

This document is issued within the frame and for the purpose of the NEMO project. This project has received funding from the European
Union’s Horizon Europe Framework Programme under Grant Agreement No. 101070118. The opinions expressed and arguments employed
herein do not necessarily reflect the official views of the European Commission.
The dissemination of this document reflects only the author’s view, and the European Commission is not responsible for any use that may be
made of the information it contains. This deliverable is subject to final acceptance by the European Commission.
This document and its content are the property of the NEMO Consortium. The content of all or parts of this document can be used and
distributed provided that the NEMO project and the document are properly referenced.
Each NEMO Partner may use this document in conformity with the NEMO Consortium Grant Agreement provisions.

(*) Dissemination level: (PU) Public, fully open, e.g., web (Deliverables flagged as public will be automatically published in CORDIS project’s
page). (SEN) Sensitive, limited under the conditions of the Grant Agreement. (Classified EU-R) EU RESTRICTED under the Commission
Decision No2015/444. (Classified EU-C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified EU-S) EU
SECRET under the Commission Decision No2015/444.

Next Generation Meta Operating System
D1.3 NEMO meta-architecture,

components and benchmarking. Final
version

Keywords:
MetaOS, meta-architecture, architecture, verification, validation, multi-cluster orchestration,
workload, resource, cloud computing, edge computing, artificial intelligence, next-generation internet,
Internet of Things, IoT, security, DevOps, 5G, TSN, multi-domain

Document Identification
Status Final Due Date 31/08/2024

Version
1.1
 Submission Date 03/09/2024

Related WP WP1 Document Reference D1.3
Related
Deliverable(s) D1.1, D1.2 Dissemination Level (*) PU

Lead Participant SPH Lead Author Nikos Drosos (SPACE)

Contributors

SIM, INTRA, MAG,
SPACE, TID,
WIND3, CONTI,
ESOFT, ASM, FHW,
SYN, COMS

Reviewers

Sonja Wächter, CONTI

Ruben Ramiro, ATOS

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 2 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

Document Information

List of Contributors
Name Partner
Andreea Paunescu SIM
Mircea Vasile SIM
Dimitrios Skias INTRA
Panos Karkazis MAG
Astik Sammal MAG
Albero Casanova MAG
Nikos Drosos SPACE
Emmanouil Bakiris SPACE
Alejandro Muñiz Da Costa TID
Luis Miguel Contreras TID
Fabrizio Brasca WIND3
Gianluca Rizzi WIND3
Sonja Wächter CONTI
Antonis Gonos ESOFT
Prashanth Pedholla ASM
Dimitrios Christopoulos FHW
Theodore Zahariadis SYN
Terpsi Velivassaki SYN
Miha Smolnikar COMS

Document History
Version Date Change editors Changes
0.1 11/06/2024 N. Drosos (SPH) ToC
0.2 21/06/2024 A. Paunescu, M.

Vasile (SIM), N.
Drosos, Emm.
Bakiris (SPH),
T. Velivassaki, Th.
Zahariadis (SYN)

Updates on NEMO Use Cases and final
architecture

0.3 11/07/2024 P. Karkazis (MAG),
D. Christopoulos
(FHW)

Refined structure for section 4, Add first version
of all text for Smart City & XR trial

0.4 19/7/2024 P. Karkazis, A.
Casanova, A.
Sammal (MAG), S.
Wächter (CONTI)

Contribution in section 4, Update on Smart
Industry use cases

0.5 01/08/2024 T. Velivassaki,
(SYN), A. Muñiz Da
Costa,
L. M. Contreras
(TID), Emm. Bakiris

Updates on final architecture, updates on Smart
Farming & Smart Energy use cases

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 3 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

(SPH), A. Gonos
(ESOFT), P. Pedholla
(ASM), M.
Smolnikar (COMS)

0.6 06/08/2024 T. Velivassaki,
(SYN), N. Drosos
(SPH)

Updates on EUCEI alignment

0.6.1 06/08/2024 S. Wächter (CONTI) Peer review
0.6.2 14/08/2024 R. Ramiro (ATOS) Peer review
0.7 03/09/2024 N. Drosos (SPH) Consolidated version
1.0 03/09/2024 N. Drosos (SPH) FINAL VERSION TO BE SUBMITTED
1.1 03/09/2024 R. Valle (ATOS) Quality review and submission to EC

Quality Control
Role Who (Partner short name) Approval Date
Deliverable leader N. Drosos (SPH) 03/09/2024
Quality manager R. Valle Soriano (ATOS) 03/09/2024
Project Coordinator E. Pere Pages Montanera (ATOS) 03/09/2024
Technical Manager T. Velivassaki (SYN) 03/09/2024

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 4 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

Table of Contents

Document Information ...2

Table of Contents ...4

List of Tables ..6

List of Figures ..7

List of Acronyms ..8

Executive Summary ...10

1 Introduction ..11

1.1 Purpose of the document ..12

1.2 Relation to other project work..12

1.3 Structure of the document ..13

2 NEMO Use Cases & Requirements’ Update ..14

2.1 Overview ..14

2.2 Refined list of requirements ...14

2.2.1 Smart Farming ... 14

2.2.2 Smart Energy & Smart Mobility .. 22

2.2.3 Smart Manufacturing & Industry 4.0 ... 24

2.2.4 Smart Media & XR .. 26

3 Final NEMO Meta-Architecture ...34

3.1 Architectural Views ...35

3.1.1 Network view .. 35

3.1.2 User view ... 37

3.1.3 Logical view .. 38

3.1.4 Operational view .. 38

3.1.5 Functional view ... 39

3.1.6 Process view .. 39

3.1.7 Development view ... 43

3.1.8 Physical view ... 43

3.2 MetaOS Architecture Coverage ...44

3.3 MetaOS Architecture Extensions ...47

3.3.1 MetaOS and Data Spaces ... 48

3.3.2 Case study: FIWARE based Data Space Connector for NEMO 49

3.4 Alignment to EUCEI Reference Architecture ..50

3.4.1 Functional View .. 50

3.4.2 Compositional View .. 51

3.5 Alignment for Use Cases Architectural patterns ..59

4 V&V methodology - updates ..61

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 5 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

4.1 Testing Types ...61

4.1.1 Acceptance testing ... 61

4.2 Syntax testing ...61

4.2.1 Performance testing ... 62

4.2.2 Security testing .. 62

4.2.3 Functional testing... 62

4.3 Open-source frameworks for testing ..62

4.3.1 Selenium .. 63

4.3.2 Trivy .. 63

4.3.3 Syft... 64

4.3.4 Grype ... 64

5 Conclusions ..66

6 References ..67

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 6 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

List of Tables

Table 1: Definitions for NEMO network view___ 36
Table 2: User roles in NEMO MetaOS [1] ___ 37
Table 3: Namespaces in MetaOS management cluster __ 43
Table 4: NEMO components addressing MetaOS functionalities ____________________________________ 45
Table 5: NEMO use cases mapped in EUCEI L1-L6 architectural patterns ___________________________ 59

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 7 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

List of Figures

Figure 1: Feedback and interactions of NEMO activities (PERT chart) ______________________________ 12
Figure 2: Application domains covered by NEMO Living Labs _____________________________________ 14
Figure 3: Smart City pilot infrastructure __ 27
Figure 4: The NEMO metaOS Meta-Architecture Framework [1] ___________________________________ 35
Figure 5: Network topology for the NEMO metaOS __ 36
Figure 6: The logical view of the NEMO architecture __ 38
Figure 7: The functional view of the NEMO metaOS architecture ___________________________________ 39
Figure 8: Process diagram for resource provisioning __ 39
Figure 9: Process diagram for workload registration __ 40
Figure 10: Process diagram for workload deployment ___ 41
Figure 11: Process diagram for workload’s intents’ monitoring and enforcement ______________________ 42
Figure 12: An instance of NEMO’s physical view ___ 43
Figure 13: NEMO functional elements across the continuum: a functional stack vision __________________ 44
Figure 14: NEMO platform ecosystem building ___ 47
Figure 15: MetaOS positioning across IDS roles and interactions __________________________________ 48
Figure 16: Indicative IDS Connector for integrating NEMO with Data Spaces ________________________ 49
Figure 17: NEMO Alignment to EUCEI RA functional view [36] ___________________________________ 50
Figure 18: Security and privacy components of EUCEI RA mapped to NEMO _________________________ 52
Figure 19: Trust and reputation components of EUCEI RA mapped to NEMO _________________________ 53
Figure 20: Data management components of EUCEI RA mapped to NEMO ___________________________ 54
Figure 21: Resource management components of EUCEI RA mapped to NEMO _______________________ 55
Figure 22: Orchestration components of EUCEI RA mapped to NEMO ______________________________ 55
Figure 23: Network components of EUCEI RA mapped to NEMO __________________________________ 56
Figure 24: Monitoring& observability components of EUCEI RA mapped toNEMO ____________________ 57
Figure 25: Artificial Intelligence components in EUCEI RA mapped to NEMO ________________________ 58
Figure 26: NEMO Living Labs validating EUCEI use cases architectural patterns _____________________ 60
Figure 27: CI/CD pipeline for automated testing based on Selenium ________________________________ 63
Figure 28: Vulnerability report by Trivy __ 64
Figure 29: Automated Software Bill of Materials (SBOMs) by Syft __________________________________ 64
Figure 30: Vulnerability report of container image by Grype ______________________________________ 65

