetages an API Gateway, intercepting requests for accessing
NEMO resources, which may be made by external users or third-party services or even other NEMO
services.

Every access request is evaluated againstia set of defined access control criteria. In NAC, such control
criteria are implement€d,as\plugins, attached to the core component (API Gateway). This allows NAC
to apply chaining access control criteria, which may differentiate among endpoints or even user roles.
In any case, AAA controls are applied, relying on Keycloak as the identity management solution. Once
the evaluationicheck is successful and defined access control criteria are respected for both the endpoint
in,question and the entity requesting access (user, third-party or NEMO service), then the request is
roufed to the relevant NEMO endpoint. This leads to the request being processed and the relevant
response to be communicated to the requester in a synchronous manner. In the opposite case, in which
at least one control criterion fails, access is not granted, and the requester is provided with a relevant
response text and code, indicating that access to the requested resource is forbidden. This process is
depicted in the sequence diagram of Figure 24.

Document name: D3.1 Intfroducing NEMO Kernel Page: 48 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

&8s NEMO

Access Control

]

]

]

|

Ingress Gateway !

. -~ |
NEMO service PostgreSQL cluster |
]

___________________________________ |

]

]

]

]

i

|

]

]

=
H

|| Third-party service i\

-
— A API Gateway E
—— - T

Admin API

Access Control Services

£
8
g
i
8

-~ NEMO service

((f

NEMO plugin

Client services/apps/users

Rate Limiting Usage control
Dynamic IP white-/ .
blacklisting OAuth2.0 Identity Management
- - <#IKE
Business logic !
based access i
control i
- i
~ /:

Figure 23: Development architecture for the NEMO Ac

A Openl]

— Login (username, password)

Access token

Check token validity —|
and expiration

redent ls]\

PR Token invalid or ._..__. Keycloak
inactive Authentication
Authentication Failed - failed
Access Denied

OAuth 2.0 credentials]

P Tokenvalid | Keycloak
and active Authentication
T passed

GET location, activity, type =~ ———————

[alt] [criterion failed] o I
o . [¢7mmmmm e Client info ~ -w7-m--mmmmmmmmommmosmooomoe e Criterion check
Authentication Failed failed

- Access Denied

I Criterion check
Forward request —————————————» passed

X
=
o
e}
[=
[}
2
a
o
a
2
=]
o
=3
2
[¢]
[
L

Figure 24: Process diagram of NEMO Access Control operation

Document name: D3.1 Intfroducing NEMO Kernel Page: 49 of 93

Reference: D3.1 |[Dissemination: [PU [Version: [1.0 [Status: [Final

i NEMO

4.4.1.1 API Gateway
Description

An API gateway is an API management tool that sits between a client and a collection of backend
services [20]. An API Gateway is a general concept that describes anything that exposes capabilities of
a backend service*. In addition, it may support traffic routing and manipulation, such as load balancing,
request and response transformation, and sometimes more advanced features like authentication and
authorization, rate limiting, and circuit breaking.

In NAC, the API Gateway acts as a reverse proxy between the NEMO services and any workload or
user requesting access to their resources.

Example of Technology Enablers

Envoy proxy [21] is an open source edge and service proxy, designed for cloud-native applications.
Envoy is a self-contained process that is designed to run alongside every application server. All of the
Envoys form a transparent communication mesh in which each application sends and receives messages
to and from localhost and is unaware of the network topology.

Kong Gateway [22] is an API gateway built for hybrid and multi-cloud, optimized for microservices
and distributed architectures. Kong provides a lightweight, fast, and flexible cloud-native API gateway.
Kong Gateway runs in front of any RESTful API and can be extended through modules and plugins, It
is designed to run on decentralized architectures, including hybrid-cloud and multi-cloud deployments.

Amazon API Gateway [23] is an AWS service for creating, publishing, maintaining, monitoring,.and
securing REST, HTTP, and WebSocket APIs at any scale.

In addition, NGINX [24] offers several options for deploying and operating amAPI gateway depending
on your use cases and deployment patterns, including both Kubernetes=native/tools«@NGINX Ingress,
NGINX Service Mesh), as well as universal tools (NGINX PluseES NGINX\Management Suite API
Connectivity Manager).

One advantage of using NGINX as an API gateway is.that it camyperform that role while simultaneously
acting as a reverse proxy, load balancer, and web server for existing HTTP traffic [25].

Technology Chosen

In NEMO, the Kong open-sourée AP gateway [26] will be employed as an Ingress/API Gateway,
backed up by a simple (RostgreSQL)database cluster mostly used to keep track of the API gateway
configured routes, serviees and,upstreams.

Kong Gateway is\a lightweight, fast, and flexible cloud-native API gateway. Kong Gateway facilitates
developefs’ work in thefollowing ways*:

Eeverage workflow automation and modern GitOps practices

Decentralize applications/services and transition to microservices

Create a thriving API developer ecosystem

Proactively identify API-related anomalies and threats

e Secure and govern APIs/services and improve API visibility across the entire organization.

In addition, NEMO partners are already experienced in using Kong in a production environment. In
such setup, the Gateway has been able to handle a vast number of requests per second, in the order of
thousands, which indicates that Kong is appropriate in a highly demanding access control environment,
within the meta-OS.

Interfaces

44

45 https://crestsolution.com/solutions/kong-api-management-gateway/

Document name: D3.1 Intfroducing NEMO Kernel Page: 50 of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

i NEMO

The API Gateway interfaces with the Access Control services, acting as plugins implementing access
control criteria, as well as with the Data Storage cluster, in which it stores administrative data regarding
the access control configuration, e.g., routes and services.

Licensing

NEMO will leverage on the open source version of Kong, which is available through the Apache-2.0
license.

4.4.1.2 Access control services
Description
Rate limiting

Imposes a maximum threshold on the requests rate that can be performed by a client against the API
Gateway, effectively preventing API misuse and, possibly, DOS attacks.

Usage control

Imposes policies related to the business logic of the NEMO core applications (e.g., related to the validity
of the application requested, the existence of an active client registration etc.) to ensure proper,
authorized use of the API, following the principles of use of the NEMO resources.

IP white-/blacklisting

Enforces traffic filtering based on IP whitelisting and blacklisting. When it comes to IP whitelisting, the
plugin allows for stricter access control in the cases where a service exhibits stringent seetirity
requirements (e.g., in case system data are being exchanged) that prohibit the genetal public from
accessing it. On the other hand, blacklisting is mostly relevant to blocking accessito the NEMO resources
by IPs that have been identified as possibly malicious (e.g., in case a DOS\attackegets-detected).

oAuth 2.0

In NEMO, the authentication and authorization services exposed by the 0Auth 2.0 plugin are going to
be used as primary access control mechanisms. It#allows securing applications and services, based
OpenlD Connect [27].

This plugin relies on Keycloak [28] as.the OperlD Cennect Provider for supporting AAA services for
NEMO resources. For accessing NEMO,resoutceS protected by this plugin, the requester entity must
send a valid token along with the request;) The plugin then communicates directly with the Keycloak
instance and checks if the token iswalid'and has not expired in order to authorize access to the requesting
entity.

Interfaces

The Access Control'Services are implemented as Kong plugins. NEMO will leverage the Kong Gateway
support for Python plugin development, provided by the kong-python-pdk library. The library provides
a pligin server and Kong-specific functions to interface with Kong Gateway [22].

Licensing

The Access Control Services will be made available as open source. The exact license will be chosen
when the software releases will be made public.

4.4.2 Intercommunication Management / Security

The network management and security module of NEMO will be based on RabbitMQ*® which is an
open-source message broker software that implements the Advanced Message Queuing Protocol
(AMQP). It enables applications to communicate with each other by sending and receiving messages.
The main components of RabbitMQ are producers, consumers, queues, and exchanges.

RabbitMQ consists of the producer, consumer, and broker. A producer is an application that sends
messages to a RabbitMQ broker. The producer creates a message and sends it to an exchange within the

46

Document name: D3.1 Intfroducing NEMO Kernel Page: 51 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

broker. The message contains information that the broker uses to route it to one or more queues. The
producer doesn't need to know anything about the consumers, only the exchange it's sending messages
to. A consumer is an application that connects to the broker and subscribes to a queue to receive
messages. The broker pushes messages to consumers when messages are available. Consumers either
acknowledge each processed message or set up an 'auto-acknowledge' mode. The broker is a RabbitMQ
server which receives messages from producers and pushes them to queues. The broker is responsible
for routing messages, based on the exchange type and bindings. It also takes care of tasks like persisting
messages, managing acknowledgements from consumers, and more.

A queue is a buffer that stores messages. Queues are bound to exchange and receive messages from
them. The messages stay in the queue until they are handled by a consumer. Queues have certain
properties that can be defined, such as durability (should the queue survive a broker restart), auto-delete
(should the queue be deleted when the last consumer unsubscribes), and exclusivity (used by only one
connection and the queue will be deleted when that connection closes).

Subsequently, an Exchange is a message gateway to RabbitMQ. The distance each message has to travel
depends on the type of exchange. In NEMO, topic exchange will be used. In a topic exchange, the
message is routed to one or many queues based on a match between the routing key and the pattern used
to bind the queue to the exchange. The routing key is a list of words, delimited by dots. The binding
pattern can contain an asterisk ("*") to match any word in a specific position, or a hash ("#") to match
zero or more words.

Ql

type=topic *.orange.*

, rabbit Q2

Figure 25: Topic Exchange of RabbitMQ

Looking at the security provided by RabbitMQ;, since this is one of the main reasons that it will be
incorporated and optimized within WEMO, it offers several security features and mechanisms to
safeguard message communicationtand data integrity within its messaging infrastructure. These security
provisions are essential for protecting the confidentiality, integrity, and availability of messages and the
overall systéin, Below is,a brief description of the security features that are provided by RabbitMQ and
will beflincorperated in NEMO:

Authentieation:

External Authentication: It also supports external authentication methods like LDAP, OAuth, or other
custom authentication mechanisms, allowing integration with existing user directories and single sign-
on (SSO) solutions.

Authorization:

a. Fine-Grained Access Control: RabbitMQ enables fine-grained access control by allowing
administrators to define access permissions for users and applications down to the level of
individual queues, exchanges, and virtual hosts.

b. Role-Based Access Control: Users can be assigned to roles with specific permissions,
simplifying access management and ensuring that users only have access to the resources
necessary for their tasks.

Encryption:

RabbitMQ supports SSL/TLS encryption for securing data in transit between clients and the message
broker. This ensures that messages and sensitive data are protected from eavesdropping during
transmission.

Document name: D3.1 Intfroducing NEMO Kernel Page: 52 of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

Access Control Lists (ACLs):

ACLs in RabbitMQ allow administrators to define specific rules that govern access to resources, queues,
exchanges, and management operations, providing granular control over who can perform what actions.
Pluggable Authentication Mechanisms

RabbitMQ's pluggable architecture enables the use of custom authentication and authorization plugins,
allowing organizations to implement their security mechanisms if necessary.

Audit Logging

RabbitMQ can log security-related events and activities, helping administrators monitor and audit the
system for security compliance and potential threats.

For example, to enable secure communication, NEMO will take full advantage of RabbitMQ’s access
controls*’ and best practices. More specifically, everything will happen within a vhost, and will block
the generic vhost entirely. Continuing, we will create unique users, and the default guest user will be
removed. Each user will have their own username and password which should be used only by them.
Lastly, each user will be permissioned to only read and write to their own queue based on the queue's
unique name.

443 NEMO CNAPPS: Falco - Linux Kernel Monitoring Cyber Probe and Detection Agent

As described in the State-of-the-art and background for CNAPPS (Section 4.2.3) Falco is a cloud native
runtime security tool for Linux. It is designed to detect and alert on abnormal behaviour and potential
security threats in real-time and it will be used in NEMO as a CNAPPs* monitoring agent and,will
interact with other NEMO components such as the message brokers.

Falco'” is a kernel monitoring and detection agent that observes events, such as syscélls, basedhon custom
rules. Falco can enhance these events by integrating metadata from the ¢ontainer runtime and
Kubernetes. The collected events can be analysed off-host in SIEM* of data lakesystems.

Figure 26 is the Falco architecture overview>’. The Falco prob€s ngeds a driver to access the kernel
events and syscalls, while it uses a number of different instrumentations to analyse the system workload
and pass security events to userspace. The driver prevides the.syscall event source since the monitored
events are strictly related to the syscall context: Falco supports several types of drivers which are the
kernel event source’':

e akernel module, which requiresfo add this kerfiel module to the Linux Kernel. This requires having
full control and full privileges,on your)Linux kernel and OS.

e aclassic eBPF

e probe, which is{an alternative to the kernel module, but still needs to be compiled for each kernel
version.Jn comparison, it allows for a least privileged mode usage.

e a modern,eBPE probe, which is more transparent toward the Linux kernel (Kernel 5.8 and above)
and\OS than the classic eBPF probe, as it only needs that the kernel supports eBPF>2,

Fotr NEM@; choosing between an eBPF probe driver and a kernel module will have an impact on how
the NEMO Kernel and Linux OS is built. Indeed, either the NEMO Kernel and OS should embed the
Falco kernel module, or it should embed the eBPF Probe. Pre-installing either the kernel module or the
eBPF probe will guarantee that the Falco agent has everything it needs to perform its kernel monitoring
mission.

