

Disclaimer for Deliverables with dissemination level PUBLIC
This document is issued within the frame and for the purpose of the NEMO project. This project has received funding from the European
Union’s Horizon Europe Framework Programme under Grant Agreement No. 101070118. The opinions expressed and arguments employed
herein do not necessarily reflect the official views of the European Commission.
The dissemination of this document reflects only the author’s view, and the European Commission is not responsible for any use that may be
made of the information it contains. This deliverable is subject to final acceptance by the European Commission.
This document and its content are the property of the NEMO Consortium. The content of all or parts of this document can be used and
distributed provided that the NEMO project and the document are properly referenced.
Each NEMO Partner may use this document in conformity with the NEMO Consortium Grant Agreement provisions.

(*) Dissemination level: (PU) Public, fully open, e.g., web (Deliverables flagged as public will be automatically published in CORDIS project’s
page). (SEN) Sensitive, limited under the conditions of the Grant Agreement. (Classified EU-R) EU RESTRICTED under the Commission
Decision No2015/444. (Classified EU-C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified EU-S) EU
SECRET under the Commission Decision No2015/444.

Next Generation Meta Operating System

D4.1 Integration guidelines & initial NEMO
integration

Keywords:
Integration, validation, API, SDK, Lifecycle Management, Migration Controller, automation

Document Identification
Status Final Due Date 31/12/2023

Version
1.0
 Submission Date 19/01/2024

Related WP WP4 Document Reference D4.1
Related
Deliverable(s)

D1.1, D1.2, D2.1,
D3.1

Dissemination Level (*) PU

Lead Participant SYN Lead Author Terpsi Velivassaki
Contributors SYN, INTRA,

AEGIS, SPACE,
ATOS, MAG, ENG,
ESOFT, SU

Reviewers Theo Kakardakos,
NOVO

Dimitris Siakavaras,
ICCS

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 2 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Document Information
List of Contributors
Name Partner
Aitor Alcázar-Fernández ATOS
Rubén Ramiro ATOS
Enric Pages-Montanera ATOS
Dimitrios Skias INTRA
Panagiotis. Karkazis MAG
Astik Samal MAG
Nikos Drosos SPACE
Emmanouil Bakiris SPACE
Antonis Gonos ESOFT
Theodore Zahariadis SYN
Terpsi Velivassaki SYN
Spyros Vantolas AEGIS
Hassane Rahich SU

Document History
Version Date Change editors Changes
0.1 13/11/2023 T. Velivassaki (SYN) Table of Contents
0.2 08/12/2023 R. Ramiro (ATOS), D.

Skias (INTRA), T.
Velivassaki, Th.
Zahariadis (SYN), H.
Rahich (SU)

Contributions to NEMO integration approach,
prototype and guidelines, Intent-based
Migration, the integration infrastructure

0.3 18/12/2023 R. Ramiro (ATOS), D.
Skias (INTRA), T.
Velivassaki (SYN), P.
Karkazis (MAG), A.
Samal (MAG)

Contributions to the NEMO integration
guidelines, DevSecOps approach & plan,
prototype, Intent-based API, MOCA

0.4 29/12/2023 S. Vantolas (AEGIS), N.
Drosos (SPACE), E.
Bakiris (SPACE), A.
Gonos (ESOFT), T.
Velivassaki (SYN)

Contributions to Lifecycle Management,
updates to Intent-based API

0.5 12/01/2024 P. Karkazis (MAG), A.
Samal (MAG), N. Drosos,
(SPACE), E. Bakiris
(SPACE), T. Velivassaki
(SYN)

Updates to Lifecycle Management, V&V,
document consolidation and integration;
Ready for peer-review

0.5.1 17/01/2024 D. Siakavaras (ICCS) Peer review
0.5.2 18/01/2024 Th. Kakardakos (NOVO) Peer review

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 3 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

0.6 18/01/2024 Document enhancements based on peer
review; Document finalization

0.7 19/01/2024 Rosana Valle (ATOS) Quality Check
1.0 19/01/2024 Rosana Valle (ATOS) FINAL VERSION TO BE SUBMITTED TO

EC

Quality Control
Role Who (Partner short name) Approval Date
Deliverable leader T. Velivassaki (SYN) 18/01/2024
Quality manager R. Valle Soriano (ATOS) 19/01/2024
Project Coordinator E. Pages (ATOS) 19/01/2024

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 4 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Table of Contents
Document Information ...2
Table of Contents ...4
List of Tables ..6
List of Figures ..7
List of Acronyms ..8
Executive Summary ...10
1 Introduction ..11

1.1 Purpose of the document ..11
1.2 Relation to other project work..12
1.3 Structure of the document ..12

2 NEMO development & integration guidelines ...13
2.1 Cloud- & edge-native design ...13

2.1.1 Microservices and workflows .. 14
2.1.2 Communication style ... 15

2.2 Code and API documentation ..18
2.3 Containerization ...18
2.4 Automation...18

2.4.1 ZeroTouch provisioning .. 19
2.4.2 ZeroOps deployment at the network edge ... 19
2.4.3 AI advancing automation ... 19

2.5 Open source..20
2.6 Security first ...20

3 Integration and Lab V&V approach and tools ..24
3.1 DevSecOps in NEMO ..24

3.1.1 Security enhancements .. 24
3.2 NEMO CI/CD approach ...25

3.2.1 CI/CD environment and tools .. 25
3.2.2 NEMO Automated Deployment and Configuration .. 26

3.3 Cloud/Edge/IoT Integration and Validation Infrastructure ..27
3.3.1 OneLab .. 27
3.3.2 OneLab Clusters for NEMO .. 28

3.4 NEMO V&V approach ..29
3.4.1 Testing Categories ... 30
3.4.2 Assessment & Labelling .. 32

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 5 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

3.5 Integration & V&V Plan ..32
4 NEMO Integrated Platform (Ver. 0) ...34

4.1 Meta-OS functionality in NEMO v0 ..34
4.1.1 NEMO Infrastructure Management ... 34
4.1.2 NEMO Kernel .. 35
4.1.3 NEMO Service Management ... 37
4.1.4 NEMO Cross-cutting Functions .. 37

4.2 NEMO v0 PoC ...38
4.2.1 Meta-Orchestrator: Orchestration Engine Component Test & Deployment 38
4.2.2 NEMO Access Control: Component Deployment and Early Integration 39

5 NEMO components towards third-party integration ..46
5.1 Intent-based Migration Controller ..46

5.1.1 Overview ... 46
5.1.2 Background .. 46
5.1.3 Architecture & Approach .. 47
5.1.4 Interaction with other NEMO components .. 50
5.1.5 Conclusion, Roadmap & Outlook .. 50

5.2 Plugin & Applications Lifecycle Manager ..50
5.2.1 Overview ... 50
5.2.2 Background .. 51
5.2.3 Architecture & Approach .. 55
5.2.4 Interaction with other NEMO components .. 58
5.2.5 Conclusion, Roadmap & Outlook .. 59

5.3 Monetization and Consensus-based Accountability ..59
5.3.1 Overview ... 59
5.3.2 Background .. 59
5.3.3 Architecture & Approach .. 60
5.3.4 Interaction with other NEMO components .. 61
5.3.5 Conclusion, Roadmap & Outlook .. 62

5.4 Intent-based SDK/API ...62
5.4.1 Overview ... 62
5.4.2 Background .. 62
5.4.3 Architecture & Approach .. 65
5.4.4 Interaction with other NEMO components .. 68
5.4.5 Conclusion, Roadmap & Outlook .. 69

6 Conclusions ..70
7 References ..71

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 6 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

List of Tables
Table 1: Main Cluster ___ 28
Table 2: Auxiliary Cluster __ 29
Table 3: Access Control installation parameters __ 39
Table 4: Automated Interfaces Exposure API payload parameters __________________________________ 42
Table 5: Indicative Checkov policies ___ 64

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 7 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

List of Figures
Figure 1: Cloud Native software development approach adopted by NEMO___________________________ 14
Figure 2: Communication architectural styles for microservices ____________________________________ 16
Figure 3: Kubernetes security hooks for implementing Zero Trust [23] ______________________________ 22
Figure 4: Istio service mesh operation, adding a sidecar proxy to each deployed application [26] _________ 23
Figure 5: NEMO DevSecOps ___ 24
Figure 6: NEMO CI/CD/CP approach __ 25
Figure 7: NEMO code repository in Eclipse Research labs __ 26
Figure 8: Flux CD and GitOps Toolkit __ 27
Figure 9: SU OneLab (FIT NITOS & FIT IoT-Lab) as NEMO Integration, Test and Validation Infrastructure 28
Figure 10: Validation and verification in the NEMO CI/CD pipeline ________________________________ 30
Figure 11: NEMO project phases and main meta-OS version releases _______________________________ 33
Figure 12: The NEMO high-level architecture __ 34
Figure 13: Access Control installation script output ___ 40
Figure 14: Access Control Kubernetes Deployments ___ 40
Figure 15: Access Control Kubernetes Services ___ 40
Figure 16: Kong Manager Dashboard __ 41
Figure 17: Automated Interfaces Exposure API Swagger - Request _________________________________ 42
Figure 18: Automated Interfaces Exposure API Swagger - Response ________________________________ 43
Figure 19: Automated Interfaces Exposure API logs ___ 43
Figure 20: Kong Manager - Service __ 43
Figure 21: Kong Manager - Service details __ 44
Figure 22: Kong Manager – Route ___ 44
Figure 23: Kong Manager – Route details ___ 44
Figure 24: Kong Manager – Keycloak plugin __ 45
Figure 25: Kong Manager – Keycloak plugin details (1) __ 45
Figure 26: Kong Manager – Keycloak plugin details (2) __ 45
Figure 27: Development view of IBMC ___ 48
Figure 28: Workflow of a migration of clusters utilizing the IBMC __________________________________ 49
Figure 29: ArgoCD Architecture __ 52
Figure 30: Falco Architecture __ 54
Figure 31: Trivy-operator overview __ 55
Figure 32: LCM Architecture ___ 55
Figure 33: Security plugin descriptor document example ___ 57
Figure 34: LCM Visualization architecture __ 58
Figure 35: The MOCA component and interactions __ 62
Figure 36: Admission control execution process __ 63
Figure 37: The workload registration workflow ___ 65
Figure 38: The workload deployment workflow ___ 66
Figure 39: Intent-based API architecture __ 67

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 8 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms
Abbreviation /
acronym

Description

AAA Authentication, Authorization, and Accounting
AI Artificial Intelligence
API Application Programming Interface
AWS Amazon Web Services
CD Continuous Delivery
CFDRL Cybersecure Federated Deep Reinforcement Learning
CLI Command Line Interface
CMDT Cybersecure Microservices’ Digital Twin
CI Continuous Integration
CIS Center for Internet Security
CLI Command-line Interface
CMDT Cybersecure Microservices’ Digital Twin
CNCF Cloud Native Computing Foundation
CPU Central Processing Unit
DLT Distributed Ledger Technology
Dx.y Deliverable number y belonging to WP x
E2E End-to-End
EC European Commission
FL Federated Learning
GDPR General Data Protection Regulation
GPU Graphics Processing Unit
IaC Infrastructure-as-Code
IBMC Intent-based Migration Controller
IdM Identity Management
IDS Intrusion Detection System
IPFS Interplanetary File System
IoT Internet-of-Things
IT Information Technology
K8s Kubernetes
KPI Key Performance Indicator
LCM Life-Cycle Manager
MANO Management and Orchestration
meta-OS Meta-Operating System
ML Machine Learning
mNCC Meta Network Cluster Controller
MO Meta-Orchestrator
MOCA Monetization and Consensus-based Accountability
MQTT Message Queuing Telemetry Transport
OS Operating System

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 9 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

OT Operational technology (OT)
P2P Peer-to-Peer
PoC Proof of Concept
PPEF PRESS & Policy Enforcement Framework
PRESS Privacy, data pRotection, Ethics, Security & Societal
RaaS Resources-as-a-Service
RAM Random Access Memory
RBAC Role-Based Access Control
RL Reinforcement Learning
SBOM Software Bill of Materials
SDK Software Development Kit
SDLC Software Development Life Cycle
SEE Secure Execution Environment
SLA Service Level Agreement
SLO Service Level Objective
SUT System Under Test
TEE Trusted Execution Environment
TSN Time Sensitive Networks
V&V Validation & Verification
VIM Virtual Infrastructure Manager
WP Work Package
YAML Yet Another Markup Language

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 10 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Executive Summary
The highly distributed and diverse landscape in the envisioned meta-OS in NEMO urges for component-
based microservices architectures for the development of both applications and the NEMO framework
per se. In such diverse environments, software integration can be challenging even despite the adoption
of Zero-everything practices in GitOps. Moreover, as the diversity and required speed of delivery urge
for automating GitOps processes to the extent possible, validation tasks must be also considered and
integrated in the software lifecycle. The present document aims to minimize the integration and
validation challenges, suggesting development and integration guidelines to NEMO developers to be
adopted during the complete software lifecycle.
First, conventions related to design, development and integration urge developers to follow modular
cloud- and edge-native design and ensure the NEMO specifications on interfaces and data models are
coherent and followed. Moreover, containerization and automation techniques are suggested to address
consistent GitOps processes. In addition, NEMO gives due emphasis on expanding the NEMO
functionality and potential through the open-source community, releasing NEMO components in the
public code repository of Eclipse Research Labs. Last, but not least, strong focus on security is
considered across the full lifecycle and stack of the NEMO framework.
The NEMO integration strategy is thoroughly presented, providing insights on the implementation of
DevSecOps within NEMO. NEMO adopts continuous integration (CI) and continuous deployment (CD)
through GitLab and automation CD tools. NEMO relies on OneLab infrastructure of the Sorbonne
University for the provision of its integration, qualification, and production environment. Together with
the integration and deployment processes, validation tests and scans are injected in different steps of the
NEMO framework lifecycle. NEMO follows a comprehensive validation and verification (V&V) plan,
with diverse types of tests from development till runtime, addressing unit, system, functional and
security tests. Last, but not least, the Integration and V&V plan, following an agile approach is also
presented.
The document presents the integrated view of the NEMO framework. Concretely specified interactions
and workflows in NEMO will guide effective integration from both functional, technical and logical
point of view. This report presents high-level interactions and functional relevance of current NEMO
developments, as well as early integration activities.
Towards adoption of NEMO by envisaged end users, including both application providers and
infrastructure owners, NEMO develops a Service Management middleware. It comprises four
components which address the NEMO exposure through API and SDK, ZeroOps deployment and
Lifecycle Management, as well as monetization and accountability of NEMO-enabled applications and
resources.
Future work includes integration of NEMO components in a more mature first version, the delivery and
execution of validation tests and further development of components towards third-party integration.
This work is planned to be reported in deliverable document D4.2 “Advanced NEMO platform &
laboratory testing results. Initial version”, due in the last quarter of 2024.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 11 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

1 Introduction
NEMO aspires to meet the ambitious goal of developing a meta-Operating System (metaOS), which
will democratize the usage of resources anywhere in the IoT, edge and cloud continuum, while enabling
the delivery of innovative applications of diverse capabilities’ requirements through any device at
everyone’s hand. This vision aims to be materialized in NEMO, without compromising cybersecurity,
trust and privacy requirements, while enabling business development and prosperity on top of this
innovative ecosystem.
The NEMO functionalities come to reality through a comprehensive and modular architecture, presented
in the deliverable document “D1.2 - NEMO meta-architecture, components and benchmarking. Initial
version” [1]. The architecture assigns NEMO components with tasks, so that they can, both individually
and as a whole, vindicate any claim in the NEMO vision. The NEMO components will be implemented
within the framework of work packages (WPs) WP2 and WP3, while “WP4: NEMO DevZeroOps
Service Management Space” is responsible for automated delivery of the integrated NEMO components.
The present document is the first deliverable of WP4.

1.1 Purpose of the document
Development, integration and testing activities following a structured methodology is key to successful
project delivery. A well thought-out solution that aims to be materialized in a system or a platform or
even a service needs to be supported by coherent development, integration and testing approaches,
coordinated schedule and effective inter-process communication. This document presents the
development and integration guidelines for the NEMO project. Moreover, the integrated view of the
NEMO meta-OS is presented, highlighting interactions among the NEMO components. Based on these
development and integration guidelines, as well as the specified NEMO interactions, a comprehensive
integration, validation and verification strategy is defined for the NEMO project. Moreover, early
integration activities have been already fruitful, and early proof of concept results are presented.
Furthermore, since appropriate infrastructure, tools and frameworks are key enablers for the integration
and testing activities, the present document introduces those within the project’s CI/CD lifecycle.
Considering the overall concept of the proposed meta-OS, the adoption potential is technically relevant
to interaction and integration points with third parties. NEMO aims to address this challenge through a
Service Management middleware, as presented in this document. Through this, NEMO provides
programmatic access to application developers in a friendly way, aiming to tailor meta-OS offered
services to techniques and practices already familiar to developers, thus introducing minimum deviation
from existing pipelines. Following NEMO API calls, full-stack automation is leveraged in the NEMO
meta-OS, enabling Zero-Ops deployment and configuration for the meta-OS operations. Beyond
usability, monetization of resource and workload related operations are key for timely time to market
exploitation. NEMO inherently supports the development of business models to allow exploitation and
monetization of supported services. This functionality is part of the Service Management middleware,
as well.
This document (D4.1) is the first iteration of the three deliverables in the context of WP4 and aim to
describe the integration and validation activities of the NEMO project. The other two deliverables are
D4.2 “Advanced NEMO platform & laboratory testing results. Initial version”, due in the last quarter of
2024, and finally D4.3 “Advanced NEMO platform & laboratory testing results. Final version”, which
will be produced in the second quarter of 2025.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 12 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

1.2 Relation to other project work
The integration and testing strategy act as the driver of the development process. Thus, this document is
strongly connected with all the technical WPs (WP3, WP4). Furthermore, the work presented in this
document strongly relates to WP1 activities, as it considers the technical specifications arising from the
requirements’ elicitation process and the architectural specifications. Moreover, the approach for the
validation and verification processes within the meta-OS, as defined in WP1, is technically applied as
described in the present document. In addition, the platform integrated view and current prototype
implementations will be applied and tailored to each of the NEMO trials within WP5. The document
provides valuable feedback for the project outcomes’ communication, dissemination and exploitation,
especially regarding the definition of the NEMO exploitable outcomes and their unique value
proposition, as well as the development of new business models. Last, but not least, the document reports
technical options and prototype functionalities, which are meant to be used and extended by third parties
joining the project through the Open Calls.