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 8 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

List of Acronyms

Abbreviation /
acronym

Description

AAA Authentication, Authorization, and Accounting
AGV Automated Guided Vehicle
AI Artificial Intelligence
API Application Programming Interface
AR Augmented Reality
CFDRL Cybersecure Federated Deep Reinforcement Learning
CMDT Cybersecure Microservices’ Digital Twin
Cobot Collaborative Robot
CPU Central Processing Unit
DLT Distributed Ledger Technology
DoA Description of Action
Dx.y Deliverable number y belonging to WP x
EC European Commission
EUCEI European Cloud Edge IoT (community)
EV Electric Vehicle
GDPR General Data Protection Regulation
GPU Graphics Processing Unit
HPC High Performance Computer
HTTP Hypertext Transfer Protocol
HW Hardware
IaC Infrastructure as Code
IAM Identity and Access Management
IAS Intent-based API/SDK
IDSA International Data Spaces Association
IIoT Industrial Internet of Things
IMC Intent-based Migration Controller
IoT Internet of Things
K8s Kubernetes
KPI Key Performance Indicator
LCM Life-Cycle Manager
LDAP Lightweight Directory Access Protocol
LSP Large Scale Pilot
MAC Mandatory Access Control
MAF Meta-Architecture Framework
MANO Management and Orchestration
MEC Multi-access Edge Computing
metaOS Meta-Operating System
ML Machine Learning
mNCC Meta Network Cluster Controller
MOCA Monetization and Consensus-based Accountability

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 9 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

Abbreviation /
acronym

Description

MQTT Message Queuing Telemetry Transport
NFV Network Function Virtualization
NGIoT Next-Generation IoT
NGSI Next Generation Service Interface
OS Operating System
PMU Phasor Measurement Unit
PPEF PRESS & Policy Enforcement Framework
PRESS Privacy, data pRotection, Ethics, Security & Societal
RA Reference Architecture
RAM Random Access Memory
RAN Radio Access Network
RBAC Role-Based Access Control
RL Reinforcement Learning
SBOM Software Bill of Materials
SDK Software Development Kit
SDN Software Defined Networking
SEE Secure Execution Environment
SEM Smart Energy & smart Mobility
SLA Service Level Agreement
SLO Service Level Objective
SSO Single Sign-On
TSN Time Sensitive Networks
UC Use Case
V&V Validation & Verification
VIM Virtual Infrastructure Manager
VM Virtual Machine
VNF Virtual Network Function
VR Virtual Reality
WP Work Package
XR Extended Reality
YAML Yet Another Markup Language

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 10 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

Executive Summary

NEMO aims to develop the meta–Operating System (metaOS), which will enable multi-cluster and
multi-network orchestration of containerized workloads across the Internet of Things (IoT), edge and
cloud continuum. As a (meta-)OS, NEMO will be user-centric, facilitating users to develop and deploy
on top of NEMO. Moreover, NEMO will enable cloud and infrastructure providers to integrate their
computing and networking resources into NEMO’s infrastructure.
The present document provides the updated specifications of the NEMO architecture for building the
envisioned metaOS, based on the initial version presented in the deliverable document D1.2 [1]. The
main outcomes reported in this deliverable include:

 Refinement of functional and non-functional requirements of the NEMO metaOS, as a result of
revisiting use case definitions and specifications, following the outcomes of pilot preparations
and initial results.

 Presentation of final NEMO meta-architecture. The updated version is based on feedback
received from development and integration activities, as well as initial pilot results. The final
architecture realizes slight updates related to the network, user, operational and physical view.
It refines the organization of managed resources into clusters, with regards to their placement
in the continuum. Greater updates are provided for the logical view, which has been aligned
with developments, while the process view specifies additional metaOS processes or at finer
details. Moreover, the physical view provides instantiation of metaOS architecture in physical
setups.

 The impact of the NEMO architecture and placement within the European metaOS landscape is
discussed. This includes functional coverage of the NEMO metaOS, as well as extensions
enabled through the architecture. Indicatively, the integration of Data Spaces is presented as a
potential extension. In addition, the NEMO architecture is mapped to the reference architecture
derived from the Architecture task force of the EUCloudEdgeIoT community. NEMO
alignment is discussed at functional and components’ level.

 Final specifications of the Validation & Verification (V&V) methodology of NEMO are
presented. Specific tools are identified and suggested for V&V implementation in WP4.

The final architectural specifications will drive the development, integration and validation activities of
the NEMO framework. Moreover, third-party integration, either as developers extending the
architecture or consumers hosting their workloads into NEMO, is guided by the NEMO architecture, its
approach for extensions and workload hosting.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 11 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

1 Introduction
The future of the digital world is modular and containerized. As digitalization penetrates with increasing
rates in our personal and professional activities, myriads of software pieces arise to complete the puzzle
of our digital well-being, supporting use cases hard to even imagine in the recent past and which demand
their housing in the digital grounds of the connected world. As technology evolves, newer and more
devices spring up, and uninterrupted online presence becomes a necessity.
Cloud provides virtually unlimited resources and high availability is considered a commodity. Inherent
cloud features, like elasticity and multitenancy, have allowed production-level delivery of myriads of
services, while providing distinct user’s personal space (tenant). However, advances in technologies,
like Augmented/Virtual/Mixed Reality, as well as advances in image/video resolution (reaching 8K to
date) are just examples that have led to the emergence of applications demanding ultra-low latency. In
addition, the increasing penetration of Artificial Intelligence (AI) has created stiff requirements on
availability and access to large data volumes, raising privacy concerns. Here is where computation and
intelligence at the ‘edge’ came into play and together with advances and enhancements in
communication technologies through 5G & 6G embrace private/local computation and networking,
which aspire to connect seamlessly to various clouds.
This would possibly not have happened without cloud native applications and services. Microservices’
based architectures, i.e. independent, loosely coupled software modules providing small functional
pieces together with the cloud and workloads’ containerization have leveraged the flexible use of
resources while delivering high-QoS (Quality of Service) and high-QoE (Quality of Experience)
services since the cloud-only computing era. Those distinct software pieces, the microservices, may run
at different points (nodes) across clouds and more recently across edges and even IoT devices.
Depending on their design, microservices usually need to communicate in order to form/deliver together
a greater, coordinated application logic.
Beyond cloud integration, NEMO aspires to meet develop a meta-Operating System (metaOS), which
will democratize the usage of resources anywhere in the IoT, edge and cloud continuum, while enabling
the delivery of innovative microservices based applications of diverse capabilities’ requirements through
any device at everyone’s hand. This vision aims to be materialized in NEMO, without compromising
cybersecurity, trust and privacy requirements, while enabling business development and prosperity on
top of this innovative ecosystem.

The NEMO meta-Operating System (metaOS) will enable multi-cluster and multi-network orchestration
of containerized workloads across the IoT, edge and cloud continuum. As a (meta-)OS, NEMO will be
user-centric, facilitating users to develop and deploy on top of NEMO. Moreover, NEMO will enable
cloud and infrastructure providers to integrate their computing and networking resources into NEMO’s
infrastructure.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 12 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

1.1 Purpose of the document
The present document is the third deliverable of Work Package (WP) 1 (D1.3) and reports the updates
of the activities of Task 1.1 “Requirements analysis, use case refinement and target KPIs”, Task 1.2
“NEMO meta-architecture design and components specifications” and Task 1.3 “Benchmarking
definition and GDPR/Ethical compliance”. Specifically, D1.3 reports the outcome of these activities
which contribute to meeting the following WP1 objectives:

 Analyze the challenges, define the requirements and specification of the NEMO meta-
Architecture.

 Produce the test reports format, parameter, test points and benchmarking for a unified and
reliable outcome.

 Provide continuous technology monitoring on next generation IoT advancements and alignment
with NEMO.

This document aims to provide the final version of the NEMO metaOS meta-architecture, which will
materialize the NEMO vision and builds upon the first version defined in D1.2 “NEMO meta-
architecture, components and benchmarking. Initial version” [1].
Moreover, the present document provides the final updates on the methodology adopted for NEMO
Validation & Verification (V&V) benchmarking framework, guiding the V&V activities within WP4.

1.2 Relation to other project work

Figure 1: Feedback and interactions of NEMO activities (PERT chart)

The NEMO activities for building the envisioned metaOS are organized in work packages which interact
with each other as depicted in Figure 1. Within Work Package (WP) 1 Next-Generation metaOS
specification, the project identifies metaOS and IoT-Edge-Cloud continuum requirements, refines the
use cases and defines its novel metaOS architecture. The specified user-driven requirements and
technical design feed the activities in WP2, WP3 and WP4 for Enhancing NEMO Underlying
Technology, the NEMO Kernel Space and the NEMO DevZeroOps Service Management Space,
respectively. These include development of the NEMO components, integration and prototyping, as well
as lab validation. Validated platform prototypes are provided to the living trials for pilot validation in
WP5. Both lab and pilot validation are conducted against the metaOS requirements and results are
evaluated through the project-defined measurable KPIs. Based on the outcome of this evaluation, new
cycles of activities are triggered, aiming to enhance and fine-grain the prototype towards achieving the
KPI targets.