Figure 27 is an illustration of a typical Falco kernel monitoring probe deployment within a Kubernetes
cluster. In this particular example, which is generic and not dedicated to the NEMO architecture, the
Kubernetes environment which is used is SUSE Rancher k3s**. k3s is a lightweight Kubernetes for edge

47
48
4 Security Information and Event Management
50
51
52
53

Document name: D3.1 Intfroducing NEMO Kernel Page: 53 of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

&8s NEMO

devices. The operating system on the example are Fedora CoreOS, Flatcar or OpenSUSE Micro Leap
which are immutable OSes. Please note that the NEMO project might choose another OS or another
Kubernetes environment. However, the principle will be the same: Falco can run on a Kubernetes pod.

kernel space : user space

kernel module
or
eBPF Probe

write

\eve nts
Y

® State Engine

® Event Parsing

® Event Enrichment
® Rule matching

Figure 26: Falco Architecture Overview (taken from Falco documentation)

The examples on Figure 27 and Figure 28 were using virtual machines for k3s nodes. However, for

NEMO, those k3s nodes could be running on an IoT or an Edge device. This would not change the way
the Falco monitoring probe works.

k3s Agent Node #1
Multi-Access Edge Cloud

Description: A Virtual Machine, k3s Agent Node, also called Compute/Worker Node

7 iz \E} D se YApp
falco probe falcosidekick | |falcosidekick-ui
Pod Pod P “Pod

. mespace "myApp"

| Container e (w ‘

t o

| L L A e |

K3S
—1 Tunnel kube Proxy CNI Flannel

Eé}sos VM Immutable Operating System b3
Examples: Flatcar Linux Container, falco driver (eBPF
ﬁ‘ Fedora CoreOS, openSUSE Micro Leap or Kernel Module)

Figlire 27:"A typical Falco probe installation on a k3s Kubernetes Cluster's control plane node. The Operating System is an
immutable OS (either Flatcar, Fedora CoreOS or openSUSE Leap Micro).

Document name: D3.1 Intfroducing NEMO Kernel Page: 54 of 93
Reference: D3.1 |[Dissemination: [PU [Version: [1.0 [status:

Final

)
10
¢ NEMO
06 0 —)
)
k3s Server Node #1 Lo k3s Agent Node #1
Multi-Access Edge Cloud

Multi-Access Edge Cloud c
Description: A Virtual Machine, k3s Server Node, also called Control-plane/Master Node Description: A Virtual Machine, k3s Agent Node, also called Compute/Worker Node

By 3.
’ ‘%\ (& B Database MyApp
falco probe falcosidekick falco probe falcosidekick | |falcosidekick-ui
Pod Pod _Pod Pod Pod Pod Pod

' namespace "myApp"

I Container Runtime (containerd) | ‘ Container Runtime (containerd) ‘

I Scheduler ‘ | Controller Manager | | Kubelet ‘ ‘ Kubelet ‘
i T T3 K3S f A 3 K3s

| Kine H AP Server ETCD H kube Proxy I“l CM Flannal ‘ f—{ Tunnel Proxy |<—| kube Proxy H CNI Flannel ‘

Supervisor ¥

h Q:ico: VM Immutable Operating System 4
olmﬂfﬂs VM Immutable Operating System £ Examples: Flatcar Linux Container, falco driver (eBPF
Examples: Flatcar Linux Container, falco driver (eBPF Fedora CoreOS, openSUSE Micro Leap or Kernel Module)

Fedora CoreOS, openSUSE Micro Leap or Kernel Module)

k3s Agent Node #1
Multi-Access Edge Cloud

Description: A Virtual Machine, k3s Agent Node, also called Compute/Worker Node

X Database MyApp
falco probe

Pod Pod Pod

O Ny T

| Container Runtimgg@ontainerd) |

| Kubelet |

P 3 K3S
‘M Tunnel Proxy O, e Kube Proxy fed cNIFamme]
° CoReos VM Immutable Operating System £
Examples: Flatcar Linux Container, falco driver (eBPF
Fedora Core0S, openSUSE Micro Leap or Kernel Module)

Figure 28: A 3 Nodes k3s cluster - 1 k3s control plane (k3s"Servier)#? k3s compute nodes (k3s agent). Each Kubernetes node
need§ its own logal kernel monitoring probe.

4.5 Interaction with Sther\NEMO components

4.5.1 Identity\Managément and Access Control

Keycloak” efficiently ménages tokens, allowing for identities and secure data transmission between
components. The interfaces of Keycloak are utilizing tokens, such as JSON Web Tokens (JWT), and
serve as a bridge, conveying user authentication and authorization information throughout the system.
Keycloak's token management ensures that data remains protected during transit, preserving the integrity
of the application.

The NEMO Access Control component aims to protect RESTful APIs of NEMO components and
plugins from unauthorized access, following Zero Trust approach. To this aim, NAC interacts with meta-
OS hosted applications and services, other NEMO components and plugins, as well as with the Identity
Management module, based on Keycloak. In more detail, meta-OS users, external -meta-OS hosted-
applications and services or even NEMO components and plugins consume the NAC API in order to
eventually access some NEMO service protected by NAC. On the other hand, the NAC API interacts
also with the NEMO components and plugins providing the requesting services, in order to forward the
requests to them, in case the requesting party is granted access. Moreover, NAC interacts with the
Keycloak Identity Management in order to apply AAA services for each request made to the NAC APL

Document name: D3.1 Intfroducing NEMO Kernel Page: 55 of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

4.5.2 NEMO Intercommunication Security

Regarding the interaction of the message broker with the rest of the NEMO components it mainly
consists of

1. The input to the module from the other modules will be the metadata consisting of identity data
and/or an encrypted key, the destination of the message and the actual message to be transmitted

2. The output of the module to the other modules, will be the metadata consisting of identity data, the
source of the message and the actual message that has been received

Moreover, each instance of the message broker will be interconnected with one or more other instances
of the same module (i.e., depending on whether there is a 1-to-1 or 1-to-many topology) to which it will
send the encrypted data so as to be properly decrypted.

4.5.3 NEMO CNAPPS

CNAPPs features, and especially the kernel cyber monitoring feature, can interact with other NEMO
components. Indeed, kernel cyber monitoring probes such as Falco can send kernel monitoring logs and
events to other NEMO components. For example, in case of using Falco, there is a component called
Falco Sidekick®* which can send monitoring logs and event to other components®, including
Prometheus, Kafka and rabbitMQ?°. Figure 30 illustrates as an example how to gather kernel monitoring
logs and events to display them to a human operator on a Grafana Dashboard. Figure 29 shows the
Grafana dashboard on the right with various kernel events triggered by a demo script and gathgred by
the Falco monitoring probe.

Figure 30 is an example of what could be integrated in NEMO: The kernel monitofing\events detected
by probes such as Falco can be sent to other services, like Prometheus_(Figute 29), Graphana or
messages brokers like RabbitMQ. This allows to gather monitoring kernel events frem/multiple nodes
at one place. Other NEMO services could then leverage those events, to\trigget,various responses.

Lous CAILLIOT - ThereSIS
THALES ©, 2022

Figure 29: On the left: a demo script that performs various improper Kubernetes use and attacks to generate events that the
kernel monitoring probe will gather. On the right, a Grafana dashboard that shows the kernel events monitored by the Falco
probe.

54
55
56

Document name: D3.1 Intfroducing NEMO Kernel Page: 56 of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

MEC

Compute Node

\//‘

P
<

Falco \
Falco |
exporter |

cyber
monitgrs | probe) {

Cloud native orchestration |

Container runtime | | Operation Center
Read-Only Monitoring node
Operating System Sl Kesat | !
! o ~ Operator
: scrapes r\
| | ™
! - gpr'ometheus
i 1 l Grafana
Compute Node ! i A . J
P o lee |]
R}
b
Falco

Falco |
exporter|
monitgrs | probe L

Cloud native orchestration |

Container runtime |

Read-Only

Operating System Linux Kernel

Figure 30: Kernel monitoring probes (ex: Falco) expott ewentsidetected to Prometheus.

4.6 Conclusion, Roadmap &©utlogk

4.6.1 Roadmap for idenfityManagement and Access control

The current versionefthe Access Control module of NEMO protects HTTP endpoints, applying auth2.0
authentication and authonization services based on Keycloak as the OpenlD Connect Provider. In the
future versionswof this,cemponent, additional plugins will be developed and integrated, on the basis of
the design.presented in section 4.4.1.2. Moreover, additional plugins may be considered, as a result of
the security requirements’ analysis of both NEMO services/plugins and Living Lab specific components
as well as of new applications and services which may be integrated in NEMO through the Open Call
projects.

4.6.2 Roadmap for Intercommunication Management

The NEMO intercommunication management module has been set up and tested as a standalone
component within the Ist year of the project. For the next phases of the project, it will be tightly
incorporated within NEMO. In order to achieve an efficient integration with the rest of the NEMO
components several discrete, yet interconnected steps will be followed : a) the detailed security
requirements for networking and intercommunication from each use-case/pilot will be analysed so as to
as the implemented NEMO message broker will meet all of them b) the interfaces with all the NEMO
sub-components will further be analysed so as to be optimized c¢) the overall message broker processes
will be optimized for low-power and high levels of security.

Document name: D3.1 Intfroducing NEMO Kernel Page: 57 of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

4.6.3 Roadmap for CNAPPS

The NEMO project will benefit from Thales knowledge and involvement in the CNAPP market and
from Thales links with the cloud-native Security industry.

The key challenge within NEMO is to use CNAPPs features such as kernel cyber monitoring in an edge
IoT cloud continuum context. Indeed on low powered and resource constrained devices, every resource
count, and cybersecurity features such as kernel cyber monitoring will add an overhead on the platform.
It will be interesting to measure performances and resource consumption by cyber features on the
NEMO testbed, especially since NEMO plan to leverage energy monitoring tools like Kepler or
Scaphandre.

4.6.4 Conclusions

The 1st proof-of-concept for the cybersecurity and identity management sub-system of NEMO is already
operational and it consists of the Identity Management and Access Control sub-system, the network
management sub-systems and a CNAPPs implementation. The functionality of the first two sub-systems
is described in the DoA and it satisfies a number of the requirements as stated in D1.1 and D1.2.
Moreover, in order to provide higher levels of security and satisfy in an even more holistic manner the
security requirements, stated in D1.1 the NEMO partners have decided to implement an advanced
CNAPPS sub-system. An initial version of all three modules has been developed and functionally
verified. In the next period the modules will be integrated, and their functionalities extended based on
any limitations identified when the integrated system is evaluated and/or on the feedback réceived, by:
the Living Labs when utilizing it in their applications.

Document name: D3.1 Intfroducing NEMO Kernel Page: 58 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

i NEMO

5 NEMO meta-Orchestrator

The NEMO meta-Orchestrator is driven by the need for efficient decentralization in the IoT to Edge to
Cloud Continuum. It simplifies the complexity of distributed computing, making it more manageable.
Intelligence guides its decision-making, optimizing workflows for efficiency. Resource efficiency is a
priority, especially in resource-constrained edge environments. Adaptability ensures scalability and
reliability in a dynamic landscape. Interoperability is key, enabling seamless integration with diverse
components and systems. Overall, the meta-Orchestrator addresses fundamental challenges and
opportunities in this complex ecosystem, ensuring efficient workflow distribution and management.

5.1 Overview

In the intricate world of IoT to Edge to Cloud Continuum computing, the NEMO platform introduces a
central orchestrator known as the meta-Orchestrator. This chapter provides a comprehensive exploration
of the meta-Orchestrator's design, capabilities, and its pivotal role within the NEMO ecosystem.

The meta-Orchestrator stands as a testament to the innovative spirit of NEMO, embodying a vision of
decentralized and efficient computing workflows across diverse domains. As computing environmerits
become increasingly distributed and heterogeneous, the need for an orchestrator that can seamlessly.
navigate this complexity becomes paramount. The meta-Orchestrator is the answer tosthis challenge,
offering a holistic approach to orchestration that considers the intricacies of the IoT, Edgeyand (Cloud
domains.

This chapter unfolds the layers of the meta-Orchestrator, beginning=with an overview that introduces its
core purpose and place within the technology landscape. Weythen delve into the state-of-the-art
principles that underpin its design, emphasizing intelligenceyadaptability, and interoperability. The
meta-Orchestrator within NEMO platform is explor€d, highlighting how this orchestrator empowers the
meta-OS to thrive amidst the evolving dynami€s of modern computing.

With each section, a deeper understafniding of the meta-Orchestrator's significance and functionality will
emerge, paving the way for_an in-depth exploration of its capabilities and contributions to NEMO's
mission.

5.1.1 State-ofithe-art

In the ‘fastsevelving landscape of distributed computing, remaining at the forefront of technological
advancements Is paramount to meet the ever-growing demands of modern digital ecosystems. The
NEMO meéta-Orchestrator proudly embraces state-of-the-art principles and trends, harnessing cutting-
edge capabilities to tackle the intricate challenges associated with orchestrating workflows across the
vast expanse of the IoT to Edge to Cloud Continuum.

This section aims to provide a clear and summarized overview of the most current advancements in line
with the NEMO project's objectives and technology plans. Specifically, it describes a technical approach
to implementing the NEMO meta-Orchestrator, considering the behaviours of existing and upcoming
projects within the European Union (EU).

Based on previous project meetings, we have identified three main areas: EU projects, initiatives, and
communities. Figure 31 displays the key topics identified in the current state of the field, with examples

Document name: D3.1 Intfroducing NEMO Kernel Page: 59 of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

&3¢ NEMO

for each. Right now, other European projects (e.g., PHYSICS®’, CODECO?®, ICOS*) also involve the
idea of virtualization and clustering for cloud computing, but those are work in progress.