1.3 Structure of the document
The remainder of this report is organized as follows.
Section 2 provides the NEMO development & integration guidelines.
Section 3 presents the DevSecOps approach and how security is injected in the project’s CI/CD pipeline.
With a focus on open science practices, this section presents the open-source NEMO repository on the
GitLab instance of Eclipse Research Labs. Based on this, CI/CD pipelines are enabled, supporting
ZeroOps deployments for the NEMO components, as presented in this section, too. Moreover, the
Integration & Validation plan within the NEMO lifecycle is outlined.
Section 4 presents the envisioned integrated NEMO framework. The section elaborates on the
functionality supported in the preliminary (v0) version of NEMO and presents early integrated activities.
Section 5 presents the NEMO components comprising the Service Management middleware and aimed
for integration of and adoption by third parties.
Last, Section 6 draws conclusions and provides next steps.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 13 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

2 NEMO development & integration guidelines
This section outlines design and implementation approaches to guide the NEMO development and
integration activities.

2.1 Cloud- & edge-native design
Edge computing, at its core, provides compute, networking, and storage capabilities at the network's
border, closer to the source of the data1. This comes with significant benefits in the use of resources, but
also in network delivery, bringing reduced latency and greater exploitation of available bandwidth,
which gives room to more resilient and network-intensive applications. At the same time, it gives the
possibility for data to remain local and support data sovereignty.
Compared to the cloud environment, edge computing is quite diversified. The edge environment
intrinsically has limitations. Edge devices are highly diverse, but they are often battery powered and
thus carry less capable processors. Moreover, many edge devices must interact with legacy equipment;
they usually feature ports not found on Information Technology (IT) equipment and leverage protocols
specific to operational technology, which lead to very different edge devices across sites or applications.
Thus, edge computing implies distributed data processing across diverse devices and/or sites, which,
generally speaking, happens at small scale. On the other hand, cloud is a quite different computing
environment. The cloud offers on-demand availability of resources. You can create new virtual machine
instances, add network capacity, or change the network topology anytime. Cloud resources are naturally
limited, but those limits are so high that most users will never bump into them, so cloud
computing/network resources are practically unlimited. Overall, the cloud is heterogeneous, centralized,
and large-scale, while the edge is heterogeneous, distributed, and small-scale.
Pushing the boundaries in modern software development and integration suggests adhering to the Cloud
Native approach. As defined by Cloud Native Computing Foundation (CNCF), the “Cloud Native”
definition2 is expressed as:
“Cloud native technologies empower organizations to build and run scalable applications in modern,
dynamic environments such as public, private, and hybrid clouds. Containers, service meshes,
microservices, immutable infrastructure, and declarative APIs exemplify this approach.
These techniques enable loosely coupled systems that are resilient, manageable, and observable.
Combined with robust automation, they allow engineers to make high-impact changes frequently and
predictably with minimal toil.”
Edge-native applications share several characteristics with cloud native applications, as both are based
on microservices, which expose endpoints which enable loosely coupled service composition.
Moreover, both cloud- and edge-native design allow adopting DevOps for continuous integration of
such applications. However, edge-native applications can be different from the cloud-native ones, as
continuous deployment might not be applicable for time critical edge applications. Edge-native
applications are often targeted for given environments and domains, which means that might be coupled
to Operational technology (OT) processes, but also quite dependent on the installed infrastructure –
often requiring a considerable capital investment. This affects both the computing/power/network
capabilities exposed for application delivery, but also the application lifespan, which in this case is
desired to be long enough. NEMO urges for consideration of edge device heterogeneity, constrained
capabilities, their potential mobility and also potential infrequent need for updates in the design of
application and services delivering or running on top of the meta-OS.

1 https://opensource.com/article/23/3/what-edge-native-application
2 https://github.com/cncf/toc/blob/main/DEFINITION.md

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 14 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

The abovementioned considerations with respect both to the resulting platform, but also to the
supporting cloud infrastructure that enables the development, integration and testing activities, are in
line with the NEMO project objectives that are addressed through WP4 (T4.4) for the integration and
testing of the NEMO platform.

Figure 1: Cloud Native software development approach adopted by NEMO.

The aforementioned design approach is further complemented with an additional set of key
recommendations, as guidelines, which are proposed to the NEMO consortium technical teams aiming
to greatly ease the integration process, rendering it a lot faster and at the same time more effective.
Large systems such as the envisaged NEMO platform are composed of a set of components that are
developed by different geographically dispersed technical teams of the NEMO consortium partners.
These components or modules are core elements of the NEMO platform and provide target
functionalities. Once developed, they should be able to interoperate with each other and deliver the
required functionality that is dictated by the NEMO architecture. Therefore, modular software
development practices should be applied by the NEMO developers. In practice, this means that each
component or module should:

 Be implemented as a self-contained building block independently from each other.
 Expose their functionality through a set of well-defined and well-documented interfaces.
 Utilize well-defined data models as means of structuring the communicated information (ideally

in a standardized format) that is exchanged from one component to another.
Following this approach, each technical team of the project would only need to be aware of the external
interfaces exposed by each developed module, thus abstracting arbitrary complexity that otherwise,
inevitably would be introduced.
The ultimate goal of modular software design is to define isolated and simple abstractions where the
interface should be much simpler than the implementation. Simultaneously, it aims to guarantee that if
a change affects only a module’s implementation but not its interface, then required fix or update of a
module source will not affect any other modules of the system.

2.1.1 Microservices and workflows
Microservices’ architecture or Modular Design refers to a system’s architecture in which a complex
application is composed of a set of independently deployable and loosely coupled modules plugged
together. Each module or “microservice” is understood as a software piece of singular functionality,
able to be executed independently, but is, however, required in order to deliver the whole application
functionality, together with the rest modules, organized around business capabilities. Three groups of
elements are the basic components to realize the modular design:

 Modules or microservices

IoT, Edge, Cloud Infrastructure

edge- & cloud-native microservices

Micro-services

Containers

Continuous
Integration

Continuous
Delivery

DevSecOps

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 15 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

 Well-defined interfaces
 A set of protocols for interconnecting those microservices.

Although this design urges for independent modules, the delivery of holistic application functionality
assumes dependency among the execution of the cooperating modules or scheduled/ordered execution
of such microservices. This is addressed through workflows, which define both the steps to be executed,
but also the workflow’s state. Workflow engines have been introduced to address the automation of
execution of workflows, including Argo Workflows [2], Apache Airflow [3], Zeebe [4], etc.
The microservices’ architecture implies significant benefits arising from functionality -and thus
application’ teams'- decoupling. As noted in this Redhat article3, some of the prominent benefits include:

 Shorter time to market, as a result of shorter development cycles and easier adoption of agile
development and deployment approach.

 Increased scalability, since service decoupling allows for distributed deployment across servers
and clusters, supporting greater level of scalability.

 Increased resilience, as microservices are independent pieces of functionality, so failure of a
single microservice does not necessarily lead to failure of the whole application.

 Easier deployment, as smaller service pieces are easier to deploy, as they normally have less
computing/networking/resource requirements compared to a monolithic application, at the
expense, of course, of the need for service orchestration.

On the other hand, splitting application into smaller pieces requires increased coordination and
management, in order to address complexity and efficiency. Specifically, challenges arise for initial
configuration with regards to scaling in order to ensure dependencies and software versions’
compatibility are respected, but also for tracing through logging and monitoring which can be both
complex in a distributed setup. Moreover, service discovery and connectivity require special attention
in distributed environments.
NEMO adopts the microservices’ architectural style for both core NEMO components and applications
consuming the meta-OS services. For the NEMO meta-OS components, splitting the functionality into
components will not only accelerate the development, integration and validate time, but will also yield
a more efficient, scalable and resilient framework, making better use of available resources. In addition,
the NEMO applications adopting the microservices’ architecture will be able to achieve increased
performance and make the most out of the available resources in the meta-OS.

2.1.2 Communication style
An important aspect that affects microservices’ based application delivery refers to the communication
style adopted for the microservices. Figure 2 presents three communication architectural styles for
microservices, namely [5]:

 Asynchronous communication by commands and events, often referred to as “event-driven
architecture” and implemented through a message or event bus, e.g. Kafka, RabbitMQ (AMQP),
etc.

 Synchronous communication by request/response, mainly referring to REST (REpresentational
State Transfer) APIs

 Both synchronous and asynchronous communication by request/response via the Remote
Procedure Call (RPC) model, mainly referring to gRPC [6].

3 https://www.redhat.com/en/topics/microservices/what-are-microservices

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 16 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Figure 2: Communication architectural styles for microservices

Asynchronous service-to-service communication, also referred to as publish/subscribe (pub/sub)
messaging, enables any message published to a topic to be immediately received by subscribers of that
topic. This communication style offers the following benefits.

 The pub/sub messaging pattern is scalable and flexible, in the sense that adding and removing
subscribers is a matter of configuration and no complex programming is required.

 Pub/sub is asynchronous, meaning that it can facilitate communication that is prominent to time-
outs, thus reluctant on introducing delays and potentially stalling the system communications.

 Pub/sub messaging can be used to enable event-driven architectures, or to decouple applications
in order to increase performance, reliability and scalability [7], so it is used in serverless and
microservices architectures.

The adoption of the RESTful communication implies also significant benefits for NEMO development,
integration and testing, including:

 Easy implementation and maintenance: Most developers are familiar with REST, while it allows
for development of polyglot APIs, enabling them to code in their preferred language, while
ensuring smooth communication among their modules.

 Increased scalability: REST is stateless on the server side, which implies reduced requirements
in memory and storage, as resources are committed only during request processing and are
released thereafter. This is important in the meta-OS environment, in which horizontal scaling
can be applied, allowing the server side to be replicated on a set of heterogeneous nodes.
Keeping and communicating states in such an environment would be complex to manage and
would possibly lead to high response times.

 Flexibility in response format: REST supports both JavaScript Object Notation (JSON) and
Extensible Markup Language (XML) or other through the Accept header. Apart from the
apparent benefits in application development, it allows for selection of smaller in size formats,
which could be also parsed faster (e.g. JSON).

Finally, gRPC is a modern open-source high performance Remote Procedure Call (RPC) framework,
developed by Google, that can run in any environment. It uses HTTP 2.0 as its underlying transport
protocol, but HTTP is not exposed to the API designer. In gRPC, a client application can directly call
methods on a server application on a different machine as if it was a local object, making it easier to
create distributed applications and services [8]. gRPC is mainly used in microservices’ architecture to
address efficient communication among polyglot microservices, in mobile apps’ development to

μservice 1

μservice 2

μservice 3
μservice 4

Message/Event Bus

μservice 1
μservice 2

μservice 3

μservice 4

μservice 1
μservice 2

μservice 3

μservice 4

REST

PUB/SUB
gRPC

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 17 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

connect mobile devices, browser clients to backend services, as well as for generating efficient client
libraries. Some of the main advantages of gRPC, also highlighted by Linkedin engineers [9] include:

 Increased communication performance: Due to its binary serialization and compressed data
formats through protocol buffers, gRPC results in faster data transfer. Moreover, it uses HTTP/2
to enable multiplexing, header compression and server push, while its inherent design enabling
fully asynchronous non-blocking bindings and advanced threading models contributes to
improved efficiency, as well.

 Easy implementation and advanced capabilities: gRPC provides code generation capabilities
that use Protocol Buffers to define the service and message interfaces, allowing developers to
easily maintain and update the codebase across different languages. Also, it offers advanced
capabilities, including bidirectional streaming, flow control, and deadlines.

 Polyglot support: gRPC officially supports a number of programming languages4, which a
significant factor for complex information systems, possibly composed of polyglot
microservices.

However, gRPC interfaces provide limited options for proxy-based access control, which can be easily
applied in URL-based endpoints.

Moving to a more holistic view, microservices have been proved perfect fit for independent functionality
delivery. However, their interaction, management and scheduling within workflows has to be addressed
for integrated application delivery. This is where communication based on workflow engines came into
play. In addition, the parallel evolution of multi-cluster orchestration solutions and automation in such
environments urges for considering the management of such workflows within distributed, possibly
multi-cluster environments. This technological need has led to relevant features in DevOps tools, like
Argo CD [10] and Flux [11]. Specifically, the Argo CD ApplicationSet controller [12] adds Application
automation and seeks to improve multi-cluster support and cluster multitenant support within Argo CD.
It is thus possible to use a single Kubernetes manifest to target multiple Kubernetes clusters or deploy
multiple applications from one or multiple Git repositories with Argo CD, while within multitenant
clusters it is possible to deploy applications using Argo CD, without needing to involve privileged
cluster administrators. Moreover, Flux supports multi-tenancy in its v2 [13], together with its ability to
manage deployments to multiple remote Kubernetes clusters from a central management cluster and the
support for progressive delivery. These are also critical features to allow multi-tenant execution of
workflows in multi-cluster environments.
In a distributed, heterogeneous and multi-cluster environment, like the NEMO meta-OS, it is highly
recommended to adopt each of the architectural communication styles that are mostly applicable per
case. In particular, in NEMO an amalgamation of these microservices’ architectures is sought, with
REST for enacting synchronous communication among its components through common HTTP APIs
and pub/sub messaging for asynchronous communications. A significant option when trying to define
interfaces and data models is to utilize standardized tools and practices. With respect to interfaces
standardized and consistent interfaces (e.g. RESTful APIs following the OpenAPI specification [14])
shall be adopted where applicable. Moreover, it is highly recommended to adopt automated workflow
execution for increased application and resource efficiency across the meta-OS resources.

4 https://grpc.io/docs/

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 18 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

2.2 Code and API documentation
Proper documentation, in general, facilitates greatly the development and integration activities. It can
be approached as a vertical necessity for any project, especially in a complex one such as NEMO, and
should be part of every development and integration step. Starting with source code documentation,
which greatly helps to comprehend a piece of software that is written even by the same developer at
some earlier time and especially if it has been written by someone else. In addition, source code
documentation, significantly eases a future update or correction activity within module’s code, where
source code “comments” will help the developer to comprehend the code’s functionality and avoid
misconception mistakes that could easily occur. In general, it is a very good practice to be adopted by
the project’s developers.
In addition, API documentation, especially in electronic format, greatly benefits both internal integration
activities (within the project), as well as integration or extension of the concerned software modules in
third-party systems and applications. NEMO adopts OpenAPI specification for synchronous APIs and
AsyncAPI [15] specification for event-driven APIs. OpenAPI specification creates a RESTful interface
for easily developing and consuming an API by effectively mapping all the resources and operations
associated with it. It was initially created by Swagger [16] and has been donated to the Linux
Foundation, being now at version 3.1 and the world standard for RESTful APIs. AsyncAPI was
influenced by OpenAPI in the way it structures its definitions, using YAML (or JSON) and re-using the
same structures found in OpenAPI, where possible. It makes use of JSON Schema for some of its model
definitions and includes support for others (e.g., Avro). AsyncAPI is also part of the Linux Foundation
and gets distinguished as the industry standard for defining asynchronous APIs. OpenAPI is fully
supported until v3.0 in the open-source version of the Swagger Editor, while the beta version of the
open-source Swagger Editor Next provides additionally full support of AsynAPI and partial support of
OpenAPI v3.1 [17].

2.3 Containerization
Containerization is a major technology that offers an abstraction layer over the application layer which
packages code and library dependencies. It strongly facilitates the DevSecOps operations that are
realized via the NEMO CI/CD pipeline and is aligned with the Cloud Native paradigm that is adopted
by NEMO. Containerization is a lightweight alternative to a virtual machine that involves encapsulating
an application in a container with its own operating system. The most popular containerization
technology application is Docker [18]. Docker is a set of Platform as a Service (PaaS) products that use
OS-level virtualization to deliver software in packages. A Docker container image is a lightweight,
standalone, executable package of software that includes everything needed to run an application: code,
runtime, system tools, system libraries and settings.
Moreover, Kubernetes (K8s) which is an open-source system for orchestrating containers (described in
Section 2.4.2 that is also adopted by NEMO, provides for automated deployment, scaling, and
management of containerized applications and is appropriate for working with Docker containers. In
alignment with the cloud-native approach and the modular architecture principles outlined above,
NEMO adopts Docker as a containerization framework and, thus, strongly encourages the technical
developers of the project to wrap their implemented technical outcomes in docker containers.