WP7: Project Management & Open Calls Coordination

WP6: Impact Creation &
Outreach

W
P1

: N
ex

t G
en

er
at

io
n

m
et

a-
O

S
Sp

ec
ifi

ca
tio

n

WP2: Enhancing NEMO
Underlying Technology

WP3: NEMO Kernel Space

WP4: NEMO DevZeroOps Service
Management Space

WP5. Living Labs Validation & 3rd Party Support

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 13 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

1.3 Structure of the document
The rest of this paper is organized as follows. Section 2 presents the application sectors and use cases
within the NEMO Living Labs. Section 3 describes the contributions of the project in terms of
architectural specifications that could act as reference or architectural patterns guiding development of
metaOS solutions. Section 4 describes the V&V methodology for NEMO and how it will be applied
both for NEMO components and third-party NEMO hosted workloads.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 14 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

2 NEMO Use Cases & Requirements’ Update
2.1 Overview

Figure 2: Application domains covered by NEMO Living Labs

2.2 Refined list of requirements

2.2.1 Smart Farming

Location
Monemvasia, Greece
Objective
Protection of olive trees from olive fruit fly
through aerial spraying
Optimization of the use of bio-spraying,
without compromising organic certification
Efficient and responsible resource utilization
within the Smart Farm
Partners

2.2.1.1 Brief description
In the era of intense environmental pollution and draining of resources worldwide, availability of
sufficient and high-quality food supplies is greatly threatened, while over-cultivation combined with
excessive use of chemicals as either fertilizers or pesticides even endanger food safety.As a noble
alternative, organic farming promotes sustainable and environmentally friendly agricultural practices.
Olive cultivation plays a crucial role in numerous economies worldwide, requiring efficient management
practices for optimal yield and sustainability. Olive oil production is greatly affected by the climate
change of the recent years realized intensely in major European olive producing countries, like Spain,
Italy and Greece.
On the other hand, olive fruit fly development is favoured by the lack of heat waves and rain. The olive
fruit fly (scientific name “Bactrocera oleae” or “Dacus oleae (Gmelin)”) is a major concern for olive
tree cultivation, causing serious damage to the olive fruit, significantly affecting both quantity and

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 15 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

quality of yields [2]. Kaolin clay or spinosad-based bait are often used for olive fruit fly control as an
organic treatment and have been used to protect plants from various insect pests, achieving protection
against total and harmful fly infestation [3]. The Smart Farming Trial addresses organic farming in olive
groves.
Precision spraying allows targeted application of pesticides and fertilizers, minimizing waste and
environmental impact [4]. Unmanned Aerial Vehicles (UAVs) are already widely used for precision
agriculture, offering rapid and detailed data collection capabilities [5], [6] and field monitoring using
captured images. Leveraging on UAV capabilities and machine learning based innovations, autonomous
precision spraying may lead to a good balance between organic olive yield quantity, quality and costs
through collaborative intelligent systems. Moreover, Autonomous Guided Land Vehicles (AGLV) have
largely contributed to smart agriculture by automating tasks that traditionally required significant human
labour in precision farming (e.g. planting, fertilizing) [7], crop monitoring [8] [9], weed and pest control
[10] [11].
The NEMO potential in enhancing organic farming will be validated in the Smart Farming trial, which
deals with organic olive tree cultivation. The NEMO trial involves two use cases which address pest
management and weed control respecting organic farming. Through NEMO, we aim to mobilise
stakeholders in Smart Agriculture to cooperate through technological advances in IoT, edge/cloud
computing and AI for precision agriculture, aiming to advance the level of automation and minimize
human intervention, increase the quality of agricultural operations, as well as the quality and quantity
of yields, while minimizing the technological footprint of agricultural processes.

2.2.1.2 Use cases update
The NEMO capabilities are validated in the Smart Farming domain, through two use cases, as defined
in D1.1 [12].
The SF_01 Aerial Precision Bio-Spraying use case aims to protect the olive trees from olive fruit fly
through aerial spraying conducting by UAV. This use case combines microclimate data collected via
Synelixis SynField® [4] IoT nodes and real-time video analysis of olive groves from visual and multi-
spectral cameras attached on semi-autonomous drones to identify in real-time where bio-spraying is
needed. The bio-spraying decision will be based on ML models, which will optionally run on the end
devices (UAV) or edge devices. Increased model performance and increased energy efficiency will be
investigated during the training process through Cybersecure Federated Deep Reinforcement Learning
(CF-DRL) and flexible deployment of the training jobs across the IoT, edge and cloud resources
available.
The SF_02 Terrestrial weed management use case aims to organically control weeds in olive groves
through Autonomous Guided Land Vehicles (AGLV). Autonomous robots equipped with cameras and
sensors collect data for detecting obstacles and enabling autonomous weed mowing. The use case relies
on ML models for the detection of obstacles like trees and humans, as well as for the autonomous
movement within the olive grove. The ML services may run on the AGLV or at the edge resources of
the Smart Farm or even move to servers of another farm for the sake of energy efficiency or ensuring
high Quality of Service.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 16 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

2.2.1.3 Requirements update
FR ID Description MoSCo

W
Component Status

(%compl.)
Comments

SF_01_FR01 The platform must
provide access to
measurements.

M API-Access
Control-
MO-mNCC

80% NEMO should ensure that
authenticated/authorised users
can access relevant endpoints
through DNS names. This
requires relevant support and
integration of the NEMO Intent-
Based API, Access Control, the
Meta-Orchestrator, and the meta-
network Cluster Controller.

SF_01_FR02 The platform must
provide options to
manage/view
sensors/devices.

M MO 100% Devices operating as NEMO
resources are integrated as nodes
in clusters managed by the Meta-
Orchestrator, which provides
interfaces to manage the relevant
nodes based on relevant roles and
permissions.

SF_01_FR03 The platform must
provide options to
manage users.

M IΑM 90% NEMO integrates Keycloak as the
Identity Management
components, ensuring single sign-
on (SSO) and Role-based Access
Control (RBAC) throughout the
NEMO platform.

SF_01_FR04 The platform
should support
ML/FL training
and ML model
sharing/serving.

M CFDRL 80% CFDRL supports ML operations
for NEMO, including ML model
training, storage, serving and
sharing. ML training is supported
through federated reinforcement
learning and privacy-preserving
federated learning.

SF_01_FR05 The platform
should provide ML
classification
accuracy
probability.

S CFDRL 90% CFDRL modules for ML training
provide this information after the
training process completes.

SF_01_FR06 The platform
should support
automated aerial
spraying.

S API-MO-
mNCC

80% NEMO can accept workloads
which support the aerial spraying
operations (e.g. developed in
T5.2). These workloads can be
registered and deployed through
the Intent-based API, the Meta-
Orchestrator and mNCC, with the
latter two responsible for their
execution under the declared
requirements on the container and
network management side,
respectively.

SF_01_FR07 The platform
should support

S PPEF 100% Energy consumption metrics are
already included and monitored

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 17 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

FR ID Description MoSCo
W

Component Status
(%compl.)

Comments

monitoring of
SLOs, e.g. related
to energy
consumption or
CO2 emissions.

by PPEF, for different levels of
abstraction (e.g. device, cluster,
workload).

SF_01_FR08 The platform must
respect data
sovereignty and
privacy
requirements.

M PPEF &
Access
Control

90% PPEF adopts the PEP (Policy
Enforcement Point) design
pattern, including identity
management and RBAC in the
PDP (Policy Decision Point),
ensuring that access to data
(communication endpoints) is
controlled by relevant
authentication and authorization.
In addition, Workloads owners
may select the resources (clusters)
where their workloads will be
executed, and MO ensures that
their execution is restricted in the
said clusters. In SF use cases, SF
application providers may select
to execute their workloads in their
own or their partners' resources,
integrated as managed clusters in
NEMO.

SF_01_FR09 The platform must
support collection
of monitoring data,
such as the weather
and plant
conditions.

M API-MO-
mNCC

80% The MO and mNCC support the
execution of microservices-based
workloads, which may run at
different levels (IoT, edge, cloud)
and interconnect with each other.
As such, the workloads referring
to the collection and
communication of relevant
measurements are supported
under the declared requirements.

SF_01_FR010 The platform must
support retrieving
photos via drones.

M API-MO-
mNCC

80% NEMO can accept workloads
which support photo capture and
retrieval (e.g. developed in T5.2).
These workloads can be
registered and deployed through
the Intent-based API, the Meta-
Orchestrator and mNCC, with the
latter two responsible for their
execution under the declared
requirements on the container and
network management side,
respectively.

SF_01_FR011 The monitoring
devices must

M API-mNCC 80% mNCC caters for the
interconnection of microservices
which may run in the same or

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 18 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

FR ID Description MoSCo
W

Component Status
(%compl.)

Comments

support network
connectivity.

different clusters, even across
administrative domains. The
devices used in the SF trial have
the required (hardware)
capabilities to support this
connectivity and integration to
NEMO clusters.