EU Projects Initiatives Communities

s N CILFEDGE
CLASS

—I Open Infrastructure
/‘ FOUNDATION

il g SCIENCE CLOUD _J Nebula
\=BDV & RedHat

| |
| |
| |
| [PHYSICS P Open |
I |
| |
| |

_3 EDROPEAN OPEN I |

@
=
N
&

ECLIPSE

Il \PCE|

e — — — — — — —

Figure 31: State-of-the-art: EU Projects, Initiatives and Communities

Between the enabling technologies, we have also identified the next ones: Open Cluster Management®
(OCM), OpenShift®!, Containerd®?, Apache Airflow®*, Liqo® and Helm® and for each of this enablen
technologies we pinpointed different functional aspects that match with some aspects in NEMO
ecosystem.

Open Cluster Management (OCM)

Multi-Cluster Management: OCM focuses on managing multiple Kubetnetes clusters, which match
seamless with NEMO’s objective of managing multicloud ¢lustets-dnd eénsuring continuous operation
across various technological environments.

Community-Driven Approach: The community*driven nature of OCM steers NEMO to put in place a
collaborative environment, especially considering its,opeh-source orientation.

Adaptation of Multi-Cluster Envifonments: ‘Implementing OCM’s strategies for managing and
configuring target clusters_is a key ingredient in keeping efficient workload distribution and
management in NEMO’s multicleud clusters.

Enhanced User Experience: Leveraging OCM’s user-friendly approach to sped up the user involvement
as such as administrators and developers, ensuring ease of use and management.

RedHat,OpenShift

LifeCycle Management: OpenShift automates installation, upgrades, and lifecycle management, which
can be utilized by NEMO to assess innovation throughout and post-project.

Security: With its enterprise-grade security, OpenShift can guide NEMO in ensuring cybersecurity and
trust through mechanisms like Mutual TLS and Digital Identity Attestation.

57
58
59
60
61
62
63
64
65

Document name: D3.1 Intfroducing NEMO Kernel Page: 60 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

i NEMO

Automated Lifecycle Management: Integrating automated management of applications and services is
a best practice for NEMO to reduce manual intervention.

Security Protocols: Adopting and be inspired by OpenShift’s security protocols will ensure NEMO’s
operations are secure and trusted.

Containerd

Container Runtime: Containerd’s functionalities in executing containers and managing images can
support the NEMO’s on-device Cybersecure Federated Deep Reinforcement Learning.

Embeddability and Maintenance: Containerd is embeddable and easy to maintain so it can push NEMO’s
development of a flexible and adaptable meta-Operating System.

Efficient Container Management: Utilizing Containerd’s minimal and efficient container runtime
functionalities to improve NEMO’s container management.

Maintenance Strategies: Adopting Containerd’s maintenance strategies to ensure NEMO’s meta-
Operating System remains sustainable and easy to manage.

Apache Airflow

Workflow Management: Apache Airflow’s capabilities in developing, scheduling, and monitoring
workflows can inspire NEMO’s multi-technology Secure Execution Environment.

Extensibility: Its high extensibility and parameterization using Python can be beneficial fort NEMQ’s
Plugin and Apps Lifecycle Management.

Dynamic Workflow Generation: Implementing Apache Airflow’s dynamic workflow is ¢rucial to keep
NEMO’s Service Level Objectives

Parameterization Strategies: Utilizing Apache Airflow’s parametetization strategies assure NEMO’s
tools and systems are adaptable and can be tailored to various, usescases and environments.

Liqo

Dynamic Multi-Cluster Management: NEMQ’s.objectiye to create a multi-technology meta-OS that
interfaces with various systems can b€ alignediwith Liqo’s ability to dynamically manage multicluster
topologies.

Liqo workload: Implement Lige’s'workload offloading and resource-sharing mechanisms to optimize

resource utilizationsacross \theycontinuum, ensuring efficient operation even in resource-constrained
environments.

Helm

Simplified Deployment and Management: Be inspired by Helm charts, NEMO can define, install, and
upgrade complex Kubernetes applications, aligning with its objective to interface and leverage existing
systems and technologies.

Enhanced Scalability and Adaptability: Helm charts approach will allow NEMO to define, install, and
upgrade applications, ensuring that the system can adapt to new technologies and concepts introduced
during and after the project lifecycle.

5.1.2 Relationship with NEMO

The NEMO meta-Orchestrator plays a pivotal role in realizing the grand vision of the NEMO platform.
Positioned as a fundamental component, it serves as the meta-control plane, strategically placed atop
existing container orchestration clusters such as Kubernetes (K8s). In this role, the meta-Orchestrator
acts as the orchestrator of orchestrators, harmonizing the diverse resources and computing elements
spread across the IoT to Edge to Cloud Continuum.

Document name: D3.1 Intfroducing NEMO Kernel Page: 61 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

At its core, the meta-Orchestrator embodies the core principles of advanced intelligence, adaptability,
and interoperability. These principles align seamlessly with NEMO's overarching objective: to provide
efficient, user-centric, and secure computing solutions across the entire continuum. By doing so, the
meta-Orchestrator serves as the linchpin that ensures the NEMO platform functions cohesively and
effectively in the dynamic and multifaceted digital landscape.

In the context of NEMO, the meta-Orchestrator acts as the intelligent conductor of the symphony of
services and resources, orchestrating them in a manner that optimizes performance, minimizes
disruptions, and respects user-defined requirements. Its adaptability ensures that NEMO remains
responsive to changing conditions and demands, facilitating scalability and reliability across the
continuum,

Moreover, the meta-Orchestrator fosters interoperability, allowing seamless integration with a wide
range of components, from micro-schedulers to local orchestrators and external tools and frameworks.
This interoperability is crucial for NEMO to operate harmoniously, even in complex and heterogeneous
computing ecosystems.

5.2 Background

In this section, we will explore the technical foundations that form the backbone of the NEMQuneta-
Orchestrator. Gaining insights into the crucial technological concepts and enablers is fundamental*for
grasping the significance and capabilities of this pioneering component.

Containerization

Containerization is the process of packaging the code of an applicatioh along with all its files and
libraries. It facilitates the deployment of the application omvany ‘infrastructure by just uploading the
packaged source code in the target machine and exceuting it|

Containerized applications are then deployed_and, executed as containers by a container runtime
software. There are several container'funtimes such as Docker®, LXD®, Podman®, Kubernetes, etc.
Some of these runtimes are lowzlevel (€.g., containerd, LXD) while others operate on a higher level
(e.g., K8s) providing more advanced eperations such as execution of workflows, support for multiple
nodes etc. Overall, each, container'runtime has its own advantages and disadvantages which are out of
the scope of thisydeliverable\NEMO uses K8s for its use cases since it is the most widely used.

Contaifiers haye been used as an alternative and more lightweight approach to virtual machines (VMs)
for 1solating werkloads running on a single bare-metal host. In contrast to VMs containers do not
virtualize ‘the whole hardware but use isolation mechanisms provided by the operating system, such as
cgroups and seccomp, to allow the applications to run safely on the physical hardware. The basic
advantage of containers is fast spawn and execution times since they do not need to boot a complete
virtualized operating system and their main disadvantage is that they are less secure since they do not
typically exploit the virtualization extensions that the hardware provides which adds an additional
security layer. Figure 32 showcases the architectural difference between containers and VMs.

Microservices Architecture
Microservices Architecture is an architectural style which splits an application in a collection of small

components, named microservices. Each microservice is designed, implemented, and can be deployed
independently than others, the only dependence may be that a microservice requires its input to be the

66
67
68

Document name: D3.1 Intfroducing NEMO Kernel Page: 62 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

&8s NEMO

output of another microservice. The following figure shows the difference of a monolithic application

compared to an application that follows the microservice architecture.

App 1 App 2 App 3

Bins/Lib Bins/Lib Bins/Lib

App 1

App 2
Bins/Lib Bins/Lib Bins/Lib

App 3

Guest Guest

Container Engine
Operating System

Infrastructure Infrastructure

Machine Virtualization Containers

Figure 32: High level view of the architecture of VMs and containers (taken from [29])

Monolithic architecture

System operations

E operationAl)
! owwmﬁﬂ

J

Application

microservice independently of the rest ones.

Distributed Computing

Mlcmqer_\noa archrtecture

In Distributed Computing multiple machines are interconnected and work together to solve a common
problem. When it comes to the IoT to Edge to Cloud continuum the whole infrastructure is by-design
distributed since there is a vast amount of [oT devices and Edge and Cloud servers that need to be
coordinated. Some of the major challenges in this scenario are security, consistency of data across the
whole system, network latency between different nodes, resource allocation and particularly migration
between Edge and Cloud nodes. Figure 34 depicts the high-level view of the different components of

the IoT to Edge to Cloud continuum.

Orchestration

Document name: D3.1 Intfroducing NEMO Kernel Page: 63 of 93

Reference: D3.1 |[Dissemination: [PU [Version: [1.0 [Status: [Final

Cloud orchestration refers to the process of automating and managing the deployment, configuration,
coordination, and management of various cloud resources and services. It involves the efficient
coordination and integration of multiple cloud-based systems, applications, and infrastructure
components to deliver a cohesive and optimized cloud computing environment.

Edge Computing

DATACENTER

EDGE

R

Figure 34: High-level view of [oT-to-Edge-to-Cloud Continuum (taken from [3 L})

Cloud orchestration enables organizations to streamline and automate complex workflows“and tasks
involved in provisioning, scaling, monitoring, and managing cloud resources. It proyides a centralized
control and management layer that abstracts the underlying complexities ofithe“eloud infrastructure,
allowing users to define and manage their resources using high-levelipolicies and templates.

Cloud orchestration provides several benefits, including inctéased @gility, scalability, and efficiency in
managing cloud environments. It simplifies the jmanagement“ef*complex infrastructure, enhances
resource utilization, and accelerates the deployment of applications and services. By automating
repetitive tasks and workflows, organizations ‘¢ansfocus more on innovation and delivering value to their
customers.

Cloud-Native Principles

Cloud Native Principles ate essential guidelines for developing and managing containerized applications
in cloud:-native_envitonments. These principles address the unique challenges and opportunities
presented by eloudicomputing, enabling organizations to harness the full potential of containerization
and cloud technologies. They offer a framework for creating highly performant, reliable, and scalable
applications in this dynamic landscape.

e The Single Concern Principle emphasizes that each container should have a singular focus,
simplifying management and reducing unexpected issues. Containers often align naturally with
this principle by managing a single process, which corresponds to a single concern.

e The High Observability Principle stresses that containers should provide APIs for runtime
observation, including health checks, logging, tracing, and metrics. Integrating with tools like
OpenTracing® and Prometheus’ enhances automation and system resilience.

e Lifecycle Conformance means containers receive platform events to manage their lifecycle.
Detecting termination signals (SIGTERM) is crucial for clean shutdowns, while other events
like PostStart and PreStop may be significant.

69
70

Document name: D3.1 Intfroducing NEMO Kernel Page: 64 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

The Image Immutability Principle ensures that containerized applications remain immutable
between different environments, enabling practices like automatic rollback and roll forward
during updates.

The Process Disposability Principle highlights that containers should be ephemeral, ready for
replacement at any time. Smaller containers improve system reliability and startup times.

The Self-Containment Principle dictates that containers should contain everything they need
at build time, except for environment-specific configurations.

Lastly, the Runtime Confinement Principle focuses on declaring resource requirements, such
as CPU, memory, networking, and disk utilization, to prevent premature termination or
migration during resource constraints.

Edge Computing

Multi-Access Edge Computing (MEC) is a technology framework that brings cloud computing
capabilities and services closer to the edge of the network, typically at or near the cellular base stations
or access points. It is designed to reduce latency and improve the efficiency of data processing for
applications and services in mobile and wireless networks. Here is a brief description of MEC:

Edge Computing: MEC leverages the concept of edge computing, where data processing,
storage, and application execution occur closer to the data source or endpoint devices, rather
than relying solely on centralized cloud data centers. This minimizes the round-trip data,travel
time, reducing latency and improving the overall user experience.

Proximity to End-Users: MEC deploys computing resources at the "edge" ofithenetwork, near
where end-users and devices are connected. This proximity allows for fastér responsétimes and
better support for real-time and interactive applications, such asfaugmented reality, virtual
reality, and autonomous vehicles.

Mobile and Wireless Networks: MEC is particularly relévant indmobile and wireless networks,
like 4G and 5G. By integrating computing resources ‘at thegase stations or access points, MEC
enables network operators to provide low;latency services and optimize network traffic for
various applications.

Use Cases: MEC can be used in a wide range/of applications, including [oT , smart cities,
industrial automation, gamipg, video streaming, and healthcare. For example, it can enhance
augmented reality applications” by reducing latency, making them more responsive and
immersive.

Network Slicing: MEC can work in conjunction with network slicing, a 5G technology that
allows network operators to create virtualized, customized network segments for specific use
casesNetwork slicing, when combined with MEC, enables efficient resource allocation and
tailored nétwork services for diverse applications.

Developer-Friendly: MEC provides APIs and developer tools that allow application developers
to leverage edge resources easily. This encourages the creation of innovative, low-latency
applications that can take full advantage of the localized computing infrastructure.

Multi-Access Edge Computing is a technology framework that extends cloud computing capabilities to
the edge of mobile and wireless networks, enabling lower latency, improved performance, and enhanced
support for a wide range of real-time and interactive applications. It plays a crucial role in the evolution
of 5G networks and the proliferation of edge computing solutions.

[
NR 5G
|
/

\

=

5G
Figure 35: Multi-Access Edge Computing architecture.

Document name: D3.1 Intfroducing NEMO Kernel Page: 65 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

5.3 Architecture & Approach

This chapter delves into the architecture and approach adopted by the NEMO meta-Orchestrator,
providing insights into the high-level design, the role of each component, and the relationships that
define the platform's functionality.