2.4 Automation
Automation lies at the core of the meta-OS under different scopes. In the following, specific practices
are suggested under different angles, as integral parts of the meta-OS to achieve effective orchestration
of workloads across remote devices of varying capacities.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 19 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

2.4.1 ZeroTouch provisioning
The highly diverse meta-OS environment embraces edge deployments which should allow highly
varying scenarios in data processing and management at the edge in a similar way that this happens in
the cloud. The meta-OS should be capable of adapting workload orchestration to scenarios of diverse
computing needs and capabilities, which are served by a multitude of diverse devices.
Such network and infrastructure complexity implies increased requirements in settings and
configurations, which will allow the management and integration of such devices into the meta-OS
ecosystem. Complexity does arise not only from hardware or software specificities, but also from
potential custom policies or requirements arising from diverse administrative domains and sites.
Thus, homogenized and centralized orchestration of workloads across such highly varying environment
and infrastructure can be achieved by propagating network configurations in reasonable time for
application delivery and also at low complexity and high replicability.
NEMO encourages automation in configuration and management of diverse meta-OS nodes, including
edge and cloud devices, in line with ZeroTouch Provisioning (ZTP)5. ZTP has been already adopted for
provisioning network devices such as firewalls, wireless access points, routers, network switches, etc.,
e.g., by Cisco6,Juniper Networks7, Through ZTP, NEMO will be able to automatically provision meta-
OS clusters with reduced labor costs and increased deployment efficiency.
ZTP eliminates the need for onsite, manual configuration and deployment, which reduces labor costs
and improves deployment efficiency.

2.4.2 ZeroOps deployment at the network edge
ZeroOps has significantly improved the productivity of developing teams, alleviating a huge burden of
manual configurations and installations across devices or virtual nodes. ZeroOps harnesses the merits
of cloud-native design in practice. NEMO welcomes the adoption of ZeroOps practices for workload
configuration and deployment at the edge devices, as well. In order to achieve this, NEMO suggests
adopting a DevOps approach, which will support:

 CI/CD with static code analysis and vulnerability checks, including automated release process.
 Unified operational runtime for containerized workloads with built-in runtime protection and

application observability.
 Infrastructure and operational runtime monitoring with automated standard operating

procedures and incident remediation respecting user-defined policies.

2.4.3 AI advancing automation
Artificial Intelligence (AI) has matured enough so that it is present in enhancing and automating multiple
facets of business life. AI can thus be well applied to advance automation in DevOps. As stated by
GitLab [19]: “AI in DevOps involves the use of machine learning (ML) and other artificial intelligence
technologies to automate and optimize the software development and delivery process. This includes
everything from automating testing and deployment processes to improving resource management and
enhancing security”. Relevant to this concept is AIOps, with Gartner [16] defining that “AIOps combines
big data and machine learning to automate IT operations processes, including event correlation,
anomaly detection and causality determination”.

5 https://www.redhat.com/rhdc/managed-files/ve-reinventing-telecommunications-open-innovation-ebook-
230150-202302-en.pdf
6 https://www.cisco.com/c/en/us/td/docs/ios-
xml/ios/prog/configuration/1612/b_1612_programmability_cg/zero_touch_provisioning.html
7 https://www.juniper.net/documentation/us/en/software/paragon-automation22.1/paragon-automation-user-
guide/topics/concept/ems-ztp-overview.html

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 20 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

As the main objective in DevOps has been to leverage and facilitate collaboration among development
teams, AI can introduce intelligent enhancements in this collaboration. Indicatively, AI may advance
the following activities:

 AI for continuous integration and continuous delivery or deployment (CI/CD): AI can be
leveraged to identify and merge/build/integrate individual pieces of code which have
successfully passed appropriate tests, and deploy them to production environment

 AI for test automation: AI can be used to automatically run tests on developed code
 AI for assisting code development: AI can provide code suggestions at development time
 AI for enhancing system observability and automation: AI can be used to automate

contextualization of operational data, allowing for predicting issues, suggesting mitigations and
automating alerts during the application life cycle.

The use of AI in the DevOps lifecycle implies significant benefits in terms of efficiency, improved
quality, scalability, as well as reduction of costs. With AI, resources and capacities can be more
effectively used. However, in order to maximize the benefits, the introduction of AI requires smooth
integration into the Operational Technology (OT) processes. This is crucial to prevent fragmentation
among the development and integration teams or even among the processes within the same team.
Moreover, in order for AI to be effective in automating and truly improving the DevOps process, it
should rely on reliable observability data and ML development processes.
NEMO embraces leveraging AI in the DevOps lifecycle, respecting and addressing potential challenges
in its incorporation into the development, integration and deployment of the NEMO framework.

2.5 Open source
Open-source tools are essential elements to achieve increased levels of openness and adoption and can
leverage the wider developer community, enabling diversification of suppliers. Greater involvement and
engagement of third-party developers may trigger faster and wider functionality extension, more
transparent verification process and increased maintenance and sustainability potential.
NEMO supports the adoption and extension of open-source frameworks for building the NEMO meta-
OS components and plugins.
Moreover, NEMO aims to actively support and contribute to the open-source community, by making
the NEMO source code openly available since the early stages of development. Our goal is to achieve a
positive impact to industrial innovation, related to multi-orchestration, edge/cloud computing and
advanced networking, including 5G/6G enhancements, as well as relevant technological innovations.

2.6 Security first
The European Union legislated the first network and information security (NIS) directive for EU
Member States in 2016, updated by the NIS 2 Directive [20] that came into force in 2023. Both NIS and
its update NIS 2 directives aim at building cybersecurity capabilities across the Union, mitigating threats to
network and information systems, contributing to the Union's security and to the effective functioning of
its economy and society.
Some key aspects highlighted in NIS 2, which are relevant for the development of a secure meta-OS
environment include:

 “Member States should encourage the use of any innovative technology, including artificial
intelligence, the use of which could improve the detection and prevention of cyberattacks,
enabling resources to be diverted towards cyberattacks more effectively”.

 “Rather than responding reactively, active cyber protection is the prevention, detection,
monitoring, analysis and mitigation of network security breaches in an active manner, combined
with the use of capabilities deployed within and outside the victim network.”

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 21 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

 “Since the exploitation of vulnerabilities in network and information systems may cause
significant disruption and harm, swiftly identifying and remedying such vulnerabilities is an
important factor in reducing risk. Entities that develop or administer network and information
systems should therefore establish appropriate procedures to handle vulnerabilities when they
are discovered.”

 “Essential and important entities should ensure the security of the network and information
systems which they use in their activities. Those systems are primarily private network and
information systems managed by the essential and important entities’ internal IT staff or the
security of which has been outsourced.”

 “Essential and important entities should adopt a wide range of basic cyber hygiene practices,
such as zero-trust principles, software updates, device configuration, network segmentation,
identity and access management or user awareness, organise training for their staff and raise
awareness concerning cyber threats, phishing or social engineering techniques.”

Moreover, the US Cybersecurity & Infrastructure Security Agency (CISA) released the Zero Trust
Maturity Model as a roadmap for transitioning to a Zero Trust architecture in 2021 and updated it in
2023 [21]. According to it, the US National Institute of Standards and Technology (NIST) defines Zero
trust as providing “a collection of concepts and ideas designed to minimize uncertainty in enforcing
accurate, least privilege per-request access decisions in information systems and services in the face of
a network viewed as compromised”.
In common terms, Zero Trust assumes all actors, systems, and services operating in and between
networks cannot be trusted. Τhe ZeroTrust model aims at guaranteeing secure access to resources only
when and to whom necessary, based on three fundamental concepts [22]:

 Secure network: Always assume that the network is hostile and compromised. Internal and
external data and information on the network is constantly exposed to security threats.

 Secure resources: Any source of information that exists on the network should be viewed
with suspicion, regardless of the location.

 Authentication: Users, devices, and traffic from internal or external networks should not be
trusted by default. Zero trust should be based on access control using the right authentication
and authorization.

Securing resources and data becomes increasingly complex and challenging across multi-variate multi-
domain virtualized environments, composed of multi-clouds and multi-clusters.
Kubernetes clusters can be accessed through the Kubernetes API using kubectl, client libraries, or by
making REST requests by both human users and Kubernetes service accounts [23]. Kubernetes provides
several security hooks to implement ZeroTrust for requests to the API, as depicted in Figure 3. These
include Authentication, Authorization, Admission Control, Logging, and Auditing.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 22 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Figure 3: Kubernetes security hooks for implementing Zero Trust [23]

In the context of adopting a cybersecurity culture, the following actions can be taken to realize Zero
Trust within Kubernetes, besides access control applied to the K8s API [24]:

 Delivering identity-based service-to-service access and communication: Service identity
should be enforced and used for service-to-service authentication and authorization to ensure
that access to necessary resources is granted only to proper services.

 Enforcing encryption in secret and certificate management and hardening Kubernetes
encryption: Besides adopting “Good practices for Kubernetes Secrets” [25], secrets should be
encrypted either at rest or in transit and be subject to fine-grained Role-Based Access Control
(RBAC) policies to limit access to secrets based on roles and responsibilities. Moreover, secrets
stored in the external secret management system should be regularly rotating. Access credentials
should be time-bound, requiring the user or application to refresh their credentials at defined
intervals.

 Enabling observability with audits and logging: Audit logs kept per user/role/service identity
basis would allow for greater insights and accountability over event data.

Widely adopted approaches to realize the aforementioned actions involve service mesh solutions. A
service mesh with a secrets broker can compensate for the inherent security weaknesses of secrets
management in Kubernetes, addressing the secrets’ encryption and centralized management, as well as
secrets’ time-based rotation. Moreover, a service mesh by design deploys sidecar along with every
application deployed, allowing application-aware traffic management, observability, and robust security
capabilities. When integrated with open-source monitoring tools (e.g. Prometheus, Grafana, etc.),
increased capabilities for analyzing service-networking patterns and enforcing security are provided for
the security manager. Notable service mesh solutions, which could undertake adding security
capabilities in the network, include Istio [26], Consul [27], Kong Mesh [28], etc.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 23 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Figure 4: Istio service mesh operation, adding a sidecar proxy to each deployed application [26]

Moreover, API Gateway solutions can provide control and data planes which can enforce traffic and
user policies, before granting access to underlying APIs, acting as reverse proxy to those for incoming
requests. An API Gateway can be used in the context of implementing ZeroTrust for applying L7 user
policies (e.g., AuthN/AuthZ use cases, rate-limiting, developer on-boarding, monetization or client
application governance), for applying L7 traffic policies (e.g., enforcing networking policies to connect,
secure, encrypt, protect and observe the network traffic between the client and the API gateway, as well
as between the API gateway and the APIs), as well as for supporting the full lifecycle API management
by connecting third-party LCM solutions to the API gateway to execute policy enforcement [29].
Popular API Gateway solutions include Kong API [30], Envoy Gateway [31], etc.
Similarly, Ingress Controllers can enforce ZeroTrust through policy decision/enforcement for incoming
traffic in Kubernetes environments, acting quite similar to API Gateways. Indicatively, NGINX solution
demonstrates a combined solution to Zero Trust through the NGINX Ingress Controller and the NGINX
Service Mesh [32]. The two components together address ZeroTrust requirements for both external
access to Kubernetes clusters and inter-cluster service communication.
The challenge in the meta-OS multi-cluster environment is to enforce Zero Trust principles, as
implemented for Kubernetes clusters in the multi-cluster environment, in a coherent and centralized
manner. NEMO already considers an API Gateway and Service Mesh solution for enforcing Zero Trust
principles in the NEMO meta-OS.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 24 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

3 Integration and Lab V&V approach and tools

3.1 DevSecOps in NEMO
NEMO adopts DevSecOps practices to support the platform’s integration and testing activities and the
management of the foreseen NEMO platform releases. DevSecOps, in plain words, involves security
enhancements throughout the DevOps cycle. These may refer to a set of practices that complement Agile
Software development, and which integrates security initiatives at every stage of the software
development lifecycle to deliver secure and robust applications. DevSecOps, short for Development,
Security, and Operations, as illustrated in Figure 5, automates the integration of security at every phase
of the software development lifecycle, from initial design through integration, testing, deployment, and
software delivery.

Figure 5: NEMO DevSecOps

3.1.1 Security enhancements
As already mentioned, DevSecOps introduces security enhancements into the CI/CD pipeline. The
security tests can be distinguished in Static Application Security Tests (SAST) and Dynamic Application
Security Tests (DAST). Each category is further elaborated in the following sections.
Static Application Security Testing (SAST), also known as "white box testing", allows developers to
find security vulnerabilities in the application source code earlier in the software development life cycle.
SAST is utilized to check the code without executing it. It also ensures conformance to coding
guidelines and standards without actually executing the underlying code. Incorporating a static analyzer
into the CI/CD loop helps forestall programming bugs from the early stages of the development before
getting to a higher level.
Dynamic Application Security Testing (DAST), also known as “black box testing”, investigates for
security vulnerabilities and weaknesses in a running application. It is performed later in the development
lifecycle, as it requires a built and tested application. The tester has no knowledge of the application’s
source code or the technologies or frameworks the application is built on. DAST, in a nutshell, tests the
security of developed software by feeding it with malicious data trying to detect security vulnerabilities
and to determine security vulnerabilities that are linked to the operational deployment of an application.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 25 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Runtime Application Security Protection (RASP), called runtime application security protection, or
RASP, shields running applications from a variety of online risks and attacks. RASP functions at the
runtime level, monitoring and protecting the application while it is being executed, in contrast to
conventional security measures that concentrate on the network or the application code itself.

3.2 NEMO CI/CD approach
NEMO will be heavily based on open-source projects and tools from Cloud Native Computing
Foundation (CNCF), and the results of previous H2020 projects. The latest version of the software will
be automatically integrated upon successful source code updates and compatibility tests and a new
version will be deployed on the Integration Infrastructure hosted in the OneLab. Before each major or
minor release cycle, the Qualification Infrastructure will be used for extensive functional and penetration
testing and bug fixing, without interfering with the development of new releases, happening in the
Integration Infrastructure or with the normal use of the Living Labs, which is equivalent to a Production
Infrastructure. In this way, at release time, the pilots will be updated with zero downtime.

Figure 6: NEMO CI/CD/CP approach

3.2.1 CI/CD environment and tools
For the NEMO project, the GitLab CI/CD framework has been set up and organized in an Eclipse
Research Labs hosted instance of GitLab. The official GitLab group of NEMO is titled “NEMO Project”
and is accessible publicly at https://gitlab.eclipse.org/eclipse-research-labs/nemo-project. The group
hosts the source code that is related to each thematic entity-specific development as dictated by the
NEMO meta-OS architecture. Each thematic entity is organized as a subgroup of the NEMO GitLab
group.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 26 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Figure 7: NEMO code repository in Eclipse Research labs

Within each subgroup, the development activities are organized based on the implemented outcomes of
the relevant tasks.

3.2.2 NEMO Automated Deployment and Configuration
Automated deployment and configuration are essential features in the context of NEMO and will be
achieved via the usage of Flux CD [11]. Flux is a Cloud Native Computing Foundation (CNCF) [33]
graduated project and can be defined as an open-source continuous delivery and GitOps tool designed
to simplify and automate the deployment and lifecycle management of applications and infrastructure
on Kubernetes.
With Flux CD, the desired state of the applications and configurations is stored as code in a Git
repository. Then, Flux CD continuously monitors repositories for changes and applies the essential
updates to the Kubernetes cluster automatically. In Figure 8, an overview of the Flux operations is
presented. The most important Flux components are presented in the following:

 Source Controller: Its main role is the provision of a common interface for retrieval of artifacts,
by defining a set of Kubernetes objects that cluster admins and operators can interact with to
offload operations related to Git and Helm to a dedicated controller.

 Kustomize Controller: A Kubernetes operator that is specialized in executing continuous
delivery pipelines for infrastructure and workloads defined by Kubernetes manifests, assembled
with Kustomize [34].

 Helm Controller: A Kubernetes operator that allows the declarative management of Helm
releases via Kubernetes manifests.

As far as the operational principles and workflow of Flux is concerned, a simplified explanation is as
follows. To begin with, Flux CD runs as an agent within the Kubernetes cluster of interest, continuously
monitoring both the cluster resources and the predefined Git repository, which includes configurations
and resources of the cluster’s desired states. When changes are recorded in the Git repository (e.g. new
commits), Flux detects these changes and automatically synchronizes the cluster to match the new
desired state, by deploying (or updating) the existing resources and custom configurations.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 27 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Figure 8: Flux CD and GitOps Toolkit

3.3 Cloud/Edge/IoT Integration and Validation Infrastructure

3.3.1 OneLab
The OneLab facility is a state-of-the-art test platform for exploring the design of digital infrastructures.
It provides control and remote access over a large and diverse set of virtualized and programmable
resources from IoT to the Cloud. OneLab federates multiple facilities among which the NITOS
(Network Implementation Testbed using Open Source platforms) and the FIT (Future Internet Testing
facilities) (Figure 9) test platforms and offers the possibility to run large-scale experiments combining
multiple heterogeneous resources through one single portal.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 28 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Figure 9: SU OneLab (FIT NITOS & FIT IoT-Lab) as NEMO Integration, Test and Validation Infrastructure

OneLab provides a large set of IoT resources including mobile and wireless IoT devices equipped with
various sensors such as ambient light, temperature, atmospheric pressure and temperature sensor, tri-
axis accelerometer, tri-axis magnetometer, tri-axis gyrometer and also cloud and bare-metal resources
allowing experimentation with cloud-based technologies with over a hundred of computing cores
available to experimenters.
OneLab offers, through the federated NITOS Lab facility, a SDR (Software Defined Radio) testbed
consisting of wireless nodes attached with USRP devices and a SDN testbed equipped with multiple
OpenFlow enabled switches to run experiments with network switching and routing protocols.