SF_01_FR012 The monitoring
devices must be
able to
communicate data
to and receive
control commands
from the NEMO
platform.

M LCM /
NEMO
plugins

90% FIWARE Context Broker has
been employed as a NEMO
plugin in order to allow
communication of both data and
control commands.

SF_01_FR013 The platform
should be able to
perform alternative
scheduling or
geographical
distribution of
smart farming
services based on
user goals.

S MO-
CFDRL

70% The MO supports scaling and
migration of workloads. MO
decision on such actions relies on
intelligent models regarding the
placement and scaling of
resources, which are provided by
CFDRL.

SF_01_FR014 The Smart Farmer
should be able to
define strategies
for the use of
available
resources.

S API, LCM 90% Smart Farmers (workload
owners) can declare their
requirements (through intents) for
executing their workloads (SF
applications). These may include
several properties, e.g. referring
to computational resources,
energy or even accounting cost.

SF_02_FR01 Mobile robots
must support
autonomous
operation.

M API-MO-
mNCC

80% NEMO can accept workloads
supporting mobile robots’
autonomous operation (e.g.
developed in T5.2). These
workloads can be registered and
deployed through the Intent-
based API, the Meta-Orchestrator
and mNCC, with the latter two
responsible for their execution
under the declared requirements
on the container and network
management side, respectively.

SF_02_FR02-
deprecated

Mobile robots
must be able to
understand the
weeds they should
spray.

M The use case has been
reconsidered to apply weed
mowing, instead of spraying, in
order to comply with organic
farming practices.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 19 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

FR ID Description MoSCo
W

Component Status
(%compl.)

Comments

SF_02_FR03 Mobile robots
must be able to
follow a route or
reach a destination.

M API-MO-
mNCC

80% NEMO can accept workloads
supporting mobile robots’
autonomous operation (e.g.
developed in T5.2). These
workloads can be registered and
deployed through the Intent-
based API, the Meta-Orchestrator
and mNCC, with the latter two
responsible for their execution
under the declared requirements
on the container and network
management side, respectively.

SF_02_FR04 Mobile robots
must support
network
connectivity, such
as Wi-Fi or
cellular.

M API-mNCC 80% mNCC caters for the
interconnection of microservices
which may run in the same or
different clusters, even across
administrative domains. The
devices used in the SF trial have
the required (hardware)
capabilities to support this
connectivity and integration to
NEMO clusters.

SF_02_FR05 The platform must
respect data
sovereignty and
integrity.

M PPEF &
Access
Control

90% [Same as SF_01_FR08]

SF_02_FR06 The platform must
provide access to
collected data.

M API-Access
Control-
MO-mNCC

80% [Same as SF_01_FR01]

SF_02_FR07 The platform must
provide access to
the devices.

M MO 100 [Same as SF_01_FR02]

SF_02_FR08 The platform must
provide options to
manage users.

M IAM 90% [Same as SF_01_FR03]

SF_02_FR09 The platform must
be able to calculate
mobile robots’
routes in real-time.

M API-MO-
mNCC

80% NEMO can accept workloads
supporting the route (re-
)calculation of mobile robots
(e.g., developed in T5.2). These
workloads can be registered and
deployed through the Intent-
based API, the Meta-Orchestrator
and mNCC, with the latter two
responsible for their execution
under the declared requirements
on the container and network
management side, respectively.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 20 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

FR ID Description MoSCo
W

Component Status
(%compl.)

Comments

SF_02_FR010 The platform must
be able to identify
and avoid
obstacles such as
humans and trees
in real-time.

M API-MO-
mNCC

80% NEMO can accept workloads
supporting obstacle detection
(e.g. developed in T5.2). These
workloads can be registered and
deployed through the Intent-
based API, the Meta-Orchestrator
and mNCC, with the latter two
responsible for their execution
under the declared requirements
on the container and network
management side, respectively.

SF_02_FR011 Mobile robots
must be able to
provide data to and
receive control
commands from
the NEMO
platform.

M LCM /
NEMO
plugins

90% [Same as SF_01_FR012]

SF_02_FR012 The Smart Farmer
should be able to
define strategies
for the use of
available
resources.

S API, LCM 90% [Same as SF_01_FR014]

SF_01_NFR01 The NEMO
platform must
respect security
and privacy
requirements.

M PPEF, IAM,
NIM &
Access
Control

90% NEMO incorporates a set of
security and privacy modules,
including IAM, Network
Intercommunication Module,
PPEF, Access Control, while
adopting security practices at
possible levels (e.g., CFDRL,
SEE, CMDT, MOCA to protect
components and data from
unauthorized access and control.

SF_01_NFR02 NEMO should
support High
Availability
features.

S MO 100% With horizontal scaling even
across clusters and administrative
domains, the MO supports high
availability for NEMO hosted
workloads.

SF_01_NFR03 The Smart
Agriculture
Application of
NEMO should be
vendor-
independent

S MO-LCM
(plugins)

100% NEMO supports the integration of
diverse devices (far-/near edge,
cloud) as nodes in NEMO
managed clusters. Also, FIWARE
Context Broker is employed as a
NEMO plugin to allow
communication of data and
control messages with IoT
devices. Other plugins can be
employed to allow integration of

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 21 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

FR ID Description MoSCo
W

Component Status
(%compl.)

Comments

generated data streams with Data
Spaces. This allows SF
application developers to adopt
established communication
protocols and thus being able to
integrate devices from various
manufacturers.

SF_01_NFR04 The NEMO
platform should be
scalable in the
sense of providing
additional
resources when
computationally
heavy tasks are
initiated.

S MO-
CFDRL

70% Autoscaling decision support is
developed in CFDRL to guide the
relevant scaling actions by the
MO.

SF_02_NFR01 The NEMO
platform must
respect security
and privacy
requirements.

M PPEF, IAM,
NIM &
Access
Control

90% [Same as SF_01_NFR01]

SF_02_NFR02 NEMO should
support High
Availability
features.

S MO 100% [Same as SF_01_NFR02]

SF_02_NFR03 NEMO should be
flexible and
scalable in the
sense of exploiting
available resources
according to set
goals.

S MO,
mNCC,
PPEF,
CFDRL

70% Combining the capabilities of
MO, mNCC, PPEF and CFDRL,
NEMO will be able to
intelligently manage container
and network operation for the
execution of workloads, aiming to
fulfil user declared intents.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 22 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

2.2.2 Smart Energy & Smart Mobility

Location
Terni, Italy
Objective
Monitor and stabilize the electricity smart grid
Improve Renewable Energy Sources (RES)
load balancing via EV chargers
Predict traffic flow/parking prediction via EV
chargers and parking positions for Mobility.
Support citizens eco-mobility in a smart city
scenario combining crowd sourcing info and
public transportation, weather/noise data,
along with historical data and analysis of
CCTV/traffic
Partners

2.2.2.1 Brief description
In the face of escalating environmental challenges and resource depletion, the stability and efficiency of
urban energy ecosystems are significant. The Smart Energy & smart Mobility (SEM) pilot in Terni
(Italy) is a pioneering initiative aimed to enhance grid stability, optimize renewable energy integration,
and foster sustainable urban mobility. The pilot leverages an advanced infrastructure comprising 4
Medium/Low Voltage substations, a 200kW photovoltaic plant, 65 smart Electric Vehicle (EV)
chargers, 10 Power Quality Analyzers, 2 Phasor Measurement Units (PMUs), and 100 smart meters.
Additionally, the pilot incorporates a fleet of six leased EVs and at least 3 more smart EV chargers,
creating a robust framework for smart city mobility.

2.2.2.2 Use cases update
The NEMO capabilities are validated in the Smart Energy & Smart Mobility (SEM) domain, through
three use cases:

 SEM_1 Hierarchical Grid Disturbance Mitigation: Observes the MV grid segment in real-
time utilizing the PMU infrastructure. It complements PMU with edge gateway/computing for
data pre-processing and disturbance event detection. Upon local event detection, it triggers
disturbance localization and classification procedures. This provides the operator with insights
to make informed decisions.

 SEM_2 Flexibility Assessment and Valorisation: Utilize the infrastructure of power quality
meters to build a generic MV substation analytic model. Utilize the model in the transfer
learning framework, leveraging the pre-training and knowledge for fast and efficient adaptation.
Based on contextual information about assets connected to specific substations, the flexibility
potential can be assessed by disaggregating the local generation, inflexible baseline, and flexible
baseline. Optimize flexible assets’ schedules and thereby support the grid.

 SEM_3 Crowdsourced Smart Grid, Parking, and EV Charging Coordination Improve
Renewable Energy Sources (RES) load balancing via EV chargers. Predict traffic flow/parking
prediction via EV chargers and parking positions. Support citizens eco-mobility in a smart city
scenario combining crowd sourcing info and public transportation, weather/noise data, along
with historical data and analysis of CCTV/traffic.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 23 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

2.2.2.3 Requirements update
FR ID Description Component Status

(%compl.)
SEM_1_FR1 The platform must provide access and

connectivity to edge and far-edge devices.
MO, SEE 50%

SEM_1_FR2 The platform must provide a way to gather and
store data from the edge and far-edge devices.