5.3.1 NEMO meta-Architecture Framework: Viewpoints

The NEMO meta-architecture introduces a comprehensive "meta-Architecture Framework'" (MAF)
tailored to the meta-OS environment. The framework encompasses various elements, each catering to
distinct concerns and objectives, further described on D1.2. The aim of this section is to extend the
understanding of the Viewpoints, defined as a collection of principles guiding the creation of an
Architecture View, intending to address a set of Concerns.

NEMO has outlined several critical Viewpoints for the meta-OS meta-architecture, including
"Network", "User", "Logical", "Operational", "Functional", "Process", "Development", and "Physical".
The following subsections cover the Development and Process Viewpoints.

5.3.1.1 Development Viewpoint

The Development Viewpoint serves to discern the implementation intricacies of the meta-Orchestrator,
an integral component delivering meta-OS capabilities within the NEMO frameworks, It§ primary
objectives encompass the identification of detailed implementation procedures for the meta-Orchestrator
components and the establishment of measurable targets to ensure efficient capabilities' ¥erification.

Table 3 (from D1.2) is describe the needs to implement the Development”™Viewpoint.

Development Viewpoint

This viewpoint alms,to

e jdentify the implementation details for components delivering

metd-OS capabilities

o \ 1dentify measurable targets for capabilities’ verification
Functionality
Security
Interoperability
Performance
Implementation
Setting Capability Requirements
Class diagram (components)
Structured text (metrics)

Description

Concerns addressed,

Usage

Representation

Table 3: The Development Viewpoint

As showcase in Figure 36, this Viewpoint is composed by five main subcomponents that consolidate
the whole meta-Orchestrator.

e Orchestration Engine: The central brain of the system, it coordinates and manages complex
computing resources, making intelligent decisions to optimize workflows. It ensures seamless
integration and simplification of distributed computing, emphasizing efficiency and security.

e Analytics Engine: Monitors and analyses performance metrics, identifying bottlenecks and
inefficiencies to maintain peak performance. It provides insightful reports and visualizations,
facilitating data-driven decision-making and ensuring transparent and efficient operations.

Document name: D3.1 Intfroducing NEMO Kernel Page: 66 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

meta-Orchestrator
Analytics Engine

Policies, metrics,
resources
analytics

Workload
placement,
migration

Resource,
allocation,
scalling

Decision Engine Orchestration Engine Resources Manager Engine

Inputs/Outputs
external APls

API / Other Components

Figure 36: Development Viewpoint of the meta-Orchestrator

e Resource Manager: Manages the lifecycle of resourcessbyyoverseeing provisioning, scaling,
monitoring, and deprovisioning services. It maintainsy a/'comprehensive view of system
capabilities, optimizing resource usage and allocation te,meet dynamic demands effectively.

e Decision Engine: Acts as the centraldntelligence unit, enforcing policies, optimizing costs, and
allocating workloads based on-worklead chardcteristics and performance metrics. It ensures
effective orchestration whil¢ minimizings6perational costs.

e Integration Compenent:~Acts as a mediator for seamless communication between various
modules, ptoviding\aniabstracted view of the system's architecture. Its intent-based approach
enables effective communication and interoperability between different components, promoting
@ securérand furictional communication framework within the meta-Orchestrator.

53.182 o Process Viewpoint

The Process Viewpoint revolves around identifying representative use cases that effectively demonstrate
the collective capabilities of the meta-OS, with a specific focus on the meta-Orchestrator. It delves into
the detailed analysis of the components responsible for delivering these use cases, emphasizing the
intricate interactions and data flows between them.

Table 4 (from D1.2) is describe the needs to implement the Development Viewpoint.

Process Viewpoint

This viewpoint aims to

o Identify representative use cases delivering the combined capabilities of

Description the meta-OS

e Identify the components delivering those use cases

e Identify the interactions among these components for delivering the use
cases

Document name: D3.1 Intfroducing NEMO Kernel Page: 67 of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

e Identify data flows within these interactions
Functionality
Concerns Securit
addressed Y
Interoperability
U Highlight potential integration requirements
sage
g Implement/enable interactions among meta-OS components
Representation Sequence diagram

Table 4: The Process Viewpoint

The sequence diagram for the meta-Orchestrator depicts the orchestrated workflow and data flow within
the NEMO ecosystem. It highlights the intricate interactions among various components, related with
the described ones in the Development Viewpoint. The Figure 37 illustrates the approach of such flows
within the meta-Orchestrator.

Process View meta-Orchestrator

PA-LCM CF-DRL PPEF Integration Component

ish{"Orchgstratioh Queue"

Meta-Orchestrator

| Decision Engine | Resources Manager | Analytics Engine || Orchestration Engingé

Y

|
|
|

lish {"Decisioh Queue}
T

|
| Consume

T
|
|
|
|
|
|
|
|
|
|
| |
Pa |
Conspm |
| |
| |
|
| |
|
| |
| |
|

]
IS

A

|
Piblish {{Resources Queue'}
|

h 4

Publish {"Analytics Qugue"}

A4

Congume:

! /
PA-LCM CF-DRL PPEF Integgation Ca@gponent P | Decision Engine
A ¢

Figuse 3{: PioCess Viewpoint of the meta-Orchestrator

| Resources Manager | Analytics Engine || Orchestration Engine

The sequence diagram depictssthe operational framework of the meta-Orchestrator (MO) in
collaboration with\various‘essential components. These include the Cybersecure Federated Deep
Reinforcement Learning (CFDRL), the Cybersecure Microservices Digital Twin (CMDT), the Intent-
Based Migration*Controller (IBMC), the meta-Network Cluster Controller (mNCC), and the Plugin &
Apps)Lifecycle\Manager (PA-LCM) within the meta-OS environment.

The\diagram elucidates the orchestrated workflow within the meta-Orchestrator, emphasizing the
seamless communication and data flow among the crucial components. It highlights the vital role played
by the Integration Component in facilitating efficient communication and coordination among the
diverse modules. The Decision Engine is shown to make informed decisions based on cognitive
reasoning and data-driven insights provided by the Analytics Engine. Additionally, the Resource
Manager optimizes resource allocation and management, ensuring the efficient operation of the entire
system.

Overall, the sequence diagram demonstrates the MO's ability to manage complex tasks within the meta-
0OS, emphasizing the secure and efficient orchestration of workflows and resources.

5.3.2 Approach of This Architecture

The NEMO meta-Orchestrator architecture represents a sophisticated and intelligent open-source
software system with a primary objective of facilitating the decentralization and distribution of
computing workflows across the [oT to Edge to Cloud Continuum. Serving as a central orchestrator, it

Document name: D3.1 Intfroducing NEMO Kernel Page: 68 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

assumes responsibility for the coordination and execution of intricate distributed systems, addressing
the challenges stemming from their increasing complexity and diversity.

This meta-Orchestrator adopts a comprehensive approach to orchestration by delving into various facets
of distributed computing workflows. It conducts an in-depth analysis of the structure and application
programming interfaces (APIs) of different micro-schedulers and local orchestrators. This analytical
prowess enables the meta-Orchestrator to seamlessly integrate and coordinate with diverse components
within the distributed system architecture.

Intelligence is at the heart of the meta-Orchestrator's decision-making process. It considers crucial
parameters like migration time, downtime, and overhead time when orchestrating computing workflows.
This ensures that workflows are orchestrated in a manner that minimizes disruption and maximizes
efficiency.

Beyond these fundamental parameters, the meta-Orchestrator also evaluates a wide array of functional
and non-functional requirements. Functional parameters encompass network and resource availability
through Intents, crucial for successful workflow execution. Non-functional requirements, on the other
hand, encompass policies, energy efficiency, CO2 footprint, and financial operations (FinOps)
considerations such as networking and hosting costs. By incorporating these non-functional
requirements, the meta-Orchestrator enables workflow optimization based on multiple criteria,
including environmental impact and cost-effectiveness.

5.4 Description of Components

The NEMO platform comprises several key components, each contributing to.the efficient orchestration
of computing workflows within the IoT to Edge to Cloud Continuum, These cemponents include
Orchestration Engine, Analytics Engine, Resource Manager, Decision Engine, and Integration
Component.

5.4.1 Orchestration Engine

Description

The Orchestration Engine is the heatt of the NEMO meta-Orchestrator, serving as its central brain and
control center. This compoenentsplays a=eritical role in coordinating and managing the complex flow of
computing resourcesS, workloads, and services. It is responsible for smoothly orchestrating complex
workflows. It takes on the huge task of simplifying the inherent complexities of distributed computing,
enabling NEMOtoywork efficiently in this intricate ecosystem.

By,actingvasS the central control hub within the NEMO meta-Orchestrator, the Orchestration Engine
plays a crucial role in making smart decisions, optimizing resource usage, and bringing together different
elements within the NEMO ecosystem. Its importance goes beyond just orchestration; it embodies the
essence of NEMO's mission in navigating the complexities of the IoT to Edge to Cloud Continuum.

Example of Technology Enablers

e Open Cluster Management (OCM)’' is a robust technology enabler that serves as a
comprehensive solution for managing clusters of containers and resources across the [oT to
Edge to Cloud Continuum. It provides advanced features like cluster lifecycle management,
governance, policy enforcement, and multicluster visibility. OCM is chosen for its ability to
handle the complexity of orchestration across distributed environments seamlessly. It allows the

71

Document name: D3.1 Intfroducing NEMO Kernel Page: 69 of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

Orchestration Engine to efficiently manage and allocate resources while maintaining a high
level of control and visibility across clusters.

Rafay’ is a cloud-native platform that specializes in simplifying the deployment, operations,
and lifecycle management of containerized applications across various environments. It offers
features such as automated deployment pipelines, scaling, and robust security mechanisms.
Rafay is selected as a technology candidate for its ability to streamline application deployment
and management, reducing operational overhead for the Orchestration Engine. This ensures that
NEMO's workflows are orchestrated efficiently and with minimal manual intervention.
Rancher” is a widely adopted open-source platform for managing Kubernetes clusters. It
provides a user-friendly interface for cluster management, monitoring, and security. The
Orchestration Engine leverages Rancher to interact with Kubernetes clusters, simplifying the
management of containerized workloads. Rancher's intuitive dashboard and management
capabilities enhance the overall user experience, making it easier to deploy and manage
applications within NEMO.

Karmada™ is an emerging technology enabler designed to simplify the orchestration of
workloads and applications across multiple Kubernetes clusters. It offers capabilities for
workload placement, scaling, and resource optimization. Karmada is chosen to enhance the
Orchestration Engine's ability to optimize resource allocation and workload distribution across
clusters in the IoT to Edge to Cloud Continuum. Its innovative approach aligns‘with NEMO's
goal of efficient and adaptable orchestration.

Technology Chosen

The choice of Open Cluster Management (OCM) as the, primary ‘technology enabler for the
Orchestration Engine within the NEMO meta-Orch€strator is«driven by several compelling factors that
align perfectly with NEMO's overarching goals and requirements.

Robust Cluster Management: OCM is rendwned for its robust cluster management capabilities.
It provides a unified{platform,formanaging clusters of containers and resources across diverse
environmentsy=including the IoT, Edge, and Cloud Continuum. This aligns with NEMO's
mission of ‘Qrchestrating resources seamlessly across this complex landscape. OCM's cluster
management features are essential for coordinating the deployment and scaling of containerized
workloads, ensuring optimal resource utilization and availability.

Multi cluster Visibility: OCM offers comprehensive multicluster visibility, allowing the
Orchestration Engine to gain insights into the status and performance of clusters distributed
throughout the continuum. This visibility is invaluable for making informed decisions about
workload placement and resource allocation. It enhances NEMO's ability to optimize the
orchestration process, ensuring that computing workflows are executed efficiently while
adhering to specified policies.

Governance and Policy Enforcement: OCM provides robust governance and policy enforcement
mechanisms, which are crucial for maintaining control and compliance within the NEMO
ecosystem. The Orchestration Engine can define policies related to resource allocation, security,

7
73
74

Document name: D3.1 Intfroducing NEMO Kernel Page: 70 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

and scalability. OCM ensures that these policies are consistently enforced across clusters,
contributing to the secure and efficient operation of NEMO.

e Lifecycle Management: OCM streamlines cluster lifecycle management, covering provisioning,
scaling, monitoring, and deprovisioning. This aligns perfectly with NEMO's goal of
dynamically adjusting resource allocation based on changing conditions and requirements. The
Orchestration Engine leverages OCM to ensure that clusters are provisioned and scaled as
needed to support the orchestrated workflows.

e Multi cloud and Multi cluster Support: OCM's multicloud and multicluster support is a vital
asset for NEMO. It enables the Orchestration Engine to manage resources and workloads
seamlessly across different cloud providers and clusters. This flexibility is essential for
accommodating the diverse computing environments within the continuum, allowing NEMO to
operate effectively in various scenarios.

e Open Source and Extensibility: OCM is open source, offering a high level of flexibility and
extensibility. This aligns with NEMO's commitment to openness and adaptability. The
Orchestration Engine can leverage OCM's extensibility to customize and extend its capabilities
as needed to meet evolving requirements.

Model Interfaces

The Orchestration Engine interfaces with various internal components, including thé¢ Reseurce Manager,
Decision Engine, Analytics Engine, and Integration Component, to ensure efficient,orchestration.

Licensing

The Orchestration Engine is released under an open-seurce license, énsuring accessibility and flexibility
for users.