3.3.2 OneLab Clusters for NEMO
Two different Kubernetes Clusters have been configured to serve different purposes. A main cluster as
the production cluster and an auxiliary cluster for components that require a Graphics Processing Unit
(GPU) workload.
These clusters are composed of a set of nodes: a master node to handle the scheduling and scaling of
applications, and also the management of the cluster, and worker nodes to perform tasks assigned by the
master node, such as deploying the container and hosting the applications. In the production setting,
multiple worker nodes are used to offer redundancy and to ensure the service availability.
The main and auxiliary cluster setup is specified in Table 1 and Table 2.

Table 1: Main Cluster

 Node ID Node Type Specifications Storage

A Master 8 CPU Cores
16Go RAM

B Worker and Storage 16 CPU Cores
32Go RAM

120Go (Ephemeral)
150Go (Ceph OSD)

C Worker and Storage 16 CPU Cores
32Go RAM

120Go (Ephemeral)
150Go (Ceph OSD)

D Worker and Storage 16 CPU Cores
32Go RAM

120Go (Ephemeral)
150Go (Ceph OSD)

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 29 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Table 2: Auxiliary Cluster

 Node ID Node Type Specifications Storage

A Master 4 CPU Cores
8Go RAM

B Worker and Storage 8 CPU Cores
16Go RAM

150Go (Ephemeral)
200Go (Ceph OSD)

C Worker and Storage 8 CPU Cores
16Go RAM

250Go (Ephemeral)
200Go (Ceph OSD)

D Worker and Storage 8 CPU Cores
16Go RAM

250Go (Ephemeral)
200Go (Ceph OSD)

E Worker and Storage 4 CPU Cores
8Go RAM
GPU Nvidia Tesla T4

80Go (Ephemeral)

3.4 NEMO V&V approach
To ensure that all the components and applications of NEMO are properly integrated into the platform,
the NEMO V&V approach has been conceived in which appropriate tests and checks are foreseen before
the deployment of each component. The goal of V&V is two-fold (i) to support developers in evaluating
the performance of their services and (ii) to address the concerns that service operators have in hosting
third party services upon their infrastructure. For these reasons, NEMO V&V will provide a well-
structured framework, as part of the DevOps approach, that facilitates several tests per each new service
from the development, integration, and deployment phases ensuring, on the one hand, that the new
service addresses the requirements and Key Performance Indicators (KPIs) and, on the other hand, that
it is compatible with the innovative features that the NEMO platform offers (i.e. resource scaling, high
availability, full-stack automated operations, etc.). The main guidelines of the V&V approach have been
presented in D1.2. Based on these, the V&V procedures are distributed among NEMO components (i.e.
API, SDK, CI/CD pipelines etc.) to guarantee that the appropriate tests/checks are executed in time and
potential errors are identified before they cause any problems. For example, on the one hand, tests that
are related to the development of the components (i.e. unit, integration, system tests, etc.) are part of the
NEMO CI/CD/CP approach and on the other hand, compatibility tests of the uploaded user applications
are going to be executed in the NEMO API, through the NEMO consumer (application developer) may
to register his/her application as a NEMO workload (more details on the API operation can be found in
Section 5.4). Considering the heterogeneity of modern network services, each service requires different
testing approaches and tools. Therefore, the V&V approach should provide common tests applicable to
all services (i.e., NEMO platform compatibility tests), but should also support the integration of services’
specific tests that verify specific aspects of each service. The V&V tests are integrated in the NEMO
CI/CD pipeline, as indicated in Figure 10. As derived from the figure, automated tests of various scopes,
as well as security tests, are foreseen during continuous integration (CI) and continuous deployment
(CD) phases. The tests in the CD part could be triggered, both for developments taking place within the
CI process (on the NEMO code repository), as well as for components committed as deployments in the
Deployment code repo and provided to the CD component.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 30 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Figure 10: Validation and verification in the NEMO CI/CD pipeline

3.4.1 Testing Categories
According to the guidelines defined in D1.2, NEMO will implement the different types of tests that can
be used for the evaluation of the code during the Software Development Life Cycle (SDLC) of the
platform as well as the verification of the user applications. These tests are the following.
Requirement analysis: The definition of accurate and reliable testing procedures requires the
identification of proper functional and non-functional requirements starting from the design phase.
NEMO facilitates this need by providing specific tools and methodologies to collect, document, and
prioritize all technical requirements in a clear and measurable way. For the components of the NEMO
platform, Kubernetes Admission Controllers may be used to add semantic tags regarding the resource
limits per service. This will ensure that NEMO services will work properly and prevent potential
misbehaviors. Regarding user services, the same approach will be followed based on the same
framework, exploiting information from the NEMO CMDT, regarding the definition of intents.
Functional/Integration testing: These tests aim to verify that a software application behaves according
to its specifications and test the interactions between different components or systems of NEMO to
ensure they work together as intended. According to different technologies applied to NEMO
components, there are several open-source tools under consideration as implementation reference. For
example, regarding web services and UIs, Selenium [35] is well-known solution that provides a flexible
and easy way to implement test procedures. Selenium is a powerful and widely adopted open-source
framework for automating web browsers, primarily used for functional testing of web applications.
Offering compatibility with multiple programming languages, including Java, C#, and Python, Selenium
enables testers and developers to write scripts for automated browser interactions. Its key components
include Selenium WebDriver for browser automation, Selenium Grid for parallel execution across
multiple machines, and Selenium IDE for record and playback functionality. Selenium supports a variety
of browsers, allowing cross-browser testing, and its flexibility makes it suitable for a range of
applications, from simple websites to complex web-based production systems. Due to its extensive
community support, active development, and compatibility with various testing frameworks, Selenium
has become a fundamental tool in the software testing ecosystem. For backend services, tools like Robot
Framework [36] are quite suitable. Robot Framework is an open-source and highly extensible test
automation framework designed for both acceptance testing and robotic process automation (RPA).
Developed using Python, Robot Framework utilizes a keyword-driven approach that emphasizes
readability and collaboration between technical and non-technical team members. It employs a simple,
tabular syntax in test case files, making it accessible to individuals with varying levels of programming
expertise. The framework supports a wide range of test libraries and can be extended with custom
libraries using Python or Java. Robot Framework is versatile, allowing automation of web, mobile,
desktop, and API testing. Its modular architecture and support for parallel test execution contribute to
its scalability, and integration capabilities with CI tools enhance its suitability for agile development

Push Automated
Build

Automated
deploy on
Test

environment

MergeCreate
new

branch

Review
and

approve

Automated
deploy on
production

Automated
testContinuous Integration

Package

Continuous Deployment

Automated
Test

Verify Release

Issue

Secure
hosting Security

Testing Security
Testing

Security
Scanning

DevelopDesign

Security
ScanningSecure access

management

Create new tag
on Deployment
code repo

Automated
Build

Security
Scanning

Security
Testing

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 31 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

environments. The framework's popularity is attributed to its simplicity, maintainability, and robust
support for test automation across diverse application types.
This category of tests is going to be executed within the CI/CD/CP process through specific automated
pipelines.
Performance testing: It focuses on evaluating the speed, responsiveness, scalability, and stability of a
software service under various conditions. The primary goal is to ensure that the application meets
performance expectations and can handle the expected load without degrading its performance.
Performance testing involves simulating different scenarios and analyzing the system's behavior under
these conditions. During the evaluation process, the following aspects are taken under consideration:

 Load Testing evaluates the system's ability to handle a specific load or concurrent user
interactions.

 Stress Testing evaluates the system's behavior under extreme conditions, beyond its specified
limits.

 Endurance Testing evaluates the system's ability to handle a sustained workload over an
extended period.

 Scalability Testing evaluates the system's ability to scale up or down with changes in user load
or system resources.

 Benchmark Testing compares the performance of the application against industry standards or
competitors.

 Responsiveness Testing evaluates the system's responsiveness and user experience.
As the definition of this type of testing procedure is highly dependent on the characteristics of the system
under test (SUT) is difficult to create a solution that addresses all the potential needs. So, NEMO decided
to include these tests in the CI/CD/CP approach to facilitate the integration with any open-source
framework that fits better to the developers' needs. Some of the most popular open-source tools are:
Apache JMeter [37] is a widely used, open-source performance testing tool designed for evaluating the
performance and scalability of web applications. Developed in Java, JMeter provides a user-friendly
graphical interface that allows testers to create and execute load tests, performance tests, and stress tests.
It supports various protocols, including HTTP, HTTPS, FTP, and more, enabling the simulation of
diverse user scenarios. JMeter allows users to define test plans, set up thread groups, and configure
samplers to simulate user interactions. With features such as assertions, listeners, and reporting tools,
JMeter facilitates comprehensive analysis of application performance, identifying bottlenecks, and
providing valuable insights into system behavior under different loads. Its extensibility and active
community support contribute to its popularity in the field of performance testing.
Taurus [38] is an open-source test automation framework designed for continuous testing and
performance testing. Offering a configuration-driven approach, Taurus simplifies the setup and
execution of tests using various testing tools, including JMeter, Gatling, Selenium, and others. It
provides a simple YAML-based configuration file, allowing users to define test scenarios, parameters,
and desired configurations in a straightforward manner. Taurus aims to enhance testing and integrate
seamlessly with CI systems by providing flexibility, scalability, and support for diverse testing needs.
With its ability to orchestrate and execute tests across multiple tools, Taurus facilitates efficient and
comprehensive testing in continuous integration pipelines. The framework's user-friendly approach
makes it accessible to both technical and non-technical users, contributing to its popularity in the realm
of automated testing and continuous integration.
Syntax testing: It checks and validates the correctness of the syntax in code, and the compatibility of
the users' applications with the NEMO platform. Besides the adherence to the NEMO syntax rules, these
tests are going to check if the users' applications include all the required information for the successful
deployment of the application in the NEMO continuum. These tests are going to be included in the
Intend-based SDK/API component (see section 5.4) and the following open-source tool will be

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 32 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

considered as one of the potential reference implementations. Checkov [39] is an open-source static
code analysis tool used for finding misconfigurations in infrastructure as code (IaC) and supports various
IaC tools such as Terraform, CloudFormation, and Kubernetes manifests. It scans IaC files to identify
security and compliance issues, ensuring that cloud infrastructure configurations adhere to best practices
and compliance standards. Checkov leverages a comprehensive set of built-in checks and policies, and
it allows users to customize and extend these checks based on their specific requirements. It can be
easily integrated into CI/CD pipelines so developers can proactively identify and address security
vulnerabilities and misconfigurations in their cloud infrastructure, promoting a secure and compliant
cloud environment.
System testing: It evaluates the overall NEMO platform rather than individual components and
considers the interactions and dependencies between components to ensure they work cohesively. These
tests follow, after the successful execution of all the individual integration tests between the NEMO
components and combined with the performance tests ensure the current version of the platform is ready
to be released. These tests will simulate specific and complicated end-to-end actions to verify that the
NEMO system is functional. Some of these tests will consist of the registration of new VIMs, the
upload/update/deployment/delete of user services, migration of running microservices, etc. The
implementation of these tests can be based on the open-source tools that have been referred above (i.e.
Selenium, Robot Framework, etc.), and will be executed by specific CI/CD/CP pipelines manually
triggered before every code release.
Security testing: These tests’ procedures in NEMO aim to identify vulnerabilities and weaknesses in
software components to ensure that the system is robust and resistant to security threats and attacks.
Security testing involves assessing various components of the software, including its infrastructure,
code, and user interfaces, to identify potential security risks. The security testing types that are going to
be implemented in NEMO platform are aligned to the following approaches and are executed in the
context of DevSecOps (see section 3.1).

 Static Application Security Testing (SAST): Analyzes the source code, bytecode, or binary code
of an application for security vulnerabilities.

 Dynamic Application Security Testing (DAST): Evaluates the security of a running application
by actively testing it for vulnerabilities during runtime.

 Interactive Application Security Testing (IAST): Combines elements of both SAST and DAST,
providing real-time analysis of applications during runtime.

3.4.2 Assessment & Labelling
The NEMO V&V framework aims to deliver a base mechanism that can be used for service certification.
If the under-test services successfully pass all the predefined tests, then it can be considered a certified
service and it can be safely deployed in the NEMO continuum. The outcomes of each test are going to
be kept to the CMDT and execution details and logs are going to be stored in the CI/CD/CP framework.

3.5 Integration & V&V Plan
NEMO will follow an agile and incremental approach of iteration cycles, grouped in 3 Phases, as
depicted in Figure 11.

 Phase 1: Baseline (M1-M18). Provides the initial NEMO Proof of Concept. Phase 1 starts with
system, specification of the meta-OS Architecture and decomposition (WP1), design analysis,
prototyping (WP2-WP4), integration, testing and validation of all key meta-OS components
(WP4). The outcome will be NEMO Ver. A and initial Living Labs validation and the selection
of the new consortium members and new components from Open Call #1 to be implemented
with Phase 2.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 33 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

 Phase 2: Advance (M19-M30). All NEMO components are further developed (WP2-WP4),
while NEMO is expanded with new functionality added from the new consortium members
accepted via Open Call #1. Stronger integration with 5G networks and MANO systems will be
realized and validated in Living Labs). The outcome will be NEMO Ver. B and Living Labs
validation, along with new AIoT applications and services from Open Call #2.

 Phase 3: Mature (M30-M36). Focus on validation and optimization, and more realistic field
conditions testing and verification, not only from NEMO consortium but also from 3rd parties
selected via Open Call #2, increasing system TRL and preparing NEMO Ver. 1.0, validated in
Living Labs. This phase also strengthens activities related to engagement of open-source
communities and relevant initiatives, ensuring accessibility, sustainability and availability in
open-source platforms.

Figure 11: NEMO project phases and main meta-OS version releases

It should be underlined that each phase will follow an agile and incremental Continuous Integration/
Continuous Deployment/ Continuous Piloting (CI/CD/CP) approach, as explained in the previous
subsections. The proposed approach allows responding to developments in the state of the art and
emerging technology trends, as well as to continuously improve the results based on experimentation in
the field.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 34 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

4 NEMO Integrated Platform (Ver. 0)
NEMO aims to build the meta-Operating System (meta-OS), which will enable multi-cluster and multi-
network orchestration of containerized workloads across the IoT, edge and cloud continuum. As a (meta-
)OS, NEMO will be user-centric, facilitating users to develop and deploy on top of NEMO. Moreover,
NEMO will enable cloud and infrastructure providers to integrate their computing and networking
resources into NEMO’s infrastructure. The meta-OS architecture to realize this objective is defined
through 8 architectural views, as detailed in D1.2 [1].
Following the defined functional architecture, the v0 of the NEMO integrated platform focusses on the
specifications of the interactions among NEMO components. These are depicted in the high-level
architecture presented in Figure 12. The development of the relevant functionality is materialized
through the individual NEMO components, each of which is developed as cloud-native micro-service.

Figure 12: The NEMO high-level architecture

The main updates towards the developed NEMO functionality are provided in the next subsection.

4.1 Meta-OS functionality in NEMO v0
At this stage of the project, the development of NEMO components is in progress and initial versions
have been released, as described in D2.1 and D3.1. The following subsections provide an overview of
the NEMO functional layers and main logic supported in the current versions.

4.1.1 NEMO Infrastructure Management
This layer deals with the management of infrastructural resources, mainly referring to the network level.
It integrates and builds upon existing state-of-the-art solutions for infrastructure management, such as
Kubernetes and MANO. This layer aims to support seamless connectivity among NEMO resources in a

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 35 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

secure and coherent way across all distributed heterogeneous nodes it may comprise, while respecting
application requirements and without compromising privacy or usability. The Federated Meta-Network
Cluster Controller (mNCC) delivers point-to-multipoint connectivity, manages connectivity resource
reservation requests and supports network status assessment and prediction. Moreover, this layer
integrates Time Sensitive Network (TSN) to support deterministic communication between wireless and
fixed devices in the context of private 5G networks. Initial versions of these components are focused on
the network exposure through a user-friendly API that will facilitate the development of applications
and services on top of network resources. The API also considers the definition and communication of
intents for application delivery over the network. Moreover, the TSN component is focused on intent-
based slice creation though RESTful API on 5G Core prototype, able to create 5G LAN for private 5G
networks, as prerequisite for delivering TSN functionality.

4.1.2 NEMO Kernel
This layer aims to support homogenized management of workloads across the IoT-edge-cloud
continuum within the meta-OS. Central component is the meta-Orchestrator (MO), supported by the
Cybersecure Microservices’ Digital Twin (CMDT), the Intent-based Migration Controller (IBMC) and
the Secure Execution Engine (SEE).
The meta-orchestrator (MO) system is designed to enable decentralized computing workflows across
IoT-Edge-Cloud. It acts as a central orchestrator, managing complex distributed systems while
optimizing resource utilization and improving scalability. Integrating and coordinating with different
components within the distributed system architecture which facilitates interoperability and
compatibility. The MO's intelligent decision-making capabilities ensure efficient coordination and
resource management, contributing to the system's adaptability and efficiency.