PPEF, mNCC 30%

SEM_1_FR3 The platform must provide analytics capabilities
for later decision-making process.

PPEF, CFDRL 50%

SEM_1_FR4 The platform should support ML training and
ML model serving.

CFDRL 80%

SEM_1_NFR1 The platform must provide horizontal and
vertical migration along with seamless migration
toward optimal location.

MO
0%

SEM_2_FR1 Exploratory analysis of available data. / 40%

SEM_2_FR2 The platform must provide access and
connectivity to edge and far-edge devices.

MO 0%

SEM_2_FR3 The platform must provide a way to gather and
store data from the edge and far-edge devices.

PPEF, mNCC 40%

SEM_2_FR4 The platform must provide analytics capabilities
for later decision-making process.

PPEF, CFDRL 50%

SEM_2_FR5 The platform should support ML training and
ML model serving.

CFDRL 50%

SEM_2_NFR1 The platform must provide horizontal and
vertical migration along with seamless migration
toward optimal location.

MO
0%

SEM_3_FR1 Deployment of OBD modules, and access to

smart charging stations.
/ 20%

SEM_3_FR2 The platform must provide options to manage
users and manage users’ access to
recommendations.

IdM
0%

SEM_3_FR3 The platform must provide access and
connectivity to edge and far-edge devices.

MO 30%

SEM_3_FR4 The platform must provide a way to gather and
store data from the edge and far-edge devices.

PPEF, mNCC 20%

SEM_3_FR5 The platform must provide analytics capabilities
for later decision-making process.

PPEF, CFDRL 20%

SEM_3_FR6 The platform should support ML training and
ML model serving.

CFDRL 20%

SEM_3_NFR1 The platform must provide horizontal and
vertical migration along with seamless migration
toward optimal location.

MO
0%

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 24 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

2.2.3 Smart Manufacturing & Industry 4.0

Location
Ingolstadt, Germany

Objective
Improve mass production and safety in
factories with high levels of automation,
enabling Collaborative Robot (Cobots)
systems, Automated Guided Vehicles (AGVs)
and humans to co-work.
High-speed heterogeneous connectivity using
5G NR, TSN and Wi-Fi and various types of
AGVs.
Analyse input from sensors, 3D cameras and
RFID nodes and predict, identify and avoid
collisions between humans and AGVs and
between different types of AGVs

Partners

2.2.3.1 Brief description
The Smart Manufacturing & Industry 4.0 Pilot trail at Continental plant Ingolstadt considers two
applications to be implemented, relevant to validating NEMO.
The SM_01 “Fully automated indoor logistics/supply chain” targets ADAS manufacturing. Currently,
handling and transport of material (SMD Components) from the Auto Store to the production sites are
performed manually every 30 minutes. By utilizing a 3D-Vision camera for Bin Picking Application,
an integrated Barcode Scanner and collaboration between different robot systems, Continental aims to
fully automate controlled material picking from Auto Store and autonomous transfer to the production
line.
The SM_02 “Human-centered indoor factory environment safety” will provide a high precision AGV
localization layer merging real time localizations info obtained from cognitive sensors (safety cameras,
radar and Lidar). A high-speed and ultra-low latency (TSN) private wireless network will support
massive data uploads to the edge cloud facilities, where AI functions will detect the position of each
body and build a "safety shell" around it to ensure human-centred safety, while federated CF-DRL will
enable model transfer learning to the AGVs to enable autonomous avoidance of potential collision
between AGVs, or between a worker and an AGV.

2.2.3.2 Use cases update
The central process "Bin Picking / Pick and Place" in the Smart Industry 4.0 use case is recreated
in STAR (Smart Technology & Application Room) to test the NEMO integration. The hardware setup
for the demonstration has been completed. The following components and interfaces are used.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 25 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

2.2.3.3 Requirements update
From a technological point of view, the Smart Manufacturing & Industry 4.0 Pilot aims to implement
and validate the innovative architectural solution proposed by NEMO in order to fully automate the
production workflows. The solution developed within the Pilot will achieve two major objectives at the
level of process automation, namely:

 monitoring and detection during the manufacturing workflow
 and ensuring the manufacturing safety procedures

The NEMO platform will provide the functionalities of two monitoring systems through equipment and
sensors, namely the Bin Picking system for the automation of the manufacturing process and the sensor
system for assessing the working environment.
At the communications’ infrastructure level, an IoT/5G Time Sensitive Networking system will be
implemented, and the services will be orchestrated through intelligent Open API algorithms. The trial
will emphasize on implementing next-generation IoT applications related to AGVs-AGVs and AGVs-
human operators’ collision prediction, detection and avoidance through real-time positioning and
federated ML hosted locally and in the 5G/WiFi edge.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 26 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

2.2.4 Smart Media & XR

Location
Athens, Greece

Objective
Validate NEMO for live event Smart Media/crowd sourcing
applications (i.e. many users, live content annotation, high
bandwidth 5G requirements)
Validate NEMO for eXtended Reality (XR) environments (i.e.
high interactivity, low latency, accurate gesture/emotion
analysis)

Partners

2.2.4.1 Brief description

2.2.4.1.1 Smart Media City
This trial tries to enhance the live running sports’ event spectating experience by enriching the content
through AI-driven data and content analysis and XR capabilities. During the race, media content is
captured by many spectators and selected runners along the running circuit using smartphones/tablets
and GoPro cameras, and if existent IP cameras and drones.
Incoming content is automatically processed, annotated, and rendered (partially on the device using
already trained AI/ML models and partially at the edge), and a selection is directly broadcasted (e.g. via
social media) based on location info of the (top) runners and interesting events during the race (e.g.
based on contributor annotation).
 The audience has the option to improve their contributions and can interact with contributors in case of
specific race incidents. The emphasis is on real-time user-generated content processing and rendering
using FL hosted locally on the IoT nodes (smart phones), in the edge and at the cloud. The AI/Models
will be trained to recognize the Racing Bib Numbers on each athlete and street numbers and landmarks
of the race in order to first understand the runners in each stream and then enhance the positioning
identification of the stream and runners in it.

2.2.4.1.2 Smart Media XR
The XR use cases will be hosted at the Hellenic Cosmos Cultural Centre of the Foundation of the
Hellenic World. The Hellenic Cosmos is a multifunctional area where visitors experience Hellenic
history and culture, while at the same time it is a venue of cultural creation and expression. In its areas
we organize a wide range of activities, open to people of all ages and interests. The XR use cases will
enhance two VR experiences that are available to the public using gestures recognition and biometric
data. The experiences that will be enhanced are: a) A VR Head Mounted Display (HMD) experience
regarding the visit of an ancient Greek Workshop and b) an interactive real-time VR Dome experience
that is presented at the Tholos Dome VR Theatre of the Hellenic Cosmos. The trial consists of several
micro-services that are going to be deployed in the continuum (central cloud, edge cloud, IoT devices)
via the NEMO platform. The infrastructure in FHW premises (local VMs, servers, IoT/VR devices, etc)
consists of the edge/IoT infrastructure and external infrastructures (Central Cloud, HPC servers) will be
used for services that demand high computational resources.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 27 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

In-depth description of both use cases can be found in deliverables D1.1 [12] and D5.2 [13].

2.2.4.2 Use cases update

2.2.4.2.1 Smart Media City

Figure 3: Smart City pilot infrastructure

This diagram in Figure 3 shows the pilot infrastructure. All the devices you see, are considered IoT
devices and used for media capture. The smart phone is additionally used to consume the production
feeds produced. It is evident that this use case will rely on a the 5G network to support the high
bandwidth but also make heavy use of the NEMO mNCC, AI/ML components and intent based
migration to support the real-time load. So, to summarize the benefits of this pilot:

 Fast and time sensitive migration across the continuum for large media.
 Media processing and AI/ML annotation nodes across the continuum to support multiple

sources and users.
 Validate NEMO user acceptance from a citizen viewpoint for live sport events.

The NEMO capabilities are validated in the Smart Media City domain, through one use case, as defined
in D1.1:

 SC_01 Enhance the live sports event spectating experience by enriching the content
through AI-driven data and content analysis via NEMO components and manual production
control. NEMO will provide the base components to facilitate communication, network access,

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 28 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

migration etc. This use case will make use of smartphones which are considered IoT devices
that will be running a dedicated app. Media Gateway/Delivery managers for video content
adaptation and delivery running on the cloud making heavy use of the mNCC, a media
production engine which will be running on the cloud which will use NEMO resource
management, an AI Engine running on the cloud running AI/ML annotations and intent based
NEMO metaOS migrations to support the real-time load. All additional cameras are also
considered IoT devices.

2.2.4.2.2 Smart Media XR
In trials we conducted in previous years we had the traditional approach of one CPU/GPU Node per
user for enhancing an HMD experience or one high-performance node locally for enhancing the Dome.
Each node needed a dedicated and measured network connectivity, manual installation and upgrade and
training resulted in downtime. In contrast, NEMO promises lightweight low cost IoT devices, remote
computing resources that feature automatic installation, migration and training, and way to allocate
network resources on demand as well as providing a 24-hour uptime through its decentralized nature.