5.4.2 Analytics Engine

The Analytics Engine precesses_the “pesformance metrics of orchestrated workflows and computing
resources, supporting the identification of potential bottlenecks and inefficiencies to ensure optimal
operation. Through‘continuous oversight, it ensures that all orchestrated processes maintain peak
performance‘andwswiftly identifies any deviations or anomalies communicating them to the component
thattake«decisions Furthermore, it generates insightful reports and visualizations, offering a clear and
coneise view of the status, performance, and utilization of orchestrated resources and workflows. This
not ‘only ensures transparency in operations but also facilitates data-driven decision-making by
providing stakeholders and system components with crucial analytical outputs.

e InfluxDB”: An open-source time series databases that for storage and retrieval time series

e Graphite’: A complex monitoring tool for sophisticated hardware and complex cloud solutions
monitoring.

e Zabbix””: An open-source monitoring software tool able to extract data from networks and
servers from cloud-based services.

75
76
77

Document name: D3.1 Intfroducing NEMO Kernel Page: 71 0of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

Kibana’™:A tool for visualizing and analyzing data, particularly useful for inspecting logs,
tracking time-series data, and gaining operational insights.

Tableau™: A data visualization tool that is used for converting raw data in visual and images of
easy comprension.

RabbitMQ¥: An open-source message broker that is fine tuned for different messaging
protocols.

ActiveMQ?!: An open-source message broker written in Java that is also a message oriented
middleware.

MQTT?®2: A messaging protocol tailored for smaller devices and sensors. It is planned to cope
with environments with high-latency or unstable network connections.

Prometheus®’: An open-source monitoring and alerting toolkit that collect data from time series
database.

Kafka®*: A distributed data streaming platform that allows you to publish, subscribe, store and
process streams of data.

Grafana: An open-source platform for monitoring and observability, offering functionalities to
visualize, set alerts and interpret related metrics.

Technology Chosen

Prometheus as performance monitor and alerting tool kit, can be employed to continuously;
monitor the performance of the orchestrated workflows and computing resoutees as well as
It can collect metrics from configured targets at given intervals, evaluate fule expréessions, and
can trigger alerts if certain conditions are observed, ensuring that thefAnalytics Engine is always
informed about the system’s health and performance.

Grafana for reporting and visualization. It is a multisplatform open-source analytics and
interactive visualization web application that create comptehensive reports and visualizations
based on the data processed and analysed(by the Analytics Engine inner components. It can
visualize the data collected and précessed by Prometheus, providing a clear, concise, and
interactive for status of the weorkflows:

Kafka Bus as enabler of the\communication among the components

Model Interfaces

The Analyties*Engineiinterfaces include relation with the Resource Manager, Decision Engine, to ensure
efficient orchestration.

Licensing

The Analytics Engine is released under an open-source license, ensuring accessibility and flexibility for

users.

5.4.3 Resource Manager

Description

78
79
80
81
82
83
84

Document name: D3.1 Intfroducing NEMO Kernel Page: 72 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

The resource manager is a component that will be in charge of managing the lifecycle of resources. This
will include the steps of provisioning, scaling, monitoring, and deprovisioning the services. The main
goal is to have a complete and up-to-date view of the different capabilities the system has and how they
are being used, selecting the optimal way to use them and, if it is needed, also having a repository to
know if they are still needed and if not, being able to detect it and reduce or eliminate the resource
provisioning for that request.

This task will have two main blocks: the update of the resource view, that will be feed with data received
from the mNCC module; and the decision making, that will detect if the resources are being correctly
assigned and request for modification if not. This last block will be realized in collaboration with the
Orchestration engine, that will be the module on charge to take these decisions based on the information
provided from the Resource Manager module.

Examples of technology enablers

To accomplish its tasks, the Resource Manager leverages various cutting-edge technologies, including
but not limited to:

e Infrastructure as Code (IaC): Implementing [aC enables the Resource Manager to automate the
provisioning, configuration, and management of infrastructure resources, allowing for rapid and
consistent deployment of resources across the network.

e Containerization Technology: Leveraging containerization technology facilitates efficient
resource allocation and management, enabling the Resource Manager to handle tesoutces more
effectively within containerized environments, thus optimizing resource usage.

e Auto-Scaling Mechanisms: Implementing auto-scaling meChanisms allows the Resource
Manager to dynamically adjust resource allocation based onjcurrént démand, ensuring that the
system can efficiently scale resources up or down in‘response to workload fluctuations.

Technology Chosen

Once we already have the complete™design, we will study the best technologies to realize the
deployment, and therefore selectithe onesichosern.

Model Interfaces

Resource Manager module interfaces with various internal components, including the Orchestration
Enginedand the Intégration Component, to provide them network resources information.

Licensing

Resource Manager module is released under an open-source license, ensuring accessibility and
flexibility for users.

5.4.4 Decision Engine
Description

The Decision Engine acts as the central intelligence unit of the system, closely collaborating with the
Orchestration Engine to enforce policies, optimize costs, and efficiently allocate workloads. It processes
inputs from the Orchestration Engine, considering factors such as workload characteristics, resource
availability, and performance metrics, to make informed decisions. By leveraging sophisticated
algorithms, the Decision Engine ensures that computing workflows are orchestrated effectively while
minimizing operational costs.

Document name: D3.1 Intfroducing NEMO Kernel Page: 73 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

Examples of Technology Enablers

To fulfil its functions, the Decision Engine leverages various advanced technologies, including but not
limited to:

e Machine Learning Algorithms: These algorithms enable the Decision Engine to analyze
historical data, identify patterns, and make informed decisions based on predictive analysis. By
learning from past data, the Decision Engine can anticipate future trends and optimize resource
allocation accordingly.

e Rule-Based Systems: The implementation of rule-based systems empowers the Decision Engine
to enforce specific policies and guidelines. By setting predefined rules and regulations, the
system ensures that the orchestration processes adhere to the established protocols, promoting
consistency and adherence to best practices.

e (loud Computing Infrastructure: Leveraging cloud computing infrastructure provides the
Decision Engine with the necessary resources and scalability to handle varying workloads. By
utilizing cloud services, the Decision Engine can dynamically allocate resources based on
demand, ensuring efficient and cost-effective management of computing workflows.

e Application Programming Interfaces (APIs): Integration of APIs allows seamless
communication and data exchange between the Decision Engine and other components. By
facilitating efficient information transfer and instructions, APIs enable the Decision_ Engine to
coordinate with external systems and applications, streamlining the overall orchestration
process.

Technology Chosen

Once we already have the complete design, we will study ‘the best technologies to realize the
deployment, and therefore select the ones chosen.

Model Interfaces

Decision Engine module interfaces s¥ith the ‘other four main internal components, to provide them
intelligent capabilities.

Licensing

Decision Engine module is released under an open-source license, ensuring accessibility and flexibility
for userS.

545 Integration Component
Description

The Integration Component is a sub-module that will be in charge of acting as a broker in the
communications between the different modules and the meta-Orchestration module. The main goal for
this module is to realize an abstraction view to avoid the meta-Orchestrator’s inner components to have
a complete view of NEMO’s architecture and allows to realize these communications without needing
the rest of the modules to have a knowledge of the meta-Orchestrator’s inner architecture.

The Integration Component will be based as an Intent-Based component, that realizes a translation and
inter-modules communication tasks. This will work in both directions, abstracting inbound and

outbound communications.

Examples of technology enablers

Document name: D3.1 Intfroducing NEMO Kernel Page: 74 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

To design and deploy this module, it will be needed some integration technologies related with the
communications between modules, the inter-cluster communications, and the data modelling. Some
examples of potential technologies to use are:

e Kubernetes CRDs. The Custom Resources Definitions are Kubernetes’ extensions that allow
users to define and create their own custom resources with specific data structures and
behaviours that are not available in the default Kubernetes resources (e.g., Pods, Deployments,
Services, etc.). This is fundamental to the extensibility and customisation of Kubernetes to
specific use cases and applications.

e Yet Another Next Generation (YANG). YANG data models are a standard notation used to
describe data and operations in network devices and network management systems. They were
developed by the NETMOD (Network Configuration Protocol) working group of the IETF
(Internet Engineering Task Force) to standardise the representation of data and operations in
network management environments. These data models are designed to be readable by both
humans and machines and are used to describe the structure and semantics of data handled in
network systems. A YANG data model defines how data should be organised and structured,
what types of data can be stored and how it can be manipulated.

e Intent-Based Networking (IBN). IBN is an approach to computer networking that seeks to
simplify and automate network management by focusing on the business or high-leyel
intentions of users rather than the technical configuration, thus abstracting from impleméntation
details. Instead of configuring each network device individually, administrators specify their
goals and policies to a management system that translates those intentionswinto, appropriate
network configurations. Intent-Based Networking seeks to simplify, networki management,
improve operational efficiency, reduce human error, and enable networks te besmore agile and
adaptable to meet high-level defined requests.

Technology Chosen

Once we already have the complete designy we will study the best technologies to realize the
deployment, and therefore select the ones chosens

Model Interfaces

Integration Componentanodule interfaces with the other four main internal components, to provide them
an architectural abstraction of the outside. Also, it will communicate with other external modules from
NEMO’s system as the CMDT, PPEF, MOCA, CFDRL, mNCC and IBMC.

Licensing

Integration Component module is released under an open-source license, ensuring accessibility and
flexibility for users.

5.5 Interaction with other NEMO components

In the following, the interaction of the meta-Orchestrator with relevant other components is described.

5.5.1 Interacting with the Intent-Based Migration Controller (IBMC)

The meta-Orchestrator collaborates with the Intent-Based Migration Controller (IBMC) in both input
and output capacities. As an input, the IBMC communicates migration intents, specifying constraints
and requirements for transferring computing workflows across different domains. The meta-
Orchestrator uses this information to ensure smooth and continuous workflow migration during the
orchestration process. As an output, the meta-Orchestrator provides feedback and updates to the IBMC,
enabling the controller to monitor the status and progress of the workflow migration, and make necessary
adjustments as needed.

Document name: D3.1 Intfroducing NEMO Kernel Page: 75 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

5.5.2 Interacting with the meta-Network Cluster Controller (mNCC)

The Federated meta—Network Cluster Controller (mNCC) is an Al-driven controller designed to manage
and optimize the formation and operation of network clusters in a dynamic and self-healing manner,
focusing on fog loT deployments and utilizing advanced technologies like NOMA, network zones,
SDN, and Al for efficient management and guaranteed service levels. mNCC module and meta-
Orchestrator will collaborate to create optimal, self-healing hosting clusters, across different
administrative boundaries.

We propose an Intent-Based communication between these two modules, in order to provide a
abstraction layer to facilitate the integration and the possible adaptation of the internal interface to
potential modifications in the expected functionality. The interface should have two connections in the
mNCC: One output interface that comes from the Network Exposure sub-module (mNCC) into the
Integration component (and therefore to the Resource Manager), and the other one that comes from
Orchestration Engine into the Intent-Based System (mNCC) that indicates the infrastructure
modifications that must be applied. Even both interfaces are only to share information in just one
direction, both should be bidirectional to facilitate communications and state-feedback.

5.5.3 Interacting with the Cybersecure Microservices' Digital Twin (CMDT)

The collaboration with the Cybersecure Microservices' Digital Twin (CMDT) plays a vital role_in
ensuring the security and integrity of microservices within the distributed computing environment. By
receiving input from the CMDT regarding potential security risks and vulnerabilities associated ‘with:
various microservices, the meta-Orchestrator can proactively incorporate security measures into the
orchestration decisions. Furthermore, the meta-Orchestrator's output interactiohs with the CMDT
involve the implementation of security-related configurations and enforcemént measures, ensuring the
continuous and robust operation of microservices throughout the orchestration’precess.

5.5.4 Interacting with the Cybersecure Federated Degp Reinforcément Learning (CF-DRL)

The meta-Orchestrator's engagements with the Cybersecure Federated Deep Reinforcement Learning
(CF-DRL) component significantly enhance the $ecurity and risk management measures within the
orchestration environment. Leveraging the €F-DRL component's reinforcement learning models and
insights, the meta-Orchestrator efficiently incorporates advanced security strategies, effectively
mitigating risks and enforcing robust poli€y enforcement measures. Additionally, the meta-Orchestrator
provides comprehensive feédback to,the” CF-DRL component, ensuring a continual refinement of
security models and.strategies, thereby fostering an environment of continuous improvement and
heightened secusitywwithin the orchestration framework.

5.5.5 ¢Interacting with Monetization and Consensus-based Accountability (MOCA)

The collaboration with Monetization and Consensus-based Accountability (MOCA) introduces essential
funetionalities crucial for the financial and accountability aspects of the NEMO system. As an input,
MOCA provides valuable insights into monetization strategies and consensus-based accountability
mechanisms, allowing the meta-Orchestrator to incorporate these factors into the orchestration
decisions. This integration ensures efficient resource allocation and optimization, aligned with the
financial goals and consensus-based principles of the NEMO system. Moreover, as an output, the meta-
Orchestrator provides instructions and updates to MOCA, enabling continuous tracking and monitoring
of financial transactions and accountability measures, thereby fostering transparency and accountability
within the NEMO ecosystem.

5.5.6 Interacting with Privacy and Policy Enforcement Framework (PPEF)

The Privacy and Policy Enforcement Framework (PPEF) acts as a critical mediator between the
comprehensive analytics engine used by the meta-Orchestrator and the NEMO infrastructure clusters.
Playing both an input and output role, the PPEF collects, processes, and presents essential metrics and
analytics derived from the entire infrastructure. These metrics encompass areas such as privacy, data
protection, ethics, security, and societal impacts, providing crucial insights for the meta-Orchestrator's

Document name: D3.1 Intfroducing NEMO Kernel Page: 76 of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

decision-making process. Furthermore, the PPEF communicates processed insights and
recommendations back to the meta-Orchestrator, enabling the enforcement of robust privacy measures
and stringent policy compliance, fostering a secure and ethically sound orchestration environment.