The component developed and tested of the MO at this stage is:

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 36 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Orchestration Engine: This central brain coordinates and manages complex computing resources to
ensure seamless integration and simplification of distributed computing. Moreover, this central
component enables the MO to manage and control the distributed computing workflow efficiently.
The other multifaceted components of the MO are presently in progress, as the developmental phase of
the project is still in the design stage. Following the establishment of the communication and services,
the remaining components will assume their respective roles and engage in seamless communication
within the MO system, thus, their development and integration into the system are inevitable. These
components are the following.
Analytics Engine: This component monitors and analyses performance metrics to identify bottlenecks
and inefficiencies, providing insightful reports and visualizations that facilitate data-driven decision-
making.
Resource Manager: The Resource Manager oversees the lifecycle of resources, including provisioning,
scaling, monitoring, and de-provisioning services. It maintains a comprehensive view of system
capabilities and optimizes resource usage and allocation to meet dynamic demands effectively.
Decision Engine: This central intelligence unit enforces policies, optimizes, and allocates workloads
based on workload characteristics and performance metrics.
The current capabilities of the meta-orchestrator cover two main tasks: the automated creation and
configuration of a multi-cluster environment, including the installation of Open Cluster Manager (OCM)
to manage it, and a subscription service designed for deploying applications.
These tasks are triggered when the MO consumes a message from the designated queue in RabbitMQ.
The message sent by the publisher contains the necessary information in YAML file format.

In the case of the cluster creation, the YAML file consists of a single field: "numberofclusters." When
the MO consumes this message, it first creates a cluster designated as the "hub" cluster. Then, additional
clusters are created according to the number specified in the YAML file and are joined to the hub as
“managed clusters”.
Concerning the subscription task, the YAML file consists of three fields: "name," "namespace," and
"pathname". The name and namespace fields denote the name of the application and the namespace
where it will be deployed. The pathname references a Git repository, Helm chart, or S3 object containing
the manifests for the deployment. Upon message consumption, the MO propagates the subscription to
all managed clusters, which can then download directly from the storage location, hence performing the
deployment. After the deployment, the repository will be monitored for new or updated resources.
The initial version of the NEMO Kernel includes specifications and basic functionality of the rest
components of the NEMO kernel, too. CMDT supports a simple NEMO workload descriptor to facilitate
the discovery, findability, coordination, and tracking of micro-service instances and unikernels.
Moreover, cybersecurity aspects have been considered through the model of a Distributed Ledger
Technology (DLT) at the core of the CMDT.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 37 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

In addition, the SEE framework has been elaborated to enable migration of microservices, unikernels,
and binaries to the IoT devices, the edge, or the cloud. One objective is to produce a stronger isolation
by running common Linux containers or unikernels in virtual machines. In its first version, SEE
integrates container runtime runh, which is based on the Open Container Initiative8 (OCI) Runtime
Specification for supporting both unikernels and Linux containers. Ongoing work is dedicated to
incorporating support for Kata Containers [40].

4.1.3 NEMO Service Management
This layer acts as a DevZeroOps layer offering full-stack automated operations, greatest flexibility,
improved developers' productivity and direct monetization and sustainability. It is composed of the
NEMO Plugin & Applications Life-Cycle Manager (LCM), the Intent-based API/SDK and the
Monetization and Consensus-based Accountability (MOCA) components.
The NEMO Plugin & Applications Life-Cycle Manager (LCM) aims to enable deployment of
workloads, applications or plugins, onto NEMO, through the user’s space, as well as support their
lifecycle. The Intent-based API/SDK enables and facilitates third parties to interact with NEMO,
exposing NEMO functionalities as programmatic APIs and providing software libraries for facilitating
NEMO adoption and NEMO-compliant development. Moreover, the Monetization and Consensus-
based Accountability (MOCA) aims to support monetization and accountability for both the applications
and plugins running on NEMO, but also for network resources integrated into the NEMO infrastructure.
The components of this layer are described in detail in section 5.

4.1.4 NEMO Cross-cutting Functions
The NEMO cross-cutting functions include:

 Cybersecurity and unified/federated access control, which ensures the security of metaOS
operations across the metaOS layers, in the context of cloud native cybersecurity, federated
access and identity management across the metaOS components, as well as secure and encrypted
inter-process communication.

 Data & Services Policy Compliance Enforcement via multi-faced, policies able to cope with the
different aspects of the applications life cycle (security, privacy, costs, environmental impact,
etc). These functions ensure that PRESS rules and GDPR, as well as user-defined rules, are
respected across the metaOS layers and components.

 Cybersecure Federated MLOps, which provides inherent integration of AI operations and
services into the metaOS, yielding AI-based decisions and or controls alongside the metaOS.
This function aims to support the complete Machine Learning (ML) lifecycle, e.g., from ML
development and training to serving and inference performed within metaOS components,
ensuring AI cybersecurity.

Towards cybersecurity, NEMO implements an Identity Management and Access control component.
This component provides Authentication, Authorization and Accounting (AAA) services to NEMO
components and defines roles to support RBAC rules, relying on Keycloak [41]. Moreover, it
incorporates the NEMO Access Control module, which enforces custom and configurable controls on
NEMO RESTful interfaces exposed to third parties. The Access Control module already integrates with
the Identity Management. It also supports the Intent-based API in the workload provisioning process. In
its first version, the Access Control may receive the list of exposable interfaces for a given components
and automatically expose them, having configured and applied specified access policies. Moreover, the
cybersecurity vertical includes the Intercommunication Management / Security module, which caters
for secure interconnection among NEMO components. This module is based on RabbitMQ [42] and

8 https://opencontainers.org/

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 38 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

current work includes fine-grained definition of internal NEMO interactions. Moreover, initial
integrations have been developed for the meta-Orchestrator.
Policy Compliance is addressed by the PRESS & Policy Enforcement Framework (PPEF). PPEF aims
to enforce privacy compliance applying GDPR principles, as well as workload policies defined in SLA
fashion. PPEF collects information on policy compliance through a set of measurable metrics, which
are analyzed to identify potential SLA violations. Both collected metrics and potential violation events
are fed into the meta-Orchestrator to be considered in workload management. The initial version of
PPEF includes collection of measurable metrics of diverse scope (e.g. node and service usage, energy
consumption) based on Prometheus, Kepler [43], Scaphandre [44] and Pixie [45], as well as their
federation into Thanos to support multi-cluster monitoring.
The Cybersecure Federated MLOps vertical is addressed through the Cybersecure Federated Deep
Reinforcement Learning (CF-DRL) component. The first version of CFDRL focused on enhancing and
speeding up the learning process of machine learning models in a collaborative and distributed way. It
combines two learning paradigms, namely Federated Learning (FL) and Reinforcement Learning (RL).
The NEMO solution is based on the Flower [46] Federated Learning (FL) framework, investigating the
impact of secure aggregation mechanisms in federated learning environment. It also includes a proof of
concept on applying FL in a simple RL environment. Moreover, CFDRL caters for cybersecurity during
the learning process through malicious attack detection and mitigation. Initial work includes addressing
privacy preservation challenges in knowledge aggregation and transfer, integrating Flower with the
Private Aggregation of Teacher Ensembles (PATE) technique. Moreover, generative AI has been used
to investigate and address attacks in Intrusion Detection System (IDS) data, normally belonging to FL
nodes. IDS datasets have been synthetically created through a Generative Adversarial Network (GAN)
and label flipping attack has been applied during FL training. Accordingly, a first approach on such
attack detection has been developed vis a secure aggregation technique.

4.2 NEMO v0 PoC
This section presents early integration activities among the NEMO components.

4.2.1 Meta-Orchestrator: Orchestration Engine Component Test & Deployment
The code and the first deployment test can be found in the public and official repository of NEMO
project.
To test locally, a docker container running RabbitMQ must be available:
docker run --hostname=my-rabbit --name rabbitmq -p 15672:15672 -d rabbitmq:3-
management

For the local deployment, edit the YAML file under /test/cluster_create.yaml to match
numberofclusters: 1 and run main.go to start listening for requests of cluster creation
go run main.go

Go to the test folder in a different terminal and run cluster_create.yaml to start the creation of the hub
cluster and one managed cluster:
go run cluster_publisher.go

Subscription service
To use the subscription service, go to the integration-component folder and do:
go run subscription.go

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 39 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

In a different terminal, go to the test folder and run subscription.yaml to propagate the subscription to
the repo indicated in the subscription.yaml:
go run subscription_publisher.go

4.2.2 NEMO Access Control: Component Deployment and Early Integration
The source code of the NEMO Access Control component can be found in the NEMO GitLab repository.
It can be installed via the available Helm Chart, using the following commands.
$ git clone https://gitlab.eclipse.org/eclipse-research-labs/nemo-
project/nemo-cybersecurity-and-unified_federated-access-control/access-
control/nemo-access-control.git

$ cd nemo-access-control

$ chmod +x install.sh

$./install.sh

The configuration of the different parameters is possible via the available JSON config file. The
parameters required to set up the Access Control are described in Table 3.

Table 3: Access Control installation parameters

Installation parameters Description Example value
namespace The namespace of the

Kubernetes cluster where
the Access Control will be
deployed

nemo

password The password for the
PostgresDB

password

admin_node_port

The NodePort where the
Admin API is available

31760

admin_gui_api_url

The (internal) URL where
the Admin API is available

http://127.0.0.1:31760

The Admin API needs to run as a NodePort Service, so that the Kong Manager UI knows the IP address
it runs on, in order to correctly retrieve the available resources (Services, Routes, Plugins).

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 40 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Figure 13 shows the output of the installation script.

Figure 13: Access Control installation script output

If we check the Kubernetes resources, we can see that all the necessary components have been installed
successfully (Figure 14).

Figure 14: Access Control Kubernetes Deployments

We can access the dashboard of the Access Control by checking the port the Kong Manager runs on
(nemo-kong-kong-manager) (Figure 15, Figure 16).

Figure 15: Access Control Kubernetes Services

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 41 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Figure 16: Kong Manager Dashboard

The integration of the NEMO Access Control component with the Intent-based API to support workload
provisioning is implemented in via the “Automated Interfaces Exposure API” of Workload
Provisioning. This is available in the NEMO GitLab repository and allows for the creation and exposure
of new resources in the Access Control, based on input detailing the exposable interfaces.
The API can be installed using the following commands:
$ git clone https://gitlab.eclipse.org/eclipse-research-labs/nemo-
project/nemo-service-management/intent-based-sdk_api/workload-
provisioning.git

$ cd workload-provisioning

$ docker compose up —build

The API awaits for an object that has the following format.
{

 "host": "127.0.0.1",

 "port": "8000",
 "endpoint": "/register",

 "service_name": "test",

 "route_name": "test",

 "route_paths": ["/register"],

 "keycloak_client_id": "user",

 "keycloak_client_secret": "secret",

 "keycloak_realm": "nemo"

}

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 42 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

The role of each variable is explained in Table 4.
Table 4: Automated Interfaces Exposure API payload parameters

Payload Parameters Description Example
host The IP of the service that will be protected from Access

Control
127.0.0.1

port The port of the service that will be protected from
Access Control

8000

endpoint The endpoint of the service that will be protected from
Access Control

/register

service_name The name of the Kong Service test
route_name The name of the Kong Route test
route_paths The endpoints which will be exposed by the Access

Control instead of the real service endpoint
[“/register”]

keycloak_client_id The Keycloak Client ID for the service (required to
enable the Keycloak plugin)

user

keycloak_client_secret The Keycloak Client secret for the service (required to
enable the Keycloak plugin)

secret

keycloak_realm The Keycloak Realm for the service (required to enable
the Keycloak plugin)

nemo

Figure 17 shows the usage of the API’s Swagger, in order to create the Kong resources.

Figure 17: Automated Interfaces Exposure API Swagger - Request

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 43 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Figure 18 shows the response of the API. The request was successful and a Kong Service, Route and
Kong Plugin were created.

Figure 18: Automated Interfaces Exposure API Swagger - Response

Figure 19 shows the logs of the API Server. We can see the details of the objects created in Kong.

Figure 19: Automated Interfaces Exposure API logs

In the Kong Manager Dashboard, we can see that the Service “test” was successfully created and its
details (Figure 20, Figure 21).

Figure 20: Kong Manager - Service

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 44 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Figure 21: Kong Manager - Service details

Figure 22 and Figure 23 show the “test” Kong Route and its details.

Figure 22: Kong Manager – Route

Figure 23: Kong Manager – Route details

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 45 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Figure 24, Figure 25 and Figure 26 show the Keycloak plugin that was enabled for the “test” Route and
its details.

Figure 24: Kong Manager – Keycloak plugin

Figure 25: Kong Manager – Keycloak plugin details (1)

Figure 26: Kong Manager – Keycloak plugin details (2)

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 46 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

5 NEMO components towards third-party
integration

This section reports the latest specifications and design options for the NEMO components of the
Service Management layer in the NEMO architecture. These components provide a middleware between
core NEMO functionality and workloads, but also end users. They support ZeroOps principles and
expose interfaces to external entities (services or users). Moreover, the supported services include
Lifecycle Management and DLT-based accountability of workload or infrastructure usage and
collectively contribute to NEMO openness and adoption by third parties, referring to application or
infrastructure owners, as well as developing entities.

5.1 Intent-based Migration Controller

5.1.1 Overview
The Intent-based Migration Controller (IBMC) plays a pivotal role within the NEMO ecosystem,
specifically tailored to facilitate the seamless migration of computing workloads across the dynamic
landscape of the IoT to Edge to Cloud Continuum. It operates as a critical component that leverages
intent-based networking principles, ensuring optimal resource utilization, scalability enhancement, and
uninterrupted service delivery throughout the migration process.
In leveraging intent-based networking principles, the IBMC ensures optimal resource utilization,
scalability enhancement, and the uninterrupted delivery of services throughout the migration process.
This paradigm allows the IBMC to interpret and act upon high-level migration intents, contributing to
the adaptability crucial for navigating the complexities of the meta-OS environment.

5.1.2 Background
The development of the Intent-Based Migration Controller (IBMC) is rooted in the intricate landscape
of contemporary distributed computing and the evolving meta-OS framework. As computing
environments transition towards decentralized architectures, the imperative for efficient and adaptable
workload migration mechanisms becomes pronounced.
In the realm of Intent-Based Networking (IBN), the IBMC aligns itself with state-of-the-art technologies
that harness the power of automated decision-making driven by high-level user intents. Leveraging
advancements in machine learning, artificial intelligence, and orchestration frameworks, the IBMC
exemplifies the cutting edge of intelligent workload migration within the meta-OS paradigm.
Examples of such technologies include the use of reinforcement learning algorithms to predict optimal
migration paths based on historical data, and the application of containerization technologies like
Docker9 and orchestration platforms like Kubernetes10 to encapsulate and manage migrating workloads.
Kubernetes, although not inherently intent-based, offers mechanisms for service and workload
migration. In Kubernetes, services can be migrated using rolling updates11, where new instances of a
service are gradually introduced while phasing out the old ones. Alternatively, blue-green12 deployments
enable the seamless switch between two environments, ensuring continuous service availability during
migration.

9 https://www.docker.com/
10 https://kubernetes.io/
11 https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/
12 https://www.redhat.com/en/topics/devops/what-is-blue-green-deployment

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 47 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

In the context of microservices, Kubernetes provides tools like Helm13 charts for packaging, and tools
like Istio14 for service mesh architecture, offering sophisticated traffic management during migration.
Alternatives such as Docker Swarm15 and Apache Mesos16 also present different approaches to
microservices orchestration and migration.
While focusing on Kubernetes seamless migration of services or clusters, the literature brings us into
the tool Velero17, used de facto. The approach of this framework is to schedule backups for the desired
services that are stored into S3 objects. Then, the user utilizes the restore functionalities to deploy the
services into a running targeted cluster. The aim of this backup-restore is to be aligned with the blue-
green approach.
The IBMC, building upon these foundations, introduces intent-based principles to migration, allowing
users to express high-level objectives, constraints, and requirements. This marks a departure from
traditional migration methods, infusing a level of abstraction that aligns with the meta-OS philosophy.

5.1.3 Architecture & Approach

5.1.3.1 Architecture
Situated within the meta-Architecture framework (MAF) stated in D1.2, the architectural design of the
Intent-Based Migration Controller (IBMC) seamlessly integrates into the NEMO Kernel and
Continuum. At its foundation, the IBMC adopts a modular structure comprising pivotal components
working collaboratively to ensure the efficient migration of workloads.
Development View
Figure 27 illustrates the components underneath the Development View of the IBMC.

 Intent Interpretation Module: The IBMC incorporates an Intent Interpretation Module tasked
with comprehending and extracting user-defined migration intents. This module leverages
advanced techniques such as natural language processing and semantic analysis to translate
high-level objectives, constraints, and requirements into actionable instructions.

 Migration Engine: Positioned at the core of the IBMC, the Migration Engine takes the translated
migration intents and formulates a comprehensive plan for the migration process. It considers
various factors, including workload characteristics, network conditions, resource availability,
and latency requirements. This holistic approach ensures informed and strategic decision-
making throughout the migration.

 Delivery Module: Dedicated to encapsulating and disseminating information pertinent to the
migration process, the Delivery Module plays a crucial role in communicating with other
components affected by the migration. It receives data provided by the Migration Engine and
establishes communication with the meta-Network Cluster Controller (mNCC). This
communication aligns with the Intent-Based Networking (IBN) paradigm, contributing to a
cohesive and synchronized migration process.