The NEMO capabilities are validated in the Smart Media XR domain, through one use case, as defined
in D1.1:

 XR_01 VR Experience about ancient workshop of sculptor Phidias. Enhance experience with
biometric data.

 XR_02 Enhance AV experience in the Tholos Dome VR Theatre. Analyse gesture of museum-
educator presenter. Gesture based recognition by using ML in IoT-to-Edge-to-Cloud
continuum.

These use cases will make use of local XR IoT devices, ML/AI components running on the edge with
intent based migration to the cloud for training purposes and to support the real-time load, as well as
communication components event servers, information storage and message brokers that will be
supported by the Nemo mNCC and resource management.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 29 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

2.2.4.3 Requirements update
FR ID Description MoSCo

W
Componen

t
Status
(%com

pl.)

Comments

SC_01_FR01 The contributors (real
spectators) must be
authenticated to access the tools
and set up a transmission.

M IAM-AC 10 User App will
be entry point

SC_01_FR02 The broadcaster must be able to
define/adjust the media-specific
requirements of the
transmission.

M API -
mNCC

10 Media
managers will
implement this

SC_01_FR03 The broadcaster must be able to
monitor the signal quality and
QoE parameters of the
transmission to ensure streaming
quality.

M mNCC 10

Media Manager
component

SC_01_FR04 Several video streams are to be
transferred through the
cloud/network. Bandwidth
requirements must be met
accordingly.

M mNCC -
MO

10

Media
Processing
engine

SC_01_FR05 Control signals (voice and data)
and audio/video return channels
are to be transferred between the
technical director location and
the venue via the cloud network.

M API -
mNCC

10

Media
Processing
Engine and
Production
Control

SC_01_FR06 NEMO must provide the
adequate resources to the service
provider to map these
requirements onto the cloud
network and perform
accordingly.

M IAS - LCM 10

Nemo OS
specific OTE
will host the
cloud services

SC_01_FR07 The processing of the video
streams is achieved
automatically by the virtualised
compression functions that are
part of the Media Production
Engine, which are deployed at
the edge cloud near the venue.

S CMDT -
IMC

10

Media
Processing
Engine -Video
Quality Probe

SC_01_FR08 NEMO will be able to allocate
and launch the required
services/VNFs on a location
basis.

M PPEF 10

Nemo OS
specific for
Media
Managers

SC_01_FR09 The service provider must be
able to chain services/VNFs with
the help of a service orchestrator.

M MO-
mNCC

10

Nemo OS
specific for
Media
Managers

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 30 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

FR ID Description MoSCo
W

Componen
t

Status
(%com

pl.)

Comments

SC_01_FR10 NEMO applies a central control
unit (Cognitive Network
Optimization) that is used by the
service provider to adjust/adapt
the network dynamically
according to the specific
requirements and conditions.

S mNCC 10

Video Probe
and Network
Probe

SC_01_FR11 NEMO must be able to monitor
and control the network and
ensure adherence to QoS levels
(bandwidth, average bit rate,
round trip delay).

M PPEF 10

Network Probe

SC_01_FR12 The production of a final stream
on-site is realised with the help
of the MPE module at the cloud
edge. The technical director
remotely controls the signal
switching at the MPE.

M API-SEE 10

Production
control
component

SC_01_FR13 Cognitive Services module
allows for enrichment of the
audio/video stream with
additional information like face
recognition, image recognition,
data fusion, etc.

M API-
CFDRL

10

AI Engine

SC_01_FR14 A media app on a smartphone
can be used (by journalists
and/or the audience) for
acquisition and streaming of
audio-visual content into the
cloud and make it available for
the selection from technical
director.

S API-SEE 10

App

SC_01_FR15 Max. end-to-end network
latency (RTT) - It comprises the
latency of the whole network
path excluding end devices on-
site (like the network gateway or
HW video coder) <= 50 ms

S SEE-MO 10

Media
Managers

SC_01_FR16 Minimum end-to-end
connection bandwidth (per
stream). Listed here are pure
video data rates, for resulting
data rates on the network layer
add 10 % overhead:
- Uncompressed HD (1080i and
1080p): 1.5 Gbit/s and 3.0
Gbit/s;
- JPEG2000: 100 Mbit/s;

M API-SEE-
AC

10

Media
Managers

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 31 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

FR ID Description MoSCo
W

Componen
t

Status
(%com

pl.)

Comments

- H.264/AVC-Intra: 25 Mbit/s;
- H265/HEVC: 15 Mbit/s

SC_01_FR17 Error-free/lossless transport of
signals with max. packet-loss
rate: <10^(-12)

S mNCC 10

Media
Managers

SC_01_FR18 Max. network jitter/packet delay
variation (PDV) < 10 ms

S mNCC 10

Media
Managers

SC_01_FR19 Classification and prioritisation
of audio-video-streams. Due to
the high requirements on
latency, jitter and bandwidth
media streams have to be
prioritised in the network.

S MO 10

Media
Managers

SC_01_FR20 Max latency of end-to-end signal
transport (video, audio and
control data) - it comprises the
latency of the whole signal path
including converting of end
devices on-site and media-
specific VNFs).
· Maximum E2E latency one
way for video and audio: <= 500
ms
· Max. E2E latency for return
video (one way): <= 500 ms
(Typically uses less bandwidth
because of low-resolution proxy
transfer)
· Max. end-to-end latency for
intercom (if needed): <= 100 ms
(according to ITU G.114)

S IAS 10

Media
Managers

SC_01_FR21 Synchronisation of video and
audio signals. GPS
Synchronisation of end devices
(using black burst, tri-level sync
and/or PTP).

M IAS-LCM 10

Media
Processing
Engine

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 32 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

FR ID Description MoSCo
W

Componen
t

Status
(%com

pl.)

Comments

SC_01_FR22 The MEC platform and
underlying NFVI is required to
deploy and run all the needed
VNFs. The estimated use of
resources is:
· High CPU power, preferably
new processor generation (>=
96 cores).
· 128 GB RAM
· 1 TB Storage SSD
· Multiple 10 Gbit/s and 1
Gbit/s interfaces.
· GPU processing capability.

M IAS-LCM 10

Media
Managers

XR_01.FR01 Collect user’s biometric data M API-SEE 30

Local IoT
device

XR_01.FR02 ML model for physical and
emotional status detection

M IAS-API 40

Edge ML
component

XR_01.FR03 The solution must have an
Application server (REST API)
Service for communication
between system admin and
AR/VR application and UI
interface for specifying what
events and data to send
depending on the state.

S API-
mNCC

80

Event
component on
the Edge

XR_01.FR04 Enhance VR app to subscribe
and handle events

M VR App 25% FHW will
provide the
applications.
First version of
event server
ready.

XR_01.FR05 Network will support diverse
devices (wearables, AR/VR
headsets) with different
performance (e.g., high
throughput, low latency and
massive connection densities)

M mNCC 80

IoT device
Local

XR_01_FR06 Interoperability with external
systems (i.e. multi sensorial
stimuli system)

M MO-LCM 80

Event server
local
component

XR_01_FR07 The platform components
involving direct interaction with
the end-users should be quick to
respond to the users’ actions

S MO 80

IoT devices

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 33 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

FR ID Description MoSCo
W

Componen
t

Status
(%com

pl.)

Comments

SC_01_NFR01 The platform must provide
mechanisms for security and
data privacy

S SEE 10

VR app IOT
auth

SC_01_NFR02 The platform should support
high availability deployments

S IAS 10

Migration to
cloud High
Performance
Computer
(HPC)

SC_01_NFR03 Live migration should be done
using microservices.

S IAS 10

HPC - Data
Lake
component

SC_01_NFR04 The platform should detect of
network faults or malfunctions
before those have any drastic
impact on its performance

S mNCC 10

Edge service
components

SC_01_NFR06 The use cases depend on 5G
network availability at level of
five-nines for all
communications

S mNCC 10

Between IoT-
Edge-Cloud
migration

XR_01_NFR01 The platform must provide
mechanisms for security and
data privacy

S CMDT-
SEE

10

Edge security

XR_01_NFR02 The platform should support
high availability deployments

S MO-IAS 10

Migration to
cloud High
Performance
Computer
(HPC)

XR_01_NFR03 Live migration should be done
using microservices live
migration

S IAS 10

Migration to
cloud High
Performance
Computer (HPC

XR_01_NFR04 The platform should detect of
network faults or malfunctions
before those have any drastic
impact on its performance

S MO 10

Edge service
components

XR_01_NFR06 The use cases depend on 5G
network availability at level of
five-nines for all
communications

S mNCC 10

Edge service
components

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 34 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