5.6 Conclusion, Roadmap & Outlook

The NEMO meta-Orchestrator serves as a pivotal solution for the intricate challenges posed by the IoT
to Edge to Cloud Continuum. Its fundamental role lies in simplifying the complexities of distributed
computing, ensuring optimal resource utilization, and enabling seamless integration across diverse
components and systems. With its focus on adaptability, scalability, and efficiency, the meta-
Orchestrator stands as a testament to NEMO's commitment to fostering decentralized and efficient
computing workflows. Through its intelligent decision-making processes and emphasis on
interoperability, the meta-Orchestrator not only streamlines workflow distribution and management but
also ensures NEMO's ability to thrive within the dynamic technological landscape.

Moving forward, the roadmap for the NEMO meta-Orchestrator entails a continuous evolution aligned
with the rapidly changing demands of the technology ecosystem. Firstly, it involves enhancing its
intelligence capabilities to further optimize workflow efficiency and resource management. Secondly,
the focus will be on expanding its adaptability to accommodate the growing scale and diversity of
computing environments. Additionally, efforts will be directed towards reinforcing its interoperability
to facilitate seamless integration with emerging technologies and diverse systems. Furthermgre, the
roadmap includes fostering collaborations to bolster the meta-Orchestrator's functionality and
applicability in addressing the evolving challenges across the IoT to Edge to CloudyContinuum. By
aligning these strategic objectives, the NEMO meta-Orchestrator is poised to_temain at the forefront of
orchestrating complex computing workflows, ensuring the continued success, of the\NEMO platform.

The future of the NEMO platform looks promising, with a streng\focus‘on advancing its meta-
Orchestrator components to facilitate seamless and efficient computing, workflows within the IoT to
Edge to Cloud Continuum. The continual evolution of the Orchestration Engine, Analytics Engine,
Resource Manager, Decision Engine, and Integration Component is expected to drive significant
advancements in resource management, decisioh-making, and data integration. By harnessing the power
of cutting-edge technologies and fostering collabOratiens’with industry leaders, NEMO aims to establish
itself as a pioneer in orchestrating/complex ¢omputing workflows and enabling efficient resource
utilization. The platform's outlook rests om its ability to adapt to evolving technological landscapes,
ensuring robustness, scalabilityy, and™ifiteroperability within the dynamic IoT to Edge to Cloud
Continuum.

Document name: D3.1 Intfroducing NEMO Kernel Page: 77 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

i NEMO

6 Proof of Concept: NEMO Kernel Space

This phase primarily focuses on thoroughly validating the NEMO's functionality, performance, security,
and compliance. The chapter outlines the specific processes involved in this validation, including
workload registration, updates, deployment, monitoring, migration, and secure communication
protocols with the aim to reach a first integrated version of the components.

It emphasizes the significance of these processes in establishing a cohesive and efficient operational
structure for the system. The chapter also addresses the objectives, expected outcomes, and limitations
of the Integration PoC, providing valuable insights into the complexities of system integration and its
role in ensuring a robust and reliable operational framework.

6.1 Overview

6.1.1 Workloads integration

The purpose of the 1st Integration Proof of Concept (PoC) is to comprehensively validate and assess the
integrated system's functionality, performance, security, and compliance. It aims to evaluate the system's
readiness for real-world deployment by engaging in various critical activities. Below is an outline of the
PoC's purposes and a schema to illustrate its structure:

e Workload Registration: Register workloads through the API/PA-LCM tracking their entry
into the system.

e Workload Updated/Followed: Verify that CMDT accurately updates and tracks changes in
workload configurations. Monitor workload changes in CMDT is/related“to the registration of
new services and metrics workloads related as specified in D2. 1%

e Workload Deployment: Deploy workloads across, the{meta-Orchestrator, meta—Network
Cluster Controller (mNCC), Intent-Based Migration|Centroller (IBMC), and Secure Execution
Environment (SEE).

e Workload Monitoring: Assess the ability of PPEF to monitor workloads and enforce policies.

e Workload Migration: Test'the feasibility of migrating workloads, including cloud-to-edge,
cross-admin domain, and, intemt-based networking/computing scenarios, using meta-
Orchestrator and mNCE,

e Cognitive Workload:, Integrate CFDRL for enhanced security and reinforcement learning
capabilities.

e _SecuresCommunication: Implement secure communication protocols, access control, and
authentication mechanisms, including Keycloak and RabbitMQ, to safeguard data exchange and
access.

6.1.2 Objectives

The objectives of the 1st Integration Proof of Concept (PoC) are to validate the integrated system's
functionality, assess its performance, and ensure its security and compliance:

o The first objective is to validate the integration of core system components, including the meta-
Orchestrator, CMDT, mNCC, IBMC, SEE, PPEF, and CFDRL, ensuring they work cohesively
to support the end-to-end workload lifecycle.

e Performance assessment is another key objective, focusing on evaluating the system's efficiency
in handling workload deployment, monitoring, and migration tasks. This includes measuring
resource utilization, response times, and overall system responsiveness.

e Security and compliance testing are essential objectives to verify the effectiveness of security
mechanisms, access control, and policy enforcement within the integrated system. It aims to
ensure data protection and adherence to regulatory and governance requirements.

Document name: D3.1 Intfroducing NEMO Kernel Page: 78 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

e Operational efficiency is a critical objective, emphasizing the need for smooth workload
management and migration processes. The goal is to minimize downtime and disruptions while
maintaining optimal system operation.

e Policy adherence is a central objective, ensuring that the integrated system consistently follows
defined policies, SLAs, and governance rules throughout workload deployment and migration
activities.

e Scalability assessment is vital to understand the system's ability to adapt to increasing workloads
and administrative domains effectively. It explores how the system can gracefully accommodate
growth.

6.1.3 Expected Outcomes

The expected outcomes of the 1st Integration Proof of Concept (PoC) encompass functional and
performance-related achievements:

e The PoC is expected to demonstrate functional integration, showcasing the seamless
collaboration of all key components. This includes registration, deployment, monitoring, and
migration capabilities, highlighting their reliability and consistency.

e Security and compliance expectations involve the establishment of robust security measures,
access control mechanisms, and policy enforcement. This ensures secure communication and
compliance with governance rules.

e Performance optimization is an expected outcome, with minimal downtime during workload
migration, efficient resource allocation, and the creation of optimized networkspaths to enhance
system responsiveness.

e Policy adherence and SLA fulfilment are expected to be realized, preventing SLA violations,
and ensuring workload compliance with defined policies and performancéwmetrics.

e The PoC aims to showcase scalability and adaptability, proying, the system's ability to handle
increasing workloads and administrative domains while maintaining operational efficiency.

o Integration of CFDRL is expected to enhane€ security-anducinforce learning capabilities within
the system, potentially improving threat mitigation and overall system intelligence.

e Intent-based networking and computingrineiples, such as micro slices and multipath routing,
are anticipated to be effectiyely implemented to optimize workload management and network
resource utilization.

e Data consistency andireal-time"monitoring in CMDT are expected outcomes, ensuring accurate
tracking ofiworkload updates and configurations for reliable data representation.

e Operationalefficiency is a key goal, emphasizing controlled workload migration to minimize
disruption'to omgoing operations and maintain consistent system performance.

68 .4) Rimutations

The\lst Integration PoC exhibits inherent limitations, characterized by its inability to fully replicate the
multifaceted intricacies of real-world production environments and its lack of comprehensive
exploration of security threats, data privacy considerations, and regulatory compliance facets.

e The PoC may not replicate the full spectrum of complexities encountered in real-world
production environments, potentially missing unforeseen variables, and external factors.

e [t may not fully mirror the scale and diversity of large-scale production systems, limiting the
assessment of how the system handles extensive workloads and administrative domains.

e While addressing security mechanisms, the PoC may not comprehensively explore real-time
security threats and vulnerabilities, necessitating a deeper level of security testing for production
readiness.

e The PoC does not delve deeply into data privacy and specific regulatory compliance, which may
be essential considerations in real-world deployments.

Document name: D3.1 Intfroducing NEMO Kernel Page: 79 of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

e It assumes an idealized environment and may not account for resource limitations, such as
constrained computing resources or network bandwidth, which can impact system performance
in practice.

6.2 Workload deployment

The workload deployment from the meta-Orchestrator consists in two main parts:

e The automatic deployment and configuration of a multicluster based in OCM.
e The deployment of services and applications via the “multicloud-operators-subscription”

Both deployments use a broker-based communication defined by the integration component in which a
yaml file containing the information of each deployment is send to a queue and consumed by either the
OCM or the subscription consumer.

In the first step of the OCM deployment, a hub cluster is created and the clusteradm command-line tool
is installed. This tool is used to install the registration-operator on the hub cluster, which is responsible
for installing and upgrading a few core components for the OCM environment.

Once the hub cluster is set up, a consumer starts listening for petitions to join the system. Currently,
these petitions consist in a yaml file where the number of managed clusters that will join the hub cluster
is defined. In addition to the registration of the managed clusters, the multicloud-operators-subscription
addon is deployed and ready to use. The current format of such file is as follows:

| numberofclusters: 4 |

The deployment of services and applications uses its own consumer, whiCh listens for a petition to
subscribe to a source repository channel that can be the following types: Gitiaepesitory, Helm release
registry or S3 object storage repository. The petition consists in @ yaml'file where three parameters are
specified: the deployment name, the namespace of the deploymentand the path to the repository.

In the given example, a deployment named as servige™is created; where the namespace is the default one
and the service is hosted in a Git repository.

name: service
namespace: default
pathname: https://service.github.io/service-1/

When the petition arrives, the subscription operator downloads directly from the storage location and
deploys to targeted managed clusters without checking the hub cluster first. After the deployment is
complet€d, the “ehannel is monitored for new or updated resources and applies them at specified
intervals.

Folléwingthe architecture provided by OCM’s documentation®, a new shape for the Orchestration
Engine is constructed. Figure 38 shows the architecture of the Orchestration Engine component using
the Integration Component (based on RabbitMQ) to relate to the different microservices hosted on
several sources (Git, S3, Minio, Helm, etc).

It is remarkable that the hub cluster might be based on either Vanilla K8s or kind (Kubernetes in Docker),
whereas the managed clusters might be based on several lightweight Kubernetes-based flavours, such
as K3S, microK8s or kind.

85

Document name: D3.1 Intfroducing NEMO Kernel Page: 80 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

&l NEMO

Cluster
Manager Interface

’ registration-
s controller ” clusteradm
i LI
placement- o

Hub Cluster CorkroNer

Meta-Orchestrator
Orchestration Engine \

(OCM Control Plane) B Microservice 1

Integration [
Component > 0 NGiIAMX
Klusterlet 2,

<
:
5]
=
:
E;J

£ registration-
— -

Managed | “ork-agent - - * g
Cluster
Manifest / Other . e ,4
c — Klusterlet
components }—‘ kRabbit usterle

Microservice 2

=
E}
3
=
H
El

0 registration- yaml| |.yaml
- E . agent - Microservice N
M’an_ag|ed ‘work-agent yaml (3y
Cluster ————— HELm [E9E
e
Klusterlet 2,
.., [[[
L 5 X3S agent .
Managed ~ Work-agent
Cluster

yaml /

Figure 38: Meta-Orchestrator Workload Deployment: Orchestration Engine and Integration Component microsemgices
subscription and deployment

Further integration with other components is granted if the manifest file used for deployment maintain
the expected format. Following the CMDT descriptor file (defined in D2.1), the yaml might\be shaped
as follows:

name: Name
description: Description of the service
services: # List of services included
- Name: servicel
Description: This is the first servicegthat canrbe mapped to a LL
#tpackage: charts/servicel-0.0.0.tg#
Properties: #List of [Property, Value]
- Property 1: Value 1
- Property 2: Value 2
Microservices: #lList of\uServiges
- Name: pServiceyl
Descriptd®n:WMicroservice 1 description on how to access it
Endpointsy
Shttpys//seryicel/microservicel
- Name: uService 2
Desceiption: Microservice 2 description on how to access it
Epdpoints:
- http://servicel/microservice2

6.3 Workload migration

The migration process from meta-Orchestrator to mNCC revolves around seamlessly transitioning
workloads from the cloud to edge infrastructure, leveraging Kubernetes (K8s, microK8s, K3s, etc.)
across various administrative domains. Emphasizing intent-based networking/computing, including
microslicing and multipath integration, ensures efficient data processing across the continuum of [oT to
Edge to Cloud.

A comprehensive analysis of the existing cloud infrastructure precedes the development of a meticulous
migration blueprint, integrating meta-Orchestrator with mNCC to address the complexities of intent-
based networking. This entails establishing seamless communication channels between the edge nodes
and the meta-Orchestrator, facilitating the secure transfer of workloads from the cloud to the edge
infrastructure.

Document name: D3.1 Intfroducing NEMO Kernel Page: 81 of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

The integration process focuses on configuring the edge nodes to support the seamless deployment of
Kubernetes-based services, synchronizing operations with the meta-Orchestrator through robust
communication protocols and secure data transmission channels. This ensures the smooth transition of
workloads and data processing from the cloud to the edge infrastructure.

With a unified multi-domain orchestration strategy in place, the integration of meta-Orchestrator and
mNCC within each administrative domain creates a cohesive control plane that centralizes the
management and oversight of network and computing resources, fostering consistency and coherence
in workload deployment across the distributed infrastructure.

Intent-based networking and computing are optimized through the implementation of precise resource
allocation policies and advanced microslicing techniques. Strategies such as multipath routing are
employed to optimize data transfer paths, enhancing the overall efficiency and responsiveness of the
system in adapting to varying workload demands and network conditions.

Continuous monitoring mechanisms are then deployed to track the performance of migrated workloads
and the network infrastructure, ensuring dynamic optimization and proactive resource management
throughout the IoT to Edge to Cloud continuum.