13 https://helm.sh/
14 https://istio.io/
15 https://docs.docker.com/engine/swarm/admin_guide/
16 https://mesos.apache.org/documentation/latest/high-availability-framework-guide/
17 https://velero.io/docs/v1.12/

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 48 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Figure 27: Development view of IBMC

Process View
The Process View is designed to delineate the workflow for a cluster migration within the contextual
framework of NEMO. As illustrated in Figure 28, the blue-green approach is proposed for the seamless
integration of the Intent-Based Migration Controller (IBMC) into the migration process. The sequential
steps involved in migrating the cluster are explicated as follows:

1. The candidate “cluster(1)” initiates a proactive backup of services and configurations, storing
them in an S3 bucket.

2. Simultaneously, the PRESS and Policies Enforcement Framework (PPEF) along with the
Cybersecure Federated-Deep Reinforcement Learning (CF-DRL) are entrusted with monitoring
the cluster. They provide contextual information regarding Quality of Services (QoS) aligned
with the Service Level Agreement (SLA).

3. If any Service Level Objective (SLO) either exceeds the threshold of an anticipated value or is
predicted to do so, an intent file is triggered and transmitted to the meta-Orchestrator (MO).

4. The MO processes these intents, typically in YAML file format, through the Integration
Component. Subsequently, it issues a request to the meta-Network Cluster Controller (mNCC)
to retrieve available cluster candidates for service migration.

5. The mNCC provides a cluster ID, enabling the IBMC to initiate the migration of services. Thus,
the “cluster(2)” is chosen as the target one.

6. The extraction of the full intent, which includes the cluster ID and metadata, is facilitated
through the Intent Interpretation Module.

7. The Migration Engine computes the migration process, necessitating a restore from the S3
bucket to retrieve all information associated with “cluster(1)”. This module encapsulates
migration-related information, such as SLO violations and metadata, creating a feedback loop
to be shared with the CF-DRL module. The objective is to enhance the models for predicting
service degradation.

8. Finally, the Delivery Module deploys the services into “cluster(2)”. If applicable, “cluster(1)”
can subsequently remove the running services.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 49 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Figure 28: Workflow of a migration of clusters utilizing the IBMC

5.1.3.2 Approach
The approach taken by the IBMC is deeply rooted in the paradigm of Intent-Based Networking (IBN).
Unlike traditional migration methods, the IBMC introduces a higher level of abstraction, allowing users
to express migration intents at a semantic level rather than delving into intricate technical details. This
approach brings about several key facets:

 Intent Abstraction: Users interact with the IBMC through high-level intents, expressing goals,
constraints, and desired outcomes. This abstraction shields users from the complexities of
migration intricacies, empowering them to focus on strategic objectives.

 Dynamic Decision-Making: The IBMC employs dynamic decision-making, adapting its
migration strategies in real-time based on the evolving state of the distributed system. This is
achieved through continuous analysis of environmental factors, workload conditions, and
historical performance data.

 Feedback Loop Integration: To enhance its adaptive capabilities, the IBMC incorporates a
Feedback Loop. This loop collects and analyzes feedback from the migration process,
incorporating insights into future decision-making (CF-DRL component). It ensures a
continuous improvement cycle, aligning the IBMC with the evolving needs of the meta-OS
environment.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 50 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

5.1.4 Interaction with other NEMO components

5.1.4.1 Cybersecure Federated-Deep Reinforcement Learning (CF-DRL)
The IBMC collaborates closely with the CF-DRL module during the cluster migration process. This
collaboration is initiated when CF-DRL, along with PPEF, monitors the cluster and provides contextual
information on SLAs. The IBMC, upon encountering SLO violations during the migration, establishes
a dynamic feedback loop with CF-DRL. This interaction facilitates the exchange of information crucial
for refining models that predict service degradation, contributing to an adaptive and intelligent migration
strategy.

5.1.4.2 Meta-Network Cluster Controller (mNCC)
The IBMC's interaction with the mNCC is pivotal in determining suitable cluster candidates for service
migration. The IBMC communicates with the mNCC through the Integration Component. This
interaction results in the retrieval of a cluster ID, a key identifier enabling the IBMC to initiate the
migration process effectively.

5.1.4.3 Meta-Orchestrator (MO)
The meta-Orchestrator (MO) plays a central role in the IBMC's workflow. The MO receives migration
intents triggered by SLO violations or predictions. These intents are processed through the Integration
Component.

5.1.4.4 PRESS and Policies Enforcement Framework (PPEF)
The IBMC engages with the PPEF to monitor the cluster's health and context. The information provided
by PPEF contributes to the overall understanding of the cluster's state, guiding the IBMC in its migration
decision-making process. This interaction ensures that the migration aligns with established policies and
enforcement frameworks, fostering a secure and compliant cluster transition.

5.1.5 Conclusion, Roadmap & Outlook
The IBMC within the meta-OS framework stands as a significant advancement in the NEMO platform.
It contributes to the seamless migration of workloads across the IoT to Edge to Cloud Continuum,
maintaining a dynamic equilibrium within the meta-OS environment.
Looking ahead, the roadmap for the IBMC involves continuous refinement and adaptation based on
evolving requirements and technological advancements within the meta-OS paradigm. Future directions
and potential enhancements are outlined to ensure the IBMC remains at the forefront of migration
capabilities within the evolving landscape of meta-Operating Systems.

5.2 Plugin & Applications Lifecycle Manager

5.2.1 Overview
The Plugin & Applications Lifecycle Manager (LCM) is a flexible mechanism for unified, just-in-time
plugins and applications life cycle management across the NEMO ecosystem. The Lifecycle Manager
(LCM) will be the interface between the NEMO ecosystem and the NEMO users, providing an interface
for seamless deployment of workloads (services, applications, plugins) in the NEMO ecosystem. In
addition, LCM will check for available updates/bug fixing and install them over the air.
While a workload is running in NEMO meta-OS an event-based mechanism monitors critical events
related to the performance of the service. Moreover, a security controller monitors security related
events, alerts the user for detected abnormalities, and applies mitigation actions based on specified cyber

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 51 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

threats. Finally, the UI of the LCM will incorporate interfaces to other NEMO components like Intent-
based API and CMDT.

5.2.2 Background
While initially we have chosen Jenkins framework as the base for core LCM functionalities, the
dominant role of Kubernetes in the NEMO meta-OS revealed the need of choosing a framework that is
more appropriate to this collaboration. To this end us we have considered ArgoCD and Flux to automate
continuous delivery and lifecycle management of NEMO workloads. Based on the aforementioned
frameworks, LCM enables software releasing continuously by interacting with various testing and
deployment methods, promoting easy integration and deployment of workloads. In addition, we extend
visualization capabilities employing the LCM Visualization component.
The LCM Visualization component builds upon Advanced Visualization Toolkit (AVT18), which is a
sophisticated set of visualization tools, capable of connecting with state-of-the-art streaming platforms
and databases, while it can be tuned to consume different kinds and formats of data, providing essential,
interactive and user-friendly visualizations. The AVT is provided as a framework that consists of a web
application, accompanied by a dedicated server based on Node.js19 to handle all the external connections,
real time messaging and user management. Both components are provided as docker containers with
two separate docker images. The AVT front-end is based on the Angular.io20 framework in conjunction
with a set of visualization libraries that are interchangeably used to cover specific needs and
particularities of the analyzed data.
ArgoCD
ArgoCD [10] is a top-tier continuous delivery and GitOps tool designed specifically for Kubernetes.
Embracing the GitOps methodology, ArgoCD automates the deployment process by ensuring that the
state of applications in a Kubernetes cluster aligns with configurations stored in Git repositories. Its
strengths lie in declarative application definition, allowing users to articulate Kubernetes manifests in a
version-controlled manner.
ArgoCD offers features such as automated synchronization, rollback capabilities, and support for multi-
environment deployments. With an intuitive web interface and native Kubernetes integration, ArgoCD
streamlines the deployment lifecycle, fostering collaboration, traceability, and efficiency.
Argo also facilitates visualization and analysis of deployment status, making it an efficient and resource-
conscious choice for organizations adopting Kubernetes-centric continuous delivery practices.
In short, some interesting ArgoCD capabilities include:

 Automated deployment of applications to specified target environments.

 Ability to manage and deploy to multiple clusters.

 Multi-tenancy and RBAC policies for authorization.

 Rollback/Roll-anywhere to any application configuration committed in Git repository.

 Health status analysis of application resources.

 CLI (Command Line Interface) for automation and CI integration.

 Webhook integration (GitHub, BitBucket, GitLab)

18 https://aegisresearch.eu/solutions/advanced-visualization-toolkit/
19 https://nodejs.org/en/
20 https://angular.io

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 52 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

 Audit trails for application events and API calls.

 Parameter overrides for overriding helm parameters in Git.

Figure 29: ArgoCD Architecture

Flux
Flux [11] is an open-source tool designed for automating continuous delivery through a GitOps
workflow for Kubernetes applications, which has been considered for automating deployments of the
NEMO framework per se and has, thus, been introduced in section 3.2.2 from that perspective. The
analysis here aims to identify benefits of Flux for the NEMO LCM development.
Flux ensures that the desired state of applications in a Kubernetes cluster aligns seamlessly with
configurations defined in declarative YAML files, by leveraging version-controlled manifests stored in
Git repositories.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 53 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

With its commitment to GitOps best practices, Flux enhances collaboration, auditability, and
consistency, making it a powerful asset for streamlining the deployment and lifecycle management in
complex Kubernetes environments.
Key features include automated synchronization, rollback support, and event hooks. Flux promotes
scalability in microservices architectures, facilitating the efficient deployment, update, and scaling of
services.
Some interesting features of Flux also include:

 GitOps for both apps and infrastructure.
 Application deployment (CD) and progressive delivery (PD) through automatic reconciliation.
 Compatibility with all major Git providers and container registries.
 Adherence to Kubernetes security policies and tight integration with security tools and best-

practices.
 Provision of health assessments and alerting to external systems.
 Flux works with Kubernetes role-based access control (RBAC)

Flux is constructed with the GitOps Toolkit components, which is a set of specialized tools and Flux
Controllers, composable APIs, reusable Go packages for GitOps under the fluxcd GitHub organisation
for building Continuous Delivery on top of Kubernetes.

Falco
Falco [47] is a cloud-native security tool designed for Linux systems. Generally, it employs custom rules
on kernel events, enriched with container and Kubernetes metadata, to provide real-time alerts.
Essentially, Falco consumes Linux kernel system calls and enriches these events with information from
Kubernetes and the rest of the cloud native stack, thus providing real-time detection capabilities for
environments ranging from individual containers to Kubernetes and the cloud.
Falco collects event data from a source and compares each event against a set of rules. An indicative list
of Falco’s sources includes Linux kernel system calls, Kubernetes audit logs and cloud events, however
it is possible to expand Falco data sources via the development of appropriate plugins. As far as the rules
are concerned, naturally Falco comes with a thorough set of rules covering container, host, Kubernetes,
and cloud security, however, as expected, custom rules can be created as well.
Furthermore, Falco is highly scalable due to its containerized architecture and tight integration with
Kubernetes, as realized by Figure 30. Most importantly, it runs as a Kubernetes daemon set, ensuring
that every node in a cluster is monitored, while its integration with Grafana and Prometheus allows for
the visualization and analysis of the produced alerts at scale. We should also notice that Falco is highly
performant and keeps its footprint small via the usage of a minimal set of resources, hence it is not
expected to induce cluster costs in terms of resource and energy consumption, as well as efficiency.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 54 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Figure 30: Falco Architecture

Trivy Operator
Trivy Operator [48] is a Kubernetes operator that allows the continuous scanning of a Kubernetes cluster
for security issues. The operator constantly monitors Kubernetes for state changes and automatically
triggers security scans in response. The operator automatically generates and updates a variety of reports,
including, but not limited to:

 Vulnerability scans. Automatically scans Kubernetes workloads, control-plane and node
components for known vulnerabilities.

 ConfigAudit scans. Configuration audits for Kubernetes resources with predefined rules or
policies.

 Exposed Secret Scans. Scans for exposed secrets with the cluster.
 Role Based Access Control (RBAC) scans. It provides information on the access rights of the

different resources that are installed.
 Software Bill of Materials (SBOM)

The trivy-operator can easily be installed in a Kubernetes cluster with Helm. Figure 31 shows an
overview of the trivy-operator’s high-level architecture.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 55 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Figure 31: Trivy-operator overview

5.2.3 Architecture & Approach
The role of LCM in high-level architecture of NEMO meta-OS is depicted in Figure 32.

Figure 32: LCM Architecture

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 56 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

5.2.3.1 Lifecycle Manager
LCM employs a continuous deployment framework (Flux or ArgoCD) to monitor the lifecycle and
manage a registered workload based on its requirements/manifest. The NEMO LCM will gain ingress
access rights, download the necessary plugins and associated dependencies on demand, and install them
on the devices while checking for security warnings.
Functionalities of LCM are enhanced by a custom developed controlling mechanism, LCM Controller
API, which promotes communication with other LCM submodules as well as with the NEMO
ecosystem, providing endpoints to send and receive information (e.g., Register a workload in internet-
based API, receive registered workloads list for intent-based API).

5.2.3.2 Security Controller
The Security Controller caters for security monitoring at runtime regarding NEMO workloads and alerts
both the user and relevant NEMO components for detected events. This component aims to complement
the security validation checks made before deployment of workloads into NEMO clusters, such as
scanning processes in the Continuous Integration workflow or in the images registries, as these
validation checks take place prior to the containers’ deployment and even block some deployments as a
result of failing the security assessment. The Security Controller aims to identify security incidents
which take place at containers’ runtime and may refer either to events at the system call level or to
vulnerabilities arising from software dependencies, known vulnerabilities and insufficient security
configurations.
In order to address security and vulnerability scanning needs, the Security Controller follows a plugin
based architecture, as depicted in Figure 32 and is composed of the following subcomponents:

 Security Plugins’ Scheduler: Schedules security/vulnerability scans, either on demand, or
following a schedule.

 Security Plugins’ Controller: Orchestrates the spawning of security/vulnerability scanning jobs
of specific type (e.g. system calls’ scans or image/registry/dependencies’ scans)

 Security Plugins’ Manager: Maintains a list of scanning plugins, each one scanning NEMO
resources for a particular grouped set of vulnerabilities.

 Security Plugin Runner: Performs a security or vulnerability scanning of defined level, e.g.
system calls’ scanning, container images’ scanning, etc.

The security plugins follow common specifications regarding their description, in order to be integrated
into the Security Controller. A tentative document for the security plugin descriptor is depicted in Figure
33 in yaml format. Initial plugins to be considered will be based on Falco and Trivy frameworks.

apiVersion: nemo.eu/v1
kind: SecurityPlugin
metadata:
 name: {plugin name}
 description: {plugin description}
 version: {plugin version}
 url: {URL of the plugin homepage, if any}
 target-resource-class: {The resource class for which the plugin is targeted
to, if any}
plugin:
 type: {type of security plugin}
 timeout: {Time in ms before a connection gets characterized as timed out}
 scanned-resource: [{List of alert rules}]
 alert-rules: [{List of resources to be scanned}]
 workspace-type: {Location type of the plugin, may be “volume”, or “remote”}

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 57 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

 workspace-chroot: {The home directory of the plugin}
 flavour: {Programming language of the plugin}
 command: {The command to run to execute the scan}

Figure 33: Security plugin descriptor document example

Finally, the events identified, or security scan results generated by the running security plugins are
communicated to interested NEMO components for being consumed. Specifically, they can be
forwarded to the meta-Orchestrator to be considered during decision of workload placement, as well as
to the Monetization and Consensus-based Accountability (MOCA) component to be considered for
accounting purposes. Moreover, security events or scan results might be of interest to the Cybersecure
Microservices’ Digital Twin (CMDT) to be recorded in workloads’ history, as well as to the PRESS &
Policy Enforcement Framework (PPEF) for monitoring compliance to defined policies and SLAs.

5.2.3.3 Event-based Response
The event-based response component aims to apply automated responses to events triggered by user
input or identified by other NEMO components, such as the PRESS & Policy Enforcement Framework
(PPEF) or LCM’s Security Controller. Indicatively, the Event-based Response supports the following
activities:

 Workload responses: These include workload installation and automated updates, based on
workload owners’ preferences.

 Resource responses: These include automated onboarding or releasing of resources, based on
resources’ owners’ preferences.

 Security responses: These refer to automated controls imposed on workload or resources’
configuration and management as a result of security incidents identified. Indicatively, container
images being assessed of high risk can be automatically blocked from being deployed.
Moreover, workloads may be paused or shut down as a result of identified vulnerabilities at
runtime.

This subcomponent will follow a modular architecture, similar to the Security Controller, in order to
easily integrate additional responses.

5.2.3.4 LCM Visualization
The LCM Visualization is the interface between the end-users and the NEMO meta-OS ecosystem. It
grants access to privileged users to manage their workloads and monitor their performance and security.
The internal architecture of a deployed solution is depicted in Figure 34.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 58 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Figure 34: LCM Visualization architecture

The front-end container encompasses the main User Interface (UI) and the complementary web server
that serves it. The interface’s internal proxy configurations are handled inside this container. The back-
end container contains the server-side middleware, which is responsible for handling all the necessary
external communications in the deployed environment and the processing activities of the toolkit.
Several adapters are integrated in this core component in order to support real-time data streams (e.g.,
FIWARE, Kafka, etc.), database connections (e.g., MongoDB, MySQL), different kinds of data formats
(e.g., JSON files), REST APIs and more. The implementation of the required data queries and the needed
pre-processing activities are taking place within this component.
Currently, the visualization of LCM includes screens to register a workload in NEMO meta-OS, to
retrieve the lists of registered workloads and interface to deploy and manage workloads.