3 Final NEMO Meta-Architecture
NEMO vision for the metaOS as an enabler of user-centric multi-cluster and multi-network orchestration
of containerized workloads across dispersed IoT, edge and cloud resources. As such, a metaOS is
conceived as a platform orchestrating multiple heterogeneous systems (IoT systems, edge
infrastructures, cloud platforms) and data streams across several layers (network, compute, service,
application) and across application verticals.
The first step towards achieving this vision has been the definition of an architecture for the innovative
concept of the metaOS. Given that NEMO introduces one of the first contributions towards metaOS
definition, the project has identified the need to propose a meta-architecture for building meta-Operating
Systems (metaOS). In NEMO, the meta-architecture is conceived as a Reference Architecture on top of
existing reference architectures, which aims to provide guidance on evolving or creating new metaOS
architectures.
As a means to specify the meta-architecture, NEMO defined the Meta-Architecture Framework (MAF).
MAF follows the definitions of ISO/IEC/IEEE 42010 definitions for the architecture framework,
slightly adapted to support the meta-architecture concept. ISO/IEC/IEEE 42010 defines architecture
framework as “conventions, principles and practices for the description of architectures established
within a specific domain of application and/or community of stakeholders” [14]. NEMO has adopted a
slightly modified term “meta-architecture framework”, as “conventions, principles and practices
for describing meta-architectures established within an ecosystem of various domains of
application and/or community of stakeholders”. The NEMO meta-architecture aims to serve as a
basis for building metaOS reference architectures, facilitating entities’ integration in the metaOS world.
NEMO MAF, which includes the following elements, as depicted in Figure 4:

 Rationale
 Entity of interest
 Stakeholders
 Stakeholders’ perspective
 Concerns
 Viewpoints
 Cross-cutting functions

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 35 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

Figure 4: The NEMO metaOS Meta-Architecture Framework [1]

The NEMO metaOS MAF elements are described in detail in deliverable document D1.2 “NEMO meta-
architecture, components and benchmarking. Initial version” [1].

3.1 Architectural Views

3.1.1 Network view
The Network view provides the physical and conceptual classification and hierarchy of the NEMO
metaOS computing resources. Figure 5 provides the updated Network view of the NEMO architecture,
which was originally defined in D1.2. Table 1 provides the definition of the network entities and
concepts, considered in the NEMO metaOS.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 36 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

Figure 5: Network topology for the NEMO metaOS

Table 1: Definitions for NEMO network view

Network definition Description
Tiny edge Fixed-function devices, such as sensors, actuators and IP cameras within the

enterprise network and infrastructure. As a result, it is a subgroup within the
far edge, but the tiny edge devices have very constrained computing and
storage resources.

Far edge Nodes which are typically farthest from the cloud servers and belong to the
IP space and infrastructure owned and managed at enterprise level.

Near edge Devices which are nearest to the centralized services provided by cloud
servers. Nodes in the near edge typically belong to the infrastructure
hardware and IP space of communications service providers.

Central cloud Server in micro-/datacentres with significant computing capacity, which could
belong to any type of cloud, i.e. public, private, hybrid, etc.

Node A node is a hardware computing element of the highest granularity in the
metaOS continuum. As such, it may represent any physical computing
device in the continuum, including IoT, Edge and Cloud Server Devices, or
even a virtual machine provided by a cloud provider. As nodes are aimed to
provide computing abstraction for executing containers of workloads on
them, the classification into network levels is aimed to guide their
configuration for allowing their integrated management through a common
metaOS control plane, in a way that would be compliant to the computing
capabilities of the node in terms of CPU, RAM and storage.

Cluster A Cluster is defined as a grouping abstraction of nodes which are managed
collectively by a centralized control plane. A cluster could include one or
more nodes, either on- or out-of-premise, which altogether form the resource
pool upon which different workloads’ execution is orchestrated. Nodes can
be added or removed from the cluster, without this affecting the execution of
workloads. In NEMO, metaOS clusters are realized as managed K8s clusters.

Cluster Set A Cluster Set provides a grouping abstraction for clusters participating in the
metaOS. It allows the performance of workload management, policy

2

Cluster Set
C

entral
C

loud
N

ear E
dge

Tiny Edge
Far edge

Cluster Shell

Admin Domain #1 Admin Domain #2 Admin Domain #3 Admin Domain #N

…

Cluster Cluster Cluster ClusterCluster

O
n

pr
em

is
e

O
ut

-o
f-p

re
m

is
e

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 37 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

Network definition Description
enforcement, and resource sharing operations which apply to the clusters that
are members of the Cluster Set. For example, the cluster set concept allows
for addressing use cases which include hybrid cloud management, i.e.
managing a mix of on-premises and cloud-based clusters under a unified
policy framework. Also, it covers multi-region deployments, ensuring
consistent configurations and policies across clusters in different geographic
locations to reduce latency and improve user experience. Last, disaster
recovery, scenarios can be supported, considering clusters within a cluster set
for redundancy to implement disaster recovery plans by managing failover
across clusters.

Cluster Shell A Cluster Shell is the complete set of clusters participating in the metaOS. A
Cluster Shell is scoped at the metaOS level and implies that clusters are
managed in parallel in a coherent way through a unified control plane,
covering hybrid and multi-cloud environments. The Cluster Shell allows
performing cluster-aware administration, being aware and managing groups
of clusters (i.e. Cluster Sets). It is composed of multiple clusters, allowing
simplified management of available infrastructure and workloads, consistent
policy enforcement, as well as enhanced scalability, high availability and
resilience. Unless otherwise defined, a workload’s execution should be able
to be orchestrated in a coherent manner across all the clusters in a single
metaOS instance.

Admin domain The Admin domain refers to the IP space and infrastructure managed by a
single entity, usually an enterprise, even if they do not belong to the entity. It
represents the scope within which administrative control and governance are
applied. An administrative domain is a cohesive boundary within which
clusters, nodes, and associated resources are governed by a unified set of
administrative policies, governance structures, and control mechanisms. It
includes centralized control planes, policy enforcement, resource allocation,
access management, and operational responsibilities, all managed by a
designated administrative entity, which acts as a metaOS provider. Workload
orchestration in the metaOS should be coherent across admin domains,
respecting the security and privacy rules of the owning enterprise.

3.1.2 User view
The user roles identified in the NEMO metaOS are listed in Table 2. For each of these, sub-roles are
defined in D1.2.

Table 2: User roles in NEMO MetaOS [1]

MetaOS User Description
MetaOS Provider This group represents parties that may host, provide and/or manage the

metaOS.
MetaOS Consumer This group represents consumers of the metaOS services, basically referring

to application and service owners wishing to run their applications on the
continuum.

MetaOS Partner This group includes parties that may create value on top of the metaOS,
which may result from integration of own resources, development on top of
the metaOS, service brokerage and enablement, but also auditing.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 38 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

3.1.3 Logical view

Figure 6: The logical view of the NEMO architecture

3.1.4 Operational view
The Operational View of the NEMO architecture is provided in the form of the NEMO Use Case
scenarios and descriptions. The update of this view is provided in section 2.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 39 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

3.1.5 Functional view
The functional view of the NEMO metaOS architecture is depicted in Figure 7. This view and functional
layers have been defined in detail in D1.2 and have undergone no changes so far.

Figure 7: The functional view of the NEMO metaOS architecture

3.1.6 Process view

3.1.6.1 Resource provisioning

Figure 8: Process diagram for resource provisioning

N
E

M
O

 K
E

R
N

E
L

IN
FR

A
S

TR
U

C
TU

R
E

M

A
N

A
G

E
M

E
N

T
N

E
M

O
 S

E
R

V
IC

E

M
A

N
A

G
E

M
E

N
T

Intent-based SDK/API

Plugin & Applications Lifecycle Manager
Monetization and Consensus-

based Accountability

C
yb

er
se

cu
re

 F
ed

er
at

ed
 D

ee
p

R
ei

nf
or

ce
m

en
t L

ea
rn

in
g

meta-Orchestrator

Intent-based
Migration
Controller

Cybersecure
Microservices’

Digital Twin

PR
ES

S
 &

 P
ol

ic
y

En
fo

rc
em

en
t F

ra
m

ew
or

k

Federated Meta-Network
Cluster Controller

Secure
Execution

Environment

C
yb

er
se

cu
rit

y
 &

 U
ni

fie
d/

Fe
de

ra
te

d
Ac

ce
ss

 C
on

tro
l

Intent-based
Migration
Controller

Secure
Execution

Environment

Federated Meta-Network Cluster Controller

Tiny Edge / Far Edge Device Near Edge / Central Cloud

IoT/5G & Resources Control 5G Edge/Core Network & Resources Management

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 40 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

Resource provisioning refers to integrating and onboarding additional infrastructure into the NEMO
metaOS. The workflow is depicted in Figure 8. It starts with a NEMO user of type NEMO Partner
posting a request to add a new cluster into NEMO. This can be posted either through a direct call in the
Intent-based API (assuming the user holds a valid authentication and authorisation token) or through the
User Interface (UI) of NEMO’s LCM. The request is dispatched to the Monetization and Consensus-
based Accountability (MOCA) in order for the new resources to be considered in the accounting
processes. Moreover, the request is dispatched to the Meta-Orchestrator, which actually includes the
new resources in NEMO’s managed clusters and makes the necessary configuration and initialisation
processes, in order to deploy NEMO tools allowing for managed services in the new cluster, e.g.
monitoring, user management, etc.