6.4 Workload monitoring

In NEMO the core idea behind PPEF system is to enable the monitoring of NEMO-hosted services’
performance metrics that are not only adhere to a business logic agnostic SLA definition but to proeeed
on low-level SLA definition that tackle the intent-based approach followed by the preject and thus
deliver SLO based, performance-driven and orchestration aware workload lifecycle management.

In the framework of PPEF development activities an initial deployment and configuration of CNCF
accepted monitoring tools focusing as well on energy consumption onés namely Kepler and Scaphandre
has been conducted. A Federated architecture of Prometheus tesourc€ monitoring tools have been
defined and a prototype has been developed. Moreover, initial meaSurements and results of monitored
NEMO-hosted resources have been collected and integrated withwyisualization tool.

The purpose of this prototype is to illustrat€ on one hand the Federated monitoring architectural
approach that has been adopted by PPEF and\ort théwetlier to provide a hands-on demonstration of the
capabilities of the Cloud infrastructure monitoringtools both for regular and energy specific metrics that
will drive the NEMO services pelicy enfercement procedures. The abovementioned implementation
will act as the foundationtupon*which*th€ PPEF system will be structured. Special focus is laid on the
energy consumptiofi’ monitoring tools that the PPEF incorporates. Finally, the integrated Grafana
dashboard is utilized\for the visualization of a variety of collected resource measurements.

In thisgtototypereachfocal Cloud/Edge infrastructure is monitored by a local Prometheus instance. A
federatedPrometheus is utilized to pull observed metrics from the various local Prometheus instances.
A'simpletillustration of the implemented prototype architecture is presented in Figure 41.

-y : @
Qe as

! . |
i '
v '
' g Pull
' Metrics Pull Datasource
! — Metrics
. encs | —

' f - Kube-state-metrics
'
1 ' - Nodes Cadvisor
i '
! ! Grafana
i '
1 '
i '
' '
i '
v re——oI

'
4 '
i '

""""" KEPLER

Kubernetes
Nodes

Figure 39: Federated Prometheus setup in K8s orchestrated cluster

Document name: D3.1 Intfroducing NEMO Kernel Page: 82 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

In the abovementioned PPEF prototype, each local Prometheus instance is integrated with the Kepler
and Scaphandre data exporters. Figure 40 presents the endpoints that are realized by the local
Prometheus and that can be consumed by the Federated one.

Targets
Al Unhealthy Collapse All Q 2 unnown (3 (T 3 20
fedarate-nemo-pods (1/1 up) (EEES
Scrape
Endpoint State Labels Last Scrape Duration Error
hito//192.168.1.236:32479Nederate @ [nsance=i02168.1 23 22077] ioo=edurae nemo poss] 7.9805 ago 226 319ms
kepler (/1 up) (NI
Scrape
Endpoint State Labels Last Scrape Duration Error
. m [100="xepier"} 36.981s ago 85.968ms
scaphandre (1/1 up) m
Scrape
Endpoint State Labels Last Scrape Duration Error
‘ @ [sance=152 1601236 21050 L oo=scapnancre] 2m 235 ago 56205
match(}="(kubernetes pod namespace="nemo")"

Figure 40: Local Prometheus endpoints

Lastly, Figure 41 illustrates a sample of the visualization capabilities of Grafana dashboard thatyis
integrated with the Prometheus deployed instances. In the picture we observe metrics that concdern the
CPU usage per pod, the container memory usage rate, the energy consumption per containet and total
energy consumption at package-level.

Figure 41: Grafana visualization on collected metrics

6.5% Secure communications

6.5.1 NEMO Access control

As part of the PoC implementation, the NAC operation supporting AAA-based control is presented. For
demonstration purposes, the first version of the NEMO Access Control, supporting access control based
on the oAuth 2.0 has been deployed and tested in SYN premises. NAC was deployed in a namespace
dedicated to NEMO, within a K8s cluster. In the same cluster and namespace, a Keycloak installation
has been used to integrate with the oAuth 2.0 plugin. In addition, Konga [32] has been deployed and
used as an open-source management tool and GUI for the NAC API Gateway.

As soon as the aforementioned software modules are deployed and operational, the API configuration
may take place in the API Gateway. This refers to setting up services and routes. In Kong Gateway, a
service is an abstraction of an existing upstream application. Services can store collections of objects
like plugin configurations, and policies, and they can be associated with routes. A route is a path to a

Document name: D3.1 Intfroducing NEMO Kernel Page: 83 of 93
Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

&8s NEMO

resource within an upstream application. Routes are added to services to allow access to the underlying
application. In Kong Gateway, routes typically map to endpoints that are exposed through the Kong
Gateway application. Routes can also define rules that match requests to associated services. Because
of this, one route can reference multiple endpoints [33]. Figure 42 depicts the oAuth 2.0 plugin
configuration in the NAC API Gateway.

EDIT KEVCLOAK

cccccccc

htep 192,161 25630799

+ SUBMIT CHANGES

N\

Figure 42: Configuring Keycloak (oAuth 2.0) plugin in NAC through Kon,

As an upstream NEMO service, the current version of the MOC 1 een used. In the following,
the NAC configuration and access control for two endpeints resented, responsible for cluster
registration (register-cluster endpoint of MOCA)_and al of -already registered- cluster’s

information (retrieve-cluster-details endpoint OCA).
routes is presented in Figure 43 to Figure 46

e configuration of relevant services and

KONGA o @
cluste
@ Route details
22, Eligible consumers (SR o5 hmadlers and dest pres s
e Jnemoiciusterfiegister X
Githut @issues B Support the project o W connected 1o admin
Figure 43: Registering route for register-cluster endpoint of MOCA
Document name: D3.1 Intfroducing NEMO Kernel Page: 84 of 93

Reference: D3.1 |[Dissemination: [PU [Version: [1.0 [Status: [Final

&8s NEMO

Service nemo-api-register-cluster

@ service details

¥ plugins (oo

22 cigibie consur
Deseription
Tags
Protocal
ot
pore
Path

H] B cup 2t

nema-apl-register-cluster

= el 1o ke

Route retrieve-cluster-details

@ Route details

L
28 Eligisle consumers (RN For
Name reticye-
Tags
Hosts
al

Bs

L

Figure¥5: Registering route for retrieve-cluster-details endpoint of MOCA

A Route

@ Service details

¥ Plugins Name

22 Eigibic consume

Description

Protocol

Bath

Retries

name-cluster.retrieve

netps

1921681236

Figure 46: Configuring API Gateway service for protecting the retrieve-cluster-details endpoint of MOCA

Document name:

D3.1 Intfroducing NEMO Kernel

Page:

85 of 93

Reference:

D3.1 [Dissemination: [PU

[Version: [1.0

Status:

Final

&8s NEMO

The NAC client application attempting to access the protected MOCA endpoints is simulated through
POSTMAN, as depicted in Figure 47 for the client receiving an access token.

(@) Save v <

http://192.168.1.236:

POST v hitpy/1921681.236: i @

Params Authorizations Headers (10) Bodys Pre-requestScript Tests Settings Cookies
® none ® form-data @ x-www-form-uriencoded @ raw @ binary @ GraphQL

KEY VALUE DESCRIPTION s Bulk Edit
client_id access-control

client_secret

grant_type client_credentials
Body Cookles Headers (10) Test Results @ Status 200 0K Time: 147ms Size: 184KB Save Response v
Pretty Raw Preview Visualize JSON v m Q
1
2 “access_token": "eyJhbGei013SUzIINSTSINRSCCIEOIAISIdUT inia21KT{AGICIRZOF F 1n6.
ey1eHAL0{E20TCINDYSHTQS InlhdCT6MTYSNZUONYXNCwianRpI {oi 0BMTE2LTE1Y{c thim §YyMmY31 iniaXNzT EuMSayN. 12021 vdC1uZ21uT A YXVK
101 YWN{b3VUdCTSINNIYAT6InERMTKXY214LTgaZnY tNDAZZ104MOM3LWRKZ VY TESYNUOHI TS InRSCCITKIIYXI1cA TS InF6cCI6INFY2Vzey11b250cmIsT 1wt YWNy T {0 1HSTSInd1YWXEX2F 1Y2VzcyT6ey Jyb2xlcyI6hy JvZnZs
aWS1X2F3Y2VzeyIsInvt tni 1yb2x1cy1pb3 YY2VEYWNSZXNZIp7InF 2XM101 1LWF CItYWShZ2UtYWN1b3VudC1sansy
IvZmlsZS YHNFZXNzL 3Byb3R1Y3Rpb241XX19LCIZY29MZS: CI1LWFp! IpZm11ZCT6ZnF 5C2U: 1KT 01 YWNIZXNZLWNY
bNRyb2wiLCIFbG11DNRILINGTI01MTAUM]QOLIAUNCTSTnBYZWZ1cnI1ZF91c2VybnF: 1hY2N1c3MEY29udHIVBCT 71c3M101TXMCAYNDQUMCAWING . L
BL R23xOTWYCCSNXKKCBECXgKOHHZXINXE: tSOHY £LHC _QallioCnXT HebATQD1ZcNey FRAXTIO. TwcK9g2
23KcWENCOBBEZRF_qSLx6pSz-FXEIx6029KKKEFXq o7BX11TNYEITguFmi_-Wgd7ydu_21TQuRVEDL IQAUPEL- _MaGiBA3MEAGN_5w2Q51REG1YIK-FG_bumpIC_A" ,
3 "expires_in": 360,
] "refresh_expires_in: 0
5 “token_type®: “Bearer”,
6 “not-before-policy": 0,

Figure 47: Simulating client app requesting access token in POSTMAN

Then, the client application is presented to denied access when no or inactive tokens are provided
48, Figure 49, Figure 51, Figure 52), while access is granted when a valid token is provided (Fi

POST ~ hitp://1921681.236:30452/nemo/cluster/register
Params Authorization Headers (10) Bodye Pre-requestScript Tests Settings % Cookies

none @ form-data @ x-www-form-urlencoded @ raw @ binary @ Graphal

KEY VALUE SCR

vm_name test-vm
config_file my-cluster-config %
cpus 4 :
memory 6

wes Bulk Edit

storage

(<IN BN <IN < BN <]

endpoint

K script

Body Cookies Headers (5] Test Results @ Status: 400 Bad Request Time: 503ms Size: 1778 Save Response

@ Q

Pretty Raw Preview Visualze Text v

1 Token not provided

Figure 48: NAC app, fails to access the register-cluster endpoint of MOCA due to token not provided

68.1.236:304 52/nemo/cluster/register

s Au n Headers(10) Bodyw Pre-request Script Tests Saftings Cookies
aders © 9 hidden
KEY VALUE DESCRIPTION s Bulk Edit Presets v

token JhbGEi01SUzITNi 1gOiAISIdUli ABICIRZOFZW

Body Cockies Headers (5) Test Resuits @ Status: 401 Unauthorized Time: 535ms Size: 1808 Save Response

Pretty Raw Preview Visualize Tet v ® Q

1 Token is not active.

Figure 49: NAC client app fails to access the register-cluster endpoint of MOCA due to provided token being inactive

Document name: D3.1 Intfroducing NEMO Kernel Page: 86 of 93

Reference: D3.1 |[Dissemination: [PU [Version: [1.0 [Status: [Final

POST v

Params Authorization Headers (10) Body e

http://192.168.1.236:30452/nemojcluster/register

Pre-request Script

Tests

&8s NEMO

® none W form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL

KEY
vm_name
config_file
cpus
memory
storage

endpoint

fsesoae

Cookies Headers (14) Test Results

Pretty Raw Preview Visualize

JSON v

1 "ddbf924f-a310-4846-89d7-28£787713ac5"

Settings Cookies
VALUE DESCRIPTION s Bulk Edit
test-vm

my-cluster-config X
a4

18

256
hitp://localhost:5000

® Staws: 201 Created Time: 4105 Size: 4368 Save Response v

B Q

Figure 50: NAC client app successfully registers a cluster in MOCA, as AAA controls have been passed

GET ~ hitpi/192168.
Params Authorization Headers (8) Body
®none @ form-data @ x-www-lorm-urlencoded

jody Cookies Headers (S) TestResults

Pretty Raw Preview Visualize

1 Token not provided

Figure 51: NAC client app fails to access the retrieve-cluster-details endpoint of MOCA due tid d

GET v hitpy/1921681.

Pre-request Script

raw

Tet ~ S

binary

1310-4046-8947-2581707713ac5

Tests

Settings Gookies

GraphQL.

@ Status: 400 Bad Request Time:14ms Size! 1758 Save Response

[=et

\

13acs

Params Authorization Headers (8) Body

Headers < 7 hidden
KEY
token

Key

lody Cookies Headers [5) Test Results
Raw Visualize

Pretty Preview

1 Token is not active.

Figure 52: NAC client app failsyto

dbi924f-a"

Pre-request Script

Tet v S

Tests

-4046-89d7-2B(707713ac5

Settings Cookies

Q™

VALUE DESCRIPTION owo BulkEdit Presets v

eyJhbGeiOLISUZITNIISInRScCIGOIAISIdWITa2IkliAGIC JRZOF ZW) u

® Stz 401 Unautnorized Trme: 14ms Size: 1785 Save Response v

B Qa

&bclusterd&alls endpoint of MOCA due to token provided being inactive

Bswe v £ B o«

Headers (8) Body

x-wwswi-form-uriencoded

lody Cockies Headers (14) Test Results

Pre-request Seript

raw

binary

Tests

713ac5

@

Settings Gookies

Graphal

© Status 200 0K Time: 195ms Size: 7098 Save Response

Pretty Raw Preview Visusize JSON v = o Q
il I
2 i
3 "ddbi9241 - a310-2046-897- 28470771 3ac5"

4 : “testovn

s

6

7 .