5.2.4 Interaction with other NEMO components

5.2.4.1 Identity management
The LCM consumes AAA services from the Identity Management component. Indicatively, it will
perform entities’ authentication and authorization to provide meta-OS consumers access to their
workload data.

5.2.4.2 Access Control
The LCM will rely on the Access Control component for controlling access based on requesting user’s
or service’s role.

5.2.4.3 Intent-based API
The LCM is the interface to the end-user, providing access to register a workload in NEMO meta-OS.
Thus, any workload registration or deployment requests made through the LCM Visualization are
forwarded to the API to be further processed. Moreover, the LCM receives request for executing
workload deployment through the meta-Orchestrator. The LCM requires access to the Workload
Registry in order to receive information about the workloads registered or running on NEMO.

5.2.4.4 meta-Orchestrator
The LCM interacts with the meta-Orchestrator both as an input and output. As an output, the LCM
provides installation and deployment commands such as (install/uninstall, start/restart/stop). As an
input, the meta-orchestrator provides feedback and updates regarding the status and progress of the
workflow migration in order to track and monitor the migration process.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 59 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

5.2.4.5 CMDT
As input to the CMDT, the LCM provides workload descriptors and workload lifecycle information,
possibly including identified security events and scan results are forwarded to CMDT.

5.2.4.6 MOCA
LCM provides data related to the deployed service and its requirements, which might be interesting for
accounting purposes.

5.2.4.7 PPEF
LCM provides the SLA definitions that concern the plugins that will be deployed in NEMO meta-OS.

5.2.5 Conclusion, Roadmap & Outlook
During the previous period we have defined the technologies to be used in the LCM and its
subcomponents as well as basic interactions with other NEMO components and the role of LCM in
NEMO high-level architecture. Next steps include the functional integration within NEMO ecosystem
by implementing structured information exchange and deployment to the working environment.

5.3 Monetization and Consensus-based Accountability

5.3.1 Overview
The Monetization and Consensus-based Accountability (MOCA) component realizes the pre-
commercial exploitation of the NEMO platform. This mechanism provides a trusted and secure
mechanism for any type of user who offers or consumes resources to the NEMO platform. The main
goal of the MOCA component is to provide an accounting service that will quantify reliably and fairly
the account of resources that a provider can use over the NEMO continuum, based on the resources that
have been offered and on the other hand the “cost” of a deployed service. Although the economic
transactions are out of the NEMO context, MOCA implements an accountability mechanism based on
“credits”. In the case of an infrastructure owner or a service provider that offers computational resources
to the NEMO platform, MOCA provides some “credits” to be used for the deployment of services all
over the NEMO continuum. The calculation of the “credits” is based on a sophisticated approach that
takes under consideration multiple factors such as the amount of the offered computational resources,
the resource demand in specific locations, and the type of offered infrastructure (i.e. edge cloud, 5G
RAN, IoT devices, GPUs etc.). From the consumer’s perspective, each deployed service occupies
specific computational and network resources that reflect a "cost" for the service owner. This approach
enables the creation of new business models allowing volunteers and professionals to adopt the NEMO
platform and offer hosting and migration services according to the resources as a service (RaaS)
paradigm. MOCA offers a traceable way to build future business trade-offs between providers sharing
bundles of computing, memory, storage resources and I/O resources for a short period of time based on
DLT-based smart contracts. To achieve its goals, MOCA collaborates with the meta-Orchestrator, the
CMDT and the monitoring framework.

5.3.2 Background
MOCA’s main technical functionalities, as defined in D2.1, include a) support of secure transactions
resource allocation between stakeholders b) realization of business models based on smart contracts c)
support of an accounting mechanism and d) sharing resource utilization information on the infrastructure
layer. All these functionalities are based on interdomain transactions and data exchange between the
NEMO platform and 3rd party infrastructure owners and service providers. This type of interaction has
several challenges that should be taken under consideration during the design and implementation of
any system like MOCA. These challenges are summarized as follows:

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 60 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

a) Trust establishment among entities from different domains can be challenging.
b) Data inconsistency in terms of formats, structures and semantics across domains that may lead

to inconsistencies and errors in transactions.
c) Interdomain transaction security from threats like data breaches, hacking, and unauthorized

access, as well as data integrity and confidentiality of transactions.
d) Scalability to address growing numbers of participants in interdomain transactions, so that the

system is able to handle increased transaction volumes without sacrificing performance.
e) The complexity of the automated decision mechanism increases as the systems become smarter

and more parameters are taken into account.
MOCA addresses the above challenges by embracing DLT technologies and provides a by-design
secure, trusted, transparent, and decentralized approach for interdomain transactions in NEMO. In more
detail, contrary to traditional interdomain transactions, where parties often encounter issues related to
the lack of trust between entities, the need for intermediaries, and the potential for discrepancies in
information, blockchain's decentralized and distributed ledger architecture mitigates these challenges.
Furthermore, Blockchain provides a shared, transparent, and immutable ledger that is accessible to all
participants, ensuring a single version of the truth. This reduces the risk of disputes and eliminates the
need for a central authority to validate and reconcile transactions. Last but not least, blockchain use of
cryptographic techniques ensures the security and integrity of data, making it resistant to tampering or
unauthorized access. Finally, smart contracts can be part of a sophisticated decision mechanism, which
can support self-executing contracts reducing the need for intermediaries and minimizing the risk of
errors or fraud.

5.3.3 Architecture & Approach
The MOCA component is responsible for ensuring the integrity of a) transactions between NEMO and
3rd-party stakeholders and b) the accountability mechanism.
The component consists of the following sub-components.

5.3.3.1 IPFS
The Interplanetary File System (IPFS) is a P2P (peer-to-peer) distributed file system that can be used to
store and access any type of data (e.g. files, JSON, jpeg etc.). Considering that the information that
accompanies/describes a resource allocation transaction or an accounting action may be large (e.g. larger
than just a few bytes) and thus not appropriate for being stored in the blockchain, we have decided to
integrate an IPFS infrastructure. The different events along with the relevant information will be stored
in a private IPFS network and we store in the blockchain a) the ID of the security event/policy and b)
the corresponding link in the IPFS system. This way, the required time to store the information is
reduced, compared to the case where we store information in the blockchain, and allows for larger data
sizes. The events/policies become accessible via a link, which is stored in the blockchain. The IPFS
guarantees that if any change happens to the source data, it will be detectable. The addition of the smart
contracts component to the NEMO platform allows:
1. The verification that any transaction is handled by NEMO and
2. The guarantee that the details of the transactions are not tampered with (these details are accessed

through the link stored in the blockchain).

5.3.3.2 DApps
The Decentralized applications (DApps) sub-component consists of the Smart Contracts that contain the
logic for storing the original source of the data (IPFS link) and retrieving it. The DApps component is
deployed in a private blockchain network, namely Quorum. This private blockchain network solution
uses the IBFT (Istanbul Byzantine Fault Tolerance) consensus mechanism. This mechanism is one of
the best regarding performance and transaction speed, therefore making the overall implementation very
fast.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 61 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

5.3.3.3 Event Server
The Relay Server subscribes to the RabbitMQ of the Central Repository and is notified of every new
event/policy added. The Server then composes the information in a file to store in the IPFS network.
The Relay Server also exposes REST API endpoints connecting to the DApps, for the components to
access the link for the details of the events/policies in the IPFS. This subcomponent is also responsible
for keeping track of all the events that are emitted from the smart contracts of the DApps. Thus, instead
of querying the blockchain directly to ensure that an event has been triggered (e.g., when a new IPFS
link is stored), the log the Event Server creates a log to keep track of the emitted events that can be used
to determine whether a call to the DApps was successful and check briefly its most basic details (e.g.
the ID of the event). It should be noted that all the above sub-components are designed to work as
Kubernetes deployments. The Quorum blockchain platform is available as a Helm chart that will also
be deployed in a Kubernetes cluster.

5.3.3.4 Smart Contact Component
The Smart Contracts component and the relevant blockchain network will be deployed in the context of
NEMO. However, the blockchain network which is necessary for the NEMO smart contracts component
operation will in general be a private blockchain network as is the case for numerous
applications/solutions in the market. This means that one or multiple nodes could be deployed within
NEMO, another (or another set) on external entities. The NEMO clients do not need to contribute to the
maintenance or deployment of the blockchain network. This method ensures that:

1. A decentralized solution is offered since the nodes can be hosted on different premises.
2. The data stored are secure since they cannot be deleted, and any tampering attempts are

detectable and
3. There is no single point of failure, since all the nodes hold replicas of the stored data, and one

failed node cannot compromise the entire network.
It is worth stressing that: i) the fact that NEMO relies on a private blockchain network does not decrease
the value of the decentralized solution and ii) protecting NEMO operations through the integration of
blockchain techniques increases the security of the NEMO platform; this does not mean that this is 100%
secure as such a security level does not exist; it means that a higher security level is reached and this
should be considered keeping in mind the value of the protected data.

5.3.4 Interaction with other NEMO components
MOCA communicates directly, either via RabbitMQ or REST APIs, with the core components of the
NEMO platform (to receive this information) and stores it in the blockchain. Figure 35 depicts a high-
level architecture of the MOCA component as well as its relations with the NEMO platform.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 62 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Figure 35: The MOCA component and interactions

5.3.5 Conclusion, Roadmap & Outlook
MOCA provides a significant advantage to the NEMO platform by establishing a distributed secure and
trusted framework that accommodates the transactions between NEMO and external stakeholders.
Currently, the first version of MOCA has been developed and it's ready for the first round of testing in
the stage environment, The next steps involve full integration with the rest of the NEMO platform and
the evaluation through the NEMO trials. The evaluation results will drive the second round of
development and the release of the final version.

5.4 Intent-based SDK/API

5.4.1 Overview
NEMO will rely on its Intent-based Application Programming Interface (API) and Software
Development Kit (SDK) for maximizing the adoption potential by third party entities, including both
the meta-OS consumers and meta-OS partners, as well as external applications and (micro-)services. It
is aimed to expose NEMO lower-level functionality to the outside world in an easily accessible format,
minimizing the effort needed on their side to adapt applications, services and plugins to NEMO-capable
ones, but also introducing minimal distraction compared to common practice for proficient (K8s) cluster
users.

5.4.2 Background
Kubernetes Admission Controllers
Admission controllers are plugins that can be configured to intercept and potentially modify admission
requests to the Kubernetes API server. They are a crucial part of the Kubernetes control plane, helping
to enforce cluster-wide policies and ensure that workloads adhere to defined rules before they are
admitted to the cluster. Admission controllers operate as watchdogs which are responsible for enforcing
custom policies prior to executing requests or persisting objects in etc.
Admission Controllers can be of the following types:

 Mutating Admission Controllers: These controllers may modify (mutate) the content of objects
before they are persisted. Examples include the MutatingAdmissionWebhook.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 63 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

 Validating Admission Controllers: These controllers can deny admission based on certain
criteria, but they cannot modify the object. Examples include the ValidatingAdmissionWebhook.

It should be noted that some Admission Controllers could play the role of both. Moreover, some
Admission Controllers are enabled by default. These controllers are responsible for basic validation and
defaulting. Examples include NamespaceLifecycle, which ensures certain namespace-related policies
are adhered to.
Following the admission controller types, the admission control process is executed in 2 phases, namely
the mutating and the validating phase. As depicted in Figure 36, authenticated requests to the Kubernetes
API pass through the mutating phase, which may augment pods with semantic information useful for
governance and configuration management. Then, schema validation for the request object is executed
and then the request passes through a set of checks enabled by the validating controllers. In this phase,
some requests may not be admitted in the requested cluster or namespace, based on the nature of
checks/policies and the implemented admission controller logic.

Figure 36: Admission control execution process

Kubernetes provides a list of diverse plugins which are used as admission controllers21, while custom
admission controllers can be created via the AdmissionReview API. Some common examples of the
available ones include:

 PodSecurityPolicy (PSP): Enforces security policies for pods.
 ResourceQuota: Enforces restrictions on resource usage in a namespace.
 LimitRanger: Provides default values and limits for resources in a namespace.
 NamespaceLifecycle: Enforces policies related to namespace lifecycle.

NEMO may leverage the concept of the Admission Controllers in both validating workloads before they
are admitted for registration or deployment in the NEMO meta-OS, as well as for enforcing defined
NEMO- or cluster-wide rules before a workload request execution.

Checkov
Checkov [39] is an open-source static code analysis tool for scanning Infrastructure-as-Code (IaC) for
misconfigurations that may expose system vulnerabilities and lead to security compliance issues.
Checkov includes more than 750 pre-defined policies to check for common misconfiguration issues.
Additionally, it supports the creation and contribution of custom policies.
Checkov supports a series of IaC file types, including (but not limited to) Terraform [49], Kubernetes
[50], Helm Charts [51], Docker [18], etc. Moreover, on top of the detection of common

21 https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

API request

API
HTTP

Handler

Auth
Authz

Mutating
Admission

Object
schema

validation
Validating
Admission

Persisted
to etcd

Mutating
webhooks

Validating
webhooks

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 64 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

misconfigurations, Checkov scans for compliance with common industry standards such as the Center
for Internet Security (CIS) [52] and Amazon Web Services (AWS) Foundation Benchmark [53].
In the context of NEMO, regarding the IaC file types that need to be supported, Checkov can examine
Dockerfiles for 37 built-in policies, and Kubernetes resources for more than 900 built-in policies. Since
the installation of a Helm chart eventually leads to the creation of multiple Kubernetes resources, the
later applies to the Helm Chart IaC file type. For the sake of completeness, an indicative list of the built-
in policies that are examined can be found in Table 5.

Table 5: Indicative Checkov policies

ID IaC Entity Policy
CKV_DOCKER_1 Dockerfile EXPOSE Ensure port 22 is not exposed
CKV_DOCKER_7 Dockerfile FROM Ensure the base image uses a non-latest version tag
CKV_DOCKER_8 Dockerfile USER Ensure the last USER is not root
CKV2_DOCKER_17 Dockerfile RUN Ensure that “chpasswd” is not used to set or remove

passwords
CKV_K8S_20 Kubernetes Deployment Containers should not run with

allowPrivilegeEscalation
CKV_K8S_29 Kubernetes Pod Apply security context to your pods and containers
CKV_K8S_30 Kubernetes Pod Apply security context to your containers
CKV_K8S_35 Kubernetes Pod Prefer using secrets as files over secrets as

environment variables
CKV_K8S_37 Kubernetes StatefulSet Minimize the admission of containers with

capabilities assigned

Checkov is going to be utilized in the context of NEMO and the Intent-based SDK / API to suggest the
policies that need to be enforced before the registration of a service. After an in-depth examination of
the available policies, a collection of the ones that are considered essential will be created. A wrapper
around Checkov, would then enforce these essential policies. Furthermore, custom policies can be
created if / when considered necessary.

Grype & Syft
Grype [54] is an open-source vulnerability scanner for container images and filesystems. When it runs,
a local database of vulnerabilities gathered from a variety of publicly available vulnerability data
sources, including (but not limited to) the Alpine Linux SecDB [55], RedHat RHSAs [56], Ubuntu Linux
Security [57], and others. Grype is able to scan source code and Docker images. As a side-note, the tool
is expected to detect more vulnerabilities in the container images, given that they include packages that
are not necessarily included in the source code.
Syft [58] is another open-source command-line interface (CLI) tool and Go library for generating a
Software Bill of Materials (SBOM) for containers and filesystems. An SBOM essentially is a list of all
the libraries, code packages and other third-party components used to create a particular software
application. An SBOM also includes each component’s license type, version and patch status, and the
dependencies between the said components in the software supply chain [59]. The importance of an
SBOM is underlined by the fact that the software supply chain has become a leading source of software
vulnerabilities and breaches, since code reusability is constantly increasing.
Both Grype and Syft are developed by Anchore [60] and integrate seamlessly. Their combination is
expected to prove beneficial in enhancing security of the deployed services in the NEMO context.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 65 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

5.4.3 Architecture & Approach
The Intent-based API implements the logic for exposing the NEMO functionalities to internal or third-
party entities. The API will automatically discover and expose resources of registered and deployed
workloads in NEMO, enforcing privileged control to their access. Moreover, NEMO API supports the
registration and deployment of workloads into the NEMO resources.
Regarding the workload registration, it implements the following workflow. First, NEMO consumers,
desiring to deploy their application or service into NEMO, have to register their workloads in the NEMO
meta-OS. This is realized by posting a registration request of the workload in NEMO, which includes
the NEMO workload descriptor. This descriptor includes information useful for discovering the relevant
workload from external sources, such as the source code, a container image, a Helm chart, etc., as well
as useful information for the workload per se, such as the workload name, the compatible NEMO API
version, the workload implementation version, the type of technology the interface is implemented,
compatibility with VIM versions, etc. It also includes the definition of intents for the execution of the
workload, such as requirements for network, compute and storage resources, for secure execution (e.g.,
requirement to be executed through containers or unikernels), as well as energy efficiency requirements,
such as executing the workload in green-powered servers, etc. Moreover, the NEMO workload
descriptor may include information for multi-cluster execution or execution in specific clusters. In
addition, policy enforcement rules may be included in this descriptor. Last, but not least, the NEMO
consumer may declare resources of their workload desired to be exposed and under which access control
criteria. In order to complete the registration into NEMO, the workload must successfully pass the
NEMO validation checks. These include compatibility checks between the workload versions and
requirements and the NEMO clusters, workload assessment regarding discoverability of said resources,
as well as security tests regarding the workload sources. Once the validation is successful, the workload
descriptor is augmented with NEMO annotations and the workload is added in the NEMO Registry. The
relevant subroles of the Meta-OS Provider (see D1.2) should then validate this registration and a token
is created, which allows for deployment of the workload in the NEMO meta-OS. This token is provided
to the NEMO Consumer. This workflow is illustrated in Figure 37.