8 ttp: //1ocalhost: 50007,
5

10
1 SIVGFC q .

12 http: //127.0.0.1: 8080/ ipTs /QuS3VGF CeeaBquli3Hy6b17EPQSRPUpApREHTWOPHhy gRB*

13 b
14 b
15 i
1 1

Figure 53: NAC client app receives response by the retrieve-cluster-details endpoint of MOCA, as valid token has been

provided

Document name:

D3.1 Intfroducing NEMO Kernel

Page: 87 of 93

Reference: D3.1

[Dissemination:

[PU [Version: Status: [Final

&8s NEMO

6.5.2 Intercommunication Management Module

The Message broker of NEMO which is based in RabbitMQ is currently placed in a temporary open
GitHub repository®® and it will be moved to the project repository when fully integrated with the rest of
security modules.

Below the interface of the intercommunication management module.

Refreshed 2023-09-21 13:05:30 | Refresh every 5 seconds v

1
WBRabbitMQ . wsswasizs ewngzssas miheet A

Cluster rabbit®635030dd921f

oveniow comactons cramnts [N cueuesandsreame i -

Exchange: sts_receive_logs_topic

~ Overview

Message rates last minute 2

o3 Publish (In) 1 0.00/s
02/s
o Plo m oo

0.1/

0.0/s —
13:04:30 13:04:40 13:04:50 13:05:00 13:05:10 13:05:20

Details

Type topic
Features
Policy

~ Bindings

This exchange

To Routing key Arguments y
—
amq.gen-10GK02TIm8-0oUYHESoQwQ | & m
Add binding from this exchange
Toqueve v |:
Routing key:
Arguments: = [sting Q

» Publish message

terface

8 https://github.com/mikesmirlis/rabbitmg-poc

Document name: D3.1 Intfroducing NEMO Kernel Page: 88 of 93
Reference: D3.1 |[Dissemination: [PU [Version: [1.0 [Status: [Final

i NEMO

Conclusions

In this document, we have presented the outcomes of the work on the NEMO Kernel so far. Following
the structure of the project, this first deliverable presents the background topics and state-of-the-art, but
most important the plans and architecture for the solutions that will form the NEMO Kernel. In
summary, the project's progress in various tasks showcases significant strides towards establishing a
robust and secure computing environment within the NEMO ecosystem.

Task 3.1 has paved the way for a Secure Execution Environment, enhancing Kubernetes with isolated
Unikernel technology and trusted execution runtimes. With the completion of background research and
solution architecture, coupled with the prototype development, the project is poised for the crucial phase
of component development and integration into the NEMO Kernel. Simultaneously, Task 3.2
emphasizes the project's ethical commitment through the Privacy and Policy Enforcement Framework
(PPEF), ensuring GDPR compliance and upholding the highest standards of data protection for NEMO-
hosted services. Task 3.3 delves into cybersecurity aspects, focusing on authentication, access control,
and real-time operating system monitoring. These cutting-edge measures enhance the overall security
posture of NEMO services. Lastly, Task 3.4 highlights the pivotal role of the NEMO meta-Orchestrator,
which stands as the operational core of the ecosystem. Empowered by advanced Orchestration Engine
and Integration Component, it efficiently coordinates intricate workflows across IoT, Edge, and Cloud
domains, reinforcing the project's dedication to seamless computing.

By stating a detailed proof-of-concept strategy, the whole concept of the NEMO-Kernel'becomes
verifiable. This strategy contains details on the deployment, migration and mienitoring of the workloads,
as well as details and instructions on the secure communication channgls.

With all four tasks in motion, NEMO is on track to revolutionize,computing paradigms, ensuring both
security and efficiency across diverse domains.

Document name: D3.1 Intfroducing NEMO Kernel Page: 89 of 93

Reference: D3.1 [Dissemination: [PU [Version: [1.0 [status: [Final

i NEMO

References

[1] NEMO, “D1.1 - Definition and analysis of use cases and GDPR compliance,” HORIZON -
101070118 - NEMO Deliverable Report, 2023.

[2] NEMO, “D1.2 - NEMO meta-architecture, components and benchmarking. Initial version,”
HORIZON - 101070118 - NEMO Deliverable Report, 2023.

[3] Canonical, “Kubernetes and cloud native operations report 2022, 2022.

[4] Cloud Native Computing Foundation, “Confidential Containers Project,” 2023. [Online].
Available: https://github.com/confidential-containers.

[5] Open Container Initiative, “Open Container Initiative Project Repository,” 2023. [Online].
Available: https://github.com/opencontainers/runtime-spec/blob/main/spec.md.

[6] Institute for Automation of Complex Power Systems, “runh Project Website,” [Online]:
Available: https://github.com/hermit-os/runh. [Accessed 10 2023].

[7] Kata Containers Community, “Kata Containers Project Repository,” [Onling]. “Available:
https://github.com/kata-containers/kata-containers. [Accessed 10 10 2023)].

[8] H.B.a.D.T.a.M.R.a.N.S.a. W.Pan, Remote ATtestation procedureS (RATS) Architecture,
RFC Editor, 2023, p. 46.

[9] T. Hoffman, “Introduction to CRIU _and DLiven Migration,” [Online]. Available:
https://medium.com/@talhof8/introduction-to-criu-and-live-migration-cd4a6d11afb6.

[10] The CRIU Project, “CRIU: Usage scenarios,” [Online]. Available:
https://criu.org/Usage scenarios.

[11] S. Mohanty, “Kubetnetesy Checkpointing — A Definitive Guide!,” [Online]. Available:
https://faun.pub/kubernetes=checkpointing-a-definitive-guide-33dd 1a0310£6.

[12] J. H. 1 J. % J3J. H. H*M. Bongjae Kim, “A Dynamic Checkpoint Interval Decision Algorithm
for Live Migration-Based Drone-Recovery System,” drones, vol. 7, no. 5, 2023.

[13]) CiF. Lung, “Migrating pods between Kubernetes nodes (without killing them),” 23 04 2023.
[Online]. Available: https://chuniversiteit.nl/papers/seamless-pod-migration-in-kubernetes.

[14] NEMO, “D5.1 - Living Labs and Data Management Plan (DMP). Initial version,” HORIZON -
101070118 - NEMO Deliverable Report, 2023.

[15] S.P.E.R. Chalee Vorakulpipat, “Usable comprehensive-factor authentication for a secure time
attendance system,” PeerJ Computer Science, 2021.

[16] Gartner Peer Insigths, “Best Cloud-Native Application Protection Platforms Reviews 2023,”
2023. [Online]. Available: https://www.gartner.com/reviews/market/cloud-native-application-
protection-platforms.

[17] Wikipedia, “Modular programming,” [Online]. Available:
https://en.wikipedia.org/wiki/Modular_programming.

[18] C. Baldwin and K. Clark, Design Rules, Volume 1, Cambridge, MA: The MIT Press, 2000.

Document name: D3.1 Intfroducing NEMO Kernel Page: 90 of 93

Reference: D3.1 [Dissemination: [PU [Version: 0.7 [Status: |Review

i NEMO

[19] Apple Developer, “Code Loading Programming Topics - Plug-in Architectures,” [Online].
Available:
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/LoadingCode/C
oncepts/Plugins.html. [Accessed 17 10 2023].

[20] Redhat, “What does an APl gateway do?,” 2019. [Online]. Available:
https://www.redhat.com/en/topics/api/what-does-an-api-gateway-do. [Accessed 17 10 2023].

[21] Envoy, “Envoy proxy,” Lyft, [Online]. Available: https://www.envoyproxy.io. [Accessed 17 10
2023].

[22] Kong, “Kong Gateway,” [Online]. Awvailable: https://docs.konghq.com/gateway/latest/.
[Accessed 17 10 2023].

[23] AWS, “What is Amazon API Gateway?,” Amazon, [Online]. Awvailable:
https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html. [Accessed 17 10
2023].

[24] NGINX, “API Gateway,” [Online]. Available: https://www.nginx.com/learn/api-gateway/.
[Accessed 17 10 2023].

[25] L. Crilly, “Deploying NGINX as an API Gateway, Part 1,” NGINX, 20 01 2021. [Online].
Available: https://www.nginx.com/blog/deploying-nginx-plus-as-an-api-gateway-paut-1/;
[Accessed 17 10 2023].

[26] Kong Inc., “Kong Gateway,” 2021. [Online]. Available: https://docs.konghq.com/gateway/.
[Accessed Nov. 2021].

[27] OpenlD, “OpenID Connect,” 2022. [Online]. Available: httpss//openid.net/connect/.

[28] Keycloak, “https://www.keycloak.org,” [Online]. Availablerhttps://www.keycloak.org.

[29] D. Jones, “Container vs. Virtual Machines (VMs): What's"the difference?,” NetApp, [Online].
Available: https://www.netapp.com/blog/containers-vs-vms/.

[30] C. Richardson, “Microservices.io,” [Onlingle Available: https://microservices.io/.

[31] IEEE Innovation at Work,,“Real-Life Use Cases for Edge Computing,” [Online]. Available:
https://innovationatwork.icee.org/real-life-edge-computing-use-cases/.

[32] P. Tselentis, “Konga,»2020. [Online]. Available: https://pantsel.github.io/konga/.

[33] Kong, ¢ Services and Routes,” [Online]. Available: https://docs.konghq.com/gateway/latest/get-
started/services-and-routes/. [Accessed 17 10 2023].

[34] Kong Inc., “Comprehensive Getting Started Guide,” 2021. [Online]. Available:
https://docs.konghq.com/gateway/2.6.x/get-started/comprehensive/. [Accessed Nov. 2021].

[35] Kong, “Write plugins in python,” [Online]. Available:
https://docs.konghq.com/gateway/latest/plugin-development/pluginserver/python/. [Accessed
17 10 2023].

Document name: D3.1 Intfroducing NEMO Kernel Page: 91 of 93

Reference: D3.1 [Dissemination: [PU [Version: 0.7 [Status: |Review

Annexes

Comparison Between Open Source and Vendor Solution of the Tetragon
Kernel eBPF Probe

Tetragon Open Source . Tetragon Enterprise
‘ Software ETEE S and Cilium Enterprise
Combined No Yes (Some features require | Yes (All telemetry is
Runtime & that cilium be deployed and available to tetragon in
Network the cilium api be enabled.. this case)
Visibility Specifically the ipcache
functionality.)
Runtime
Visibility | 'S ves ves
Process Yes - process_exec (K8s | Yes - full ancestry tree Yes
Runtime related info, pid,
Behavior namespaces, caps,
process related info,
parent)
Automatically, no CRDs
needed
Syscall Yes - with kprobe, Yes Yes
Runtime tracepoints (K8s related
Behavior info, pid, namespaces,
caps, process related
info, parent)
I's happening with
clusterwide CRD?s,.Pod
label filtering is 0SS
Network
Visibility
L3/L4 C . Yes - we get the full network | Yes - and with
Limitedy Users of) . L
Network socket lifecycle timescape historic views
o tetragon oss can hook ;
Visibility ; . automatically no need for of the same.
any function or syscall in CRDs (process_connect
the kernel. This will be P — ’
o . process_close,
difficult to accomplish.
process_accept,
Also users need to come process_listen)
up V\."th thelr.own CRDs. Annotations: DNS Names,
We just provided one X
endpoint names, pods,
example.
labels, etc.
L7 Visibility - | No Yes - via an in kernel HTTP
HTTP parser, we get a separate
event:
° HTTP

Table 5: (1/2) Difference between Tetragon Open Source and Isovalent Vendor solution. This is taken as an example of the
differences between OSS and vendor solutions in the CNAPP Business.

87 Custom Resource Definition

Document name: D3.1 Intfroducing NEMO Kernel Page: 92 of 93

Reference: D3.1 [Dissemination: [PU [Version: 0.7 [Status: |Review

Tetragon Enterprise
Tetragon OSS Tetragon Enterprise and Cilium Enterprise

Includes all the process
related and K8s aware

metadata,
L7 Visibility - | No Yes - via DNS parser in
DNS kernel, separate event:
DNS - Watermarks -metrics
L7 Visibility - | No Yes - via KTLS => kernel
HTTPS implementation of TLS, we

don’t do it in userland like
Pixie does with uprobes and

TLS libraries

L7 Visibility - | No Yes - via TLS parser in

TLS kernel, full TLS handshake
analysis. We get a separate
event:

oTLS (client/server version,
cipher, process related info,
K8s info)

SIEM Export | No. Events are senttoa | Yes - fluentd with all the

file but we don’t provide plugins fluentd can support
an integration like with (Splunk, elk, sumologic etc)
enterprise.
Timescape No Events are sentto a Yes. Collects only tegragon, [\Yes. Collects both
Support file but we don’t provide events. Tetragon and hubble
integration or timescape events.

as part of the
deployment.
File Integrity | Yes - via a user friendly Yes:[- Digest (SHA 256)
Monitoring policy similar to osquery
has 3 new events:
file_create, file_madify,
file_delete

Runtime Yes - with\kprobes and Yes
Enforcement [\tracepointsj pod label
filters,.in kernel

enforcement
Threat
Detection
Rule Engine No Yes - Combined Runtime
(WIP) and Network Security
audit/enforcement
Security No Yes - K8s aware SELinux
Baseline (lock down
Policy (WIP) malicious system calls)
- dynamic

Table 6: (2/2) Difference between Tetragon Open Source and Isovalent Vendor solution. This is taken as an example of the
differences between OSS and vendor solutions in the CNAPP Business.

Document name: D3.1 Intfroducing NEMO Kernel Page: 93 of 93
Reference: D3.1 [Dissemination: [PU [Version: 0.7 [Status: |Review