Figure 37: The workload registration workflow

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 66 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Once the Workload is registered in NEMO, the NEMO Consumer may submit a request for its
deployment through the Intent-based API. Before allowing the request to be forwarded for execution,
validation and verification tests must have been successfully passed. These include compatibility,
performance and security tests, as well. After successful verification and validation, the request for the
workload deployment is communicated to the Applications’ & Plugins Lifecycle Manager, who
coordinates the deployment in NEMO via the NEMO Meta-Orchestrator, considering both the specified
intents and the NEMO resources’ capabilities and policies. Upon successful deployment, the API caters
for automated workload provisioning. This is realized by providing access to workload resources,
following defined Role-Based Access Control (RBAC) rules, ensuring that Ingress and Egress traffic
are correctly set up, as well as workload Lifecyle Management is initiated for the deployed workload.
This workflow is presented in Figure 38.

Figure 38: The workload deployment workflow

The high-level architecture of the NEMO Intent-based API is depicted in Figure 39.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 67 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Figure 39: Intent-based API architecture

5.4.3.1 Intent-based API Server
The Intent-based API Server is the application that provides NEMO functionality through RESTful
interfaces. It allows accessing or managing information and configuration on NEMO workloads and
resources, respecting the defined RBAC rules. This API Server communicates with the NEMO
Workload Manager, in order to register and instantiate workloads, i.e., components, services,
applications or plugins, into NEMO.

5.4.3.2 NEMO Workload Manager
The NEMO Workload Manager manages the processes for registration/deregistration of workloads,
including NEMO annotations, workflow execution, logging and notification of external entities. It also
coordinates the workflow for the workload deployment through the LCM and workload provisioning.

5.4.3.3 NEMO Workload Validator
When deploying a workload within the NEMO meta-OS, there are several considerations that need to
be addressed. The NEMO Workload Validator aims to apply validations to ensure that the workload
runs effectively and efficiently across the distributed environment. Some key aspects to validate include
the following.
Compatibility with underlying VIM versions: Ensure that the workload is compatible with the
versions of VIM (e.g. Kubernetes) running in each cluster. Different clusters may be running different
versions or types of VIMs, and the workload should be tested and validated against these versions.
Resource Requirements: Validate that the workload’s intents as defined by its owner, related to the
required resources (CPU, memory, storage) are appropriate for the clusters where it might be deployed.
Consider variations in cluster sizes and resource availability.
Networking Requirements: Verify that the workload can handle network communication across
clusters. This includes validating that the necessary ports are open, and network policies are configured
appropriately. Ingress and egress configurations should be tested across clusters and VIMs.
Data Management: If the application relies on persistent storage, ensure that storage solutions are
compatible with the multi-cluster environment. This includes validating storage classes, access modes,
and persistent volume configurations.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 68 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

Secrets Management: Validate that secrets used by the workload are managed securely and
consistently within the meta-OS.
Security Policies: Validate that the workload adheres to security policies defined for each cluster or
VIM.
Integration with VIM Services: Ensure that the workload integrates seamlessly with cluster services
such as authentication, authorization, and any other platform-level services.
Compliance with VIM Policies: Validate that the application complies with any specific cluster
policies or governance requirements in each cluster.
By thoroughly testing and validating these aspects, candidate workloads are likely to be executed and
operate successfully in the multi-cluster meta-OS setting.
The NEMO Workload Validator will leverage the K8s Admission Controllers, as well as Checkov,
Grype and Syft in order to implement validation checks, considering the above-mentioned validation
aspects.

5.4.3.4 NEMO Workload Registry
The Workload Registry keeps the list of workloads registered in the NEMO meta-OS. It keeps updated
with user requests for registration and deregistration of workloads. The Meta-OS Service and Cluster
Deployment Manager subrole of the Meta-OS Provider (see D1.2 for definition of the meta-OS user
roles) will be able to register the requested workloads into the registry. This will be the initial entry of
the workload in the NEMO system.

5.4.3.5 NEMO Workload Provisioning
This component ensures the deployment of workloads and access to relevant services by
authorized/eligible entities and roles. This subcomponent will communicate with the Identity
Management module to ensure that RBAC is applied for the delivery of the workloads to be provisioned.
The component provides automated workload provisioning, by discovering the workload resources to
be provisioned in the NEMO workload documents and ensuring that relevant endpoints are made
available, imposing defined access controls and policies. Before the workload resources get provisioned,
ingress and egress traffic get configured and LCM processes get initiated to ensure workload scanning
at runtime.

5.4.3.6 NEMO Workload Documents
These include the NEMO Workload Descriptors (e.g., yaml files), which comprise common service
description, augmented with NEMO annotations. The Workload Documents refer to workloads already
registered in the Registry and are originally provided by the Cybersecure Microservices’ Digital Twin
(CMDT).

5.4.4 Interaction with other NEMO components
The Intent based API interacts with the following components:

 Identity management.
 Access Control.
 Applications & Lifecycle Manager.

Details on the interaction can be found below.

5.4.4.1 Identity management
The Intent based API interacts with the Identity Management Component for supporting authentication
and authorization services for accessing the endpoints of the API Server. Moreover, the Identity
Management component will be used to create tokens allowing deployment of registered workloads.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 69 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

5.4.4.2 Access Control
The Intent based API interacts with the NEMO Access Control for enforcing access control policies to
the API Server endpoints, following RBAC rules. Moreover, the API relies on the Access Control
component for enforcing access policies during workload provisioning.

5.4.4.3 Application & Lifecycle Manager
The Intent based API interacts with the Application & Lifecycle Manager in order to execute a workload
deployment request, after successful validation and verification tests. Moreover, before applying the
workload provisioning, the API interacts with the LCM in order to initiate the LCM processes during
workload runtime.

5.4.4.4 Cybersecure Microservices’ Digital Twin
The Intent based API interacts with the Cybersecure Microservices’ Digital Twin for communicating
the workload information provided by the NEMO consumer, in order to create, maintain and update the
NEMO workload descriptors. Moreover, the API will receive latest updates on such descriptors and,
accordingly, updated NEMO workload documents, for the deployment of the workloads on NEMO.

5.4.5 Conclusion, Roadmap & Outlook
The Intent-based API plays a significant role in the NEMO meta-OS both functionally and in terms of
exploitation. It exposes endpoints to external entities for interacting with NEMO and consuming NEMO
functionality. Moreover, it plays a significant role in workload registration and deployment. In addition,
it significantly contributes to meta-OS openness towards third parties for further development on top of
NEMO in a developer-friendly way.
In its first version, the API focuses on the automated discovery and provisioning of workload resources.
Subsequent steps involve the execution of registration and deployment requests, based on a NEMO-
wide workload document definition.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 70 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

6 Conclusions
In this document, structured and rigorous planning is pursued for the NEMO software lifecycle, aiming
to maximize the level of automation and thus minimize the time, effort and risks during integration of
software modules developed by different teams within the Consortium. Besides development and
integration guidelines, as adoption of software practices and tools, the document presents the CI/CD
processes of the project, following DevSecOps. Indeed, security is considered in several aspects and
stages in the pipeline, which similarly includes different types and points of validation. These practices
are to be followed during the project lifetime, which, according to the integration and V&V plan, is split
in three phases, escalating NEMO functionality in three releases. The preliminary release is presented
in this document, mainly focusing on logical integration and interactions’ specification. It also includes
an early prototype of the NEMO components. Last, but not least, the document presents the
advancements towards technical support of third-party integration and exploitation, through four
components in the NEMO Service Management layer.
The next integrated release of the NEMO framework, accompanied by new features of the Service
Management layer, is planned for the last quarter of 2024, which coincides with the conclusion of the
second project phase and will be reported in D4.2.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 71 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

7 References

[1] NEMO, "D1.2 - NEMO meta-architecture, components and benchmarking. Initial version,"
HORIZON - 101070118 - NEMO Deliverable Report, 2023.

[2] Argo, "Argo Workflows," 2023. [Online]. Available: https://argoproj.github.io/argo-workflows/.

[3] Apache, "Airflow," 2023. [Online]. Available: https://airflow.apache.org/.

[4] Camunda, "Zeebe: Cloud Native Workflow and Decision Engine," 2023. [Online]. Available:
https://camunda.com/platform/zeebe/.

[5] B. Ruecker , " The Microservices Workflow Automation Cheat Sheet: The Role of the Workflow
Engine," 2020. [Online]. Available: https://camunda.com/blog/2020/02/the-microservices-
workflow-automation-cheat-sheet-the-role-of-the-workflow-engine/.

[6] gRPC, "gRPC - A high performance, open source universal RPC framework," 2023. [Online].
Available: https://grpc.io/.

[7] Amazon, "What is Pub/Sub Messaging?," 2019. [Online]. Available:
https://aws.amazon.com/pub-sub-messaging/.

[8] Google Cloud, "Cloud Endpoints for gRPC," 2023. [Online]. Available: Cloud Endpoints for
gRPC .

[9] R. Gancarz, "Why LinkedIn chose gRPC+Protobuf over REST+JSON: Q&A with Karthik
Ramgopal and Min Chen," 2023. [Online]. Available:
https://www.infoq.com/news/2023/12/linkedin-grpc-protobuf-rest-json/.

[10] Argo, "Argo CD - Declarative GitOps CD for Kubernetes," 2023. [Online]. Available:
https://argo-cd.readthedocs.io/en/stable/.

[11] Flux, "Flux - the GitOps family of projects," 2023. [Online]. Available: https://fluxcd.io.

[12] Argo CD, "Introduction to ApplicationSet controller," 2023. [Online]. Available: https://argo-
cd.readthedocs.io/en/stable/operator-manual/applicationset/.

[13] Flux, "Flux multi-tenancy," 2023. [Online]. Available:
https://fluxcd.io/flux/installation/configuration/multitenancy/.

[14] OPENAPI Initiative, "OpenAPI Specification," [Online]. Available: https://www.openapis.org.
[Accessed 2024].

[15] AsynvAPI Initiative, "Building the future of Event-Driven Architectures (EDA)," [Online].
Available: https://www.asyncapi.com. [Accessed 2024].

[16] Swagger, "Open API Specification," [Online]. Available: https://swagger.io/resources/open-api/.
[Accessed 2024].

[17] Swagger, "Swagger Editor," [Online]. Available: https://swagger.io/tools/swagger-
editor/download/. [Accessed 2024].

[18] Docker. [Online]. Available: https://www.docker.com/. [Accessed 23 06 2023].

[19] GitLab, "The Role of AI in DevOps," 2023. [Online]. Available:
https://about.gitlab.com/topics/devops/the-role-of-ai-in-devops/.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 72 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

[20] T. E. P. a. t. C. o. t. E. Union, "Directive on measures for a high common level of cybersecurity
across the Union (NIS2 Directive)," 2022. [Online]. Available: https://eur-
lex.europa.eu/eli/dir/2022/2555.

[21] CISA, "Zero Trust Maturity Model," 2023. [Online]. Available:
https://www.cisa.gov/sites/default/files/2023-04/zero_trust_maturity_model_v2_508.pdf.

[22] D. Goel, "Elevate Kubernetes Security with Zero Trust," 2023. [Online]. Available:
https://d2iq.com/blog/elevate-kubernetes-security-zero-trust.

[23] Kubernetes, "Controlling Access to the Kubernetes API," 2023. [Online]. Available:
https://kubernetes.io/docs/concepts/security/controlling-access/.

[24] A. Syed, "Zero Trust Security for Kubernetes with a Service Mesh," 2022. [Online]. Available:
https://www.hashicorp.com/blog/zero-trust-security-for-kubernetes-with-a-service-mesh.

[25] Kubernetes, "Good practices for Kubernetes Secrets," 2023. [Online]. Available:
https://kubernetes.io/docs/concepts/security/secrets-good-practices/.

[26] Istio, "The Istio service mesh," 2023. [Online]. Available: https://istio.io/latest/about/service-
mesh/.

[27] HashiCorp, "Consul - Standardize service networking," 2023. [Online]. Available:
https://www.hashicorp.com/products/consul.

[28] KongHQ, "Kong Mesh - Modernized service mesh for development and governance," 2023.
[Online]. Available: https://konghq.com/products/kong-mesh.

[29] M. Palladino, "Service Mesh vs. API Gateway: What’s The Difference?," 2020. [Online].
Available: https://konghq.com/blog/enterprise/the-difference-between-api-gateways-and-service-
mesh.

[30] KongHQ, "Kong Gateway," 2023. [Online]. Available: https://konghq.com/products/kong-
gateway.

[31] Envoy, "Envoy Gateway," 2023. [Online]. Available: https://gateway.envoyproxy.io.

[32] I. Krutov, "Architecting Zero Trust Security for Kubernetes Apps with NGINX," 2022. [Online].
Available: https://www.nginx.com/blog/architecting-zero-trust-security-for-kubernetes-apps-
with-nginx/.

[33] The Linux Foundation, "Cloud Native Computing Foundation," [Online]. Available:
https://www.cncf.io/. [Accessed 12 2023].

[34] "Kustomize - Kubernetes Native Configuration Management," [Online]. Available:
https://kustomize.io/. [Accessed 12 2023].

[35] Selenium, "Selenium," 2023. [Online]. Available: https://www.selenium.dev/.

[36] Robot Framework Foundation, "Robot Framework," [Online]. Available:
https://robotframework.org. [Accessed 2024].

[37] Apache, "JMeter," [Online]. Available: https://jmeter.apache.org. [Accessed 2024].

[38] BlazeMeter, "Taurus," [Online]. Available: https://gettaurus.org. [Accessed 2024].

[39] Prisma Cloud, "Checkov," [Online]. Available: https://www.checkov.io/. [Accessed 12 2023].

[40] Kata Containers, "About Kata Containers," [Online]. Available: https://katacontainers.io.

Document name: D4.1 Integration guidelines & initial NEMO integration Page: 73 of 73
Reference: D4.1 Dissemination: PU Version: 1.0 Status: Final

[41] Keycloak, "https://www.keycloak.org," [Online]. Available: https://www.keycloak.org.

[42] RabbitMQ, "RabbitMQ," [Online]. Available: https://www.rabbitmq.com.

[43] Kepler Contributors, "Kubernetes Efficient Power Level Exporter (Kepler)," 2023. [Online].
Available: https://sustainable-computing.io/.

[44] hubblo-org, "Scaphandre," 2023. [Online]. Available: https://github.com/hubblo-org/scaphandre.

[45] Pixie, "Open source Kubernetes observability for developers," 2023. [Online]. Available:
https://px.dev/.

[46] Flower Labs GmbH, "Flower," open source, [Online]. Available: https://flower.dev. [Accessed
2023].

[47] The Linux Foundation, "Falco," [Online]. Available: https://falco.org/. [Accessed 12 2023].

[48] "trivy-operator," [Online]. Available: https://github.com/aquasecurity/trivy-operator. [Accessed
12 2023].

[49] HashiCorp, "Terraform by HashiCorp," [Online]. Available: https://www.terraform.io/. [Accessed
12 2023].

[50] The Linux Foundation, "Kubernetes," [Online]. Available: https://kubernetes.io/. [Accessed 12
2023].

[51] "Helm," [Online]. Available: https://helm.sh/. [Accessed 12 2023].

[52] Center for Internet Security, "CIS Center for Internet Security," [Online]. Available:
https://www.cisecurity.org/. [Accessed 12 2023].

[53] Amazon Web Services, Inc., "Center for Internet Security (CIS) AWS Foundations Benchmark
v1.2.0 and v1.4.0 - AWS Security Hub," [Online]. Available:
https://docs.aws.amazon.com/securityhub/latest/userguide/cis-aws-foundations-benchmark.html.
[Accessed 12 2023].

[54] Anchore, "anchore/grype," [Online]. Available: https://github.com/anchore/grype. [Accessed 12
2023].

[55] "Alpine Linux SecDB," [Online]. Available: https://secdb.alpinelinux.org/. [Accessed 12 2023].

[56] "RedHat RHSAs," [Online]. Available: https://www.redhat.com/security/data/oval/. [Accessed 12
2023].

[57] Canonical, "Ubuntu Security Team," [Online]. Available: https://people.canonical.com/~ubuntu-
security/. [Accessed 12 2023].

[58] Anchore, "anchore/syft," [Online]. Available: https://github.com/anchore/syft/. [Accessed 12
2023].

[59] Circle Internet Services, Inc., "Software bill of materials: What it is and why you need one,"
[Online]. Available: https://circleci.com/blog/what-is-a-software-bill-of-materials/. [Accessed 12
2023].

[60] Anchore, "Open Source Container Security with Syft and Grype," [Online]. Available:
https://anchore.com/opensource/. [Accessed 12 2023].