3.1.6.2 Workload Registration

Figure 9: Process diagram for workload registration

Regarding the workload registration, NEMO implements the workflow depicted in Figure 9. First,
NEMO consumers, desiring to deploy their application or service into NEMO, must create the workload
documents for their workloads in the NEMO metaOS. This is realized by posting a relevant request to
the NEMO Intent-based API directly or via the LCM user interface. The workload document includes
information about the workloads per se (such as their name, version, schema and type), and the relevant
intents for this workload. The intents include requirements for the execution of the workload, such as
requirements for network, compute and storage resources, for secure execution (e.g., requirement to be
executed through containers or unikernels), as well as energy efficiency requirements, such as executing
the workload in green-powered servers, etc. Moreover, the workload document may include information
for multi-cluster execution or execution in specific clusters.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 41 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

Next, the NEMO Consumer has to make a request for upload, which involves uploading the workload
helm charts. In this request, the NEMO consumer may declare resources of their workload that they
desire to be exposed. In order to complete the registration into NEMO, the workload must successfully
pass a set of validation checks, which verify that they are compliant with NEMO policies. These include
compatibility checks between the workload versions and requirements and the NEMO clusters,
workload assessment regarding discoverability of said resources, as well as security tests regarding the
workload sources. Once the validation is successful, the workload descriptor is augmented with NEMO
annotations and the workload is added to the NEMO Registry. Following this, the Cybersecure
Microservices’ Digital Twin (CMDT) is notified about the new workload.

3.1.6.3 Workload deployment

Figure 10: Process diagram for workload deployment

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 42 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

Once a given workload is registered in NEMO, the NEMO Consumer may submit a request for its
deployment through the Intent-based API or via LCM UI. Before allowing the request to be forwarded
for execution, validation and verification tests must have been successfully passed. These include
compatibility, performance and security tests, as well. After successful verification and validation, the
request for the workload deployment is communicated to the NEMO Meta-Orchestrator, which manages
deployment considering both the specified intents and the NEMO resources’ capabilities and policies.
Upon successful deployment, the API caters for automated workload provisioning. This is realized by
providing access to workload resources, following the defined Role-Based Access Control (RBAC)
rules, ensuring that Ingress and Egress traffic are correctly set up, as well as workload Lifecyle
Management is initiated for the deployed workload.

3.1.6.4 Workload intent’s monitoring

Figure 11: Process diagram for workload’s intents’ monitoring and enforcement

NEMO incorporates the concept of intents for the declarative description of requirements for workload
execution and operation within the metaOS. Intent management processes are integrated by design in
NEMO operations. Figure 11 presents the workflow for initiating, performing and exposing monitoring
during workload execution. The process follows a running workload or a request for deployment. In any
of these cases the Meta-Orchestrator requests the intents instantiated for the workload of interest. The
request is communicated through RabbitMQ and is served by the Intent-based API (not shown in this
figure). Once the Meta-Orchestrator holds the intents’ information, it asks CFDRL for a
recommendation regarding the placement or scaling of the workload. This request carries intents’
information for the workload, as well as information of the capacity of NEMO’s managed clusters. So

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 43 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

CFDRL is well aware of what kind of monitoring information it will request, in order to create an
informed conclusion on workload’s and resources’ operational status. Hence, it posts the relevant
requests for monitoring data to both mNCC for network monitoring data and PPEF for resource and
workload monitoring data. These data feed CFDRL’s relevant ML models and a recommendation on
the workload action is inferred and communicated to the Meta-Orchestrator. The Meta-Orchestrator
considers the recommendation just received and performs a workload action, which might be a
deployment, migration or scaling. It then updates CMDT accordingly, which caters for tracking
workload and resource information, in order to support data sovereignty and traceability with regards to
the running workloads.

3.1.7 Development view
The development view in NEMO provides technical implementation details for the NEMO components.
It is provided in the deliverables of WP2, WP3 and WP4, which detail the design options and
development activities for the individual components.

3.1.8 Physical view
The physical view represents a topology map, guiding the deployment of the NEMO metaOS. Figure
12 presents an instantiation of NEMO in physical deployments, considering NEMO metaOS
components running in the management cluster hosted in central cloud environment, while a set of
managed clusters is integrated, including diverse resources and administrative domains, across all levels
of the continuum. Table 3 suggests the deployment of NEMO components into six listed namespaces.

Figure 12: An instance of NEMO’s physical view

Table 3: Namespaces in MetaOS management cluster

MetaOS namespace Components

nemo-net • Federated Meta-Network Cluster Controller
• L2SM, 5G Connector

nemo-ai • Cybersecure Federated Deep Reinforcement Learning
• FREDY

nemo-kernel • Meta-Orchestrator
• Secure Execution Environment
• Cybersecure Microservices Digital Twin

C
entral

C
loud

N
ear E

dge
Tiny E

dge
Far edge

…

META-OS
Management
Cluster Managed

Cluster

O
n

pr
em

is
e

O
ut

-o
f-p

re
m

is
e

Node Node
…

Node Node
…

Node Node…

Node Node
…

Managed
Cluster

Managed
Cluster

IoT

IoT

Node Node
…

IoT system

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 44 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

MetaOS namespace Components

• Intent-based Migration Controller

nemo-ppef • PRESS & Policy Enforcement Framework

nemo-svc • Plugin & Applications LCM
• Intent-based API
• Monetization and Consensus-based Accountability

nemo-sec • Identity Management
• Access Control
• Secure Intercommunication (RabbitMQ)

3.2 MetaOS Architecture Coverage
Figure 13 presents essential functional elements for realizing the metaOS, placed at the different levels
of the continuum. Since the metaOS environment is composed of highly dispersed devices, with
significantly diversified power, network, communication and computing capabilities, differentiated
instantiations of the functional elements are needed for constrained devices, edge and cloud resources.

Figure 13: NEMO functional elements across the continuum: a functional stack vision

NEMO components addressing the functional elements identified per metaOS level, are presented in
Table 4.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 45 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

Table 4: NEMO components addressing MetaOS functionalities

MetaOS Functional Element NEMO Component
Security

Identity Management
Intercommunication Security
NEMO Access Control
Secure Execution Engine

Privacy PRESS & Policy Enforcement Framework
Artificial Intelligence Cybersecure Federated Deep Reinforcement Learning

Federated Resilience Enhanced with Differential Privacy
Service Management Intent-based API/SDK

Lifecycle Manager
MOCA

Data Management Cybersecure Micro-services Digital Twin
NEMO plugins

Meta-Orchestration Meta-Orchestrator
Intent-based Migration Controller

Meta-Observability PRESS & Policy Enforcement Framework
Cybersecure Micro-services Digital Twin
Lifecycle Manager

Resource Management Meta-Orchestrator
MOCA

Network Management meta-Network Cluster Controller
5G TSN API

The network infrastructure resources, namely IoT and 5G communications in the constrained devices
and 5G or core network at the edge and cloud, are controlled via a meta-network control plane [15]. This
meta-network cluster controller flexibly manages existing network management solutions, supporting
secure micro-slicing and multi-path communication across the edge and cloud resources [16]. The
physical resources in smart IoT devices are managed by embedded operating systems, while the edge
and cloud resources are incorporated into Virtual Infrastructure Management (VIM) solutions, including
cluster-based management (like K8s-based platforms) and virtual machine (VM) based platforms (e.g.
cloud management solutions) [17].
Accordingly, resource onboarding and provisioning is addressed by meta-Resource Management at the
cluster/VM level on top of such platforms in the edge and the cloud, as well as at cluster level for IoT
devices. The metaOS addresses observability with intent-based policy monitoring and enforcement for
cluster-based physical resources or IoT systems. Meta-orchestration federates the orchestration of
computing workloads across the continuum, intelligently allocating workloads into available resources,
through smart and flexible deployment, scaling and live migration.
Moreover, federated data management supports data collection, storage and sharing, ensuring data
security and traceability. In NEMO, cybersecure microservices' digital twins address microservices'
discovery and secure data access, integrating digital identities and Distributed Ledger Technologies
(DLT). Service management provides workload lifecycle management, as well as accountability and
monetization services to metaOS users, including the metaOS Provider, workload and resource
providers, but also developers and technology providers.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 46 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

Three cross-cutting elements are also identified, which are present across the different device levels, and
every functional element. These include security compliance, privacy preservation and Artificial
Intelligence.
Meta-Network Control is addressed via the Federated Meta-Network Cluster Controller, which is an
automated, self-organizing entity that facilitates the dynamic creation and self-healing of fog IoT
network clusters in the edge-cloud continuum connectivity. Moreover, intent-based network slices can
be created through an open-source RESTful API, enabling TSN traffic in dedicated network slices.
Resource management is primarily supported by NEMO's Meta-Orchestrator, assisted by the
Monetization and Consensus-based Accountability open-source components. The latter keeps track of
the resources available in the metaOS for accountability purposes. The Meta-Orchestrator caters for
resource provisioning and homogenized resource orchestration.
Meta-Observability [18] [19] is addressed via the PRESS and Policy Enforcement Framework by
federating Service Level Objectives' (SLOs) monitoring taking place at individual clusters, while
ensuring compliance to user-defined intents related to performance and energy efficiency requirements
[20] at cluster and metaOS levels. Moreover, the Lifecycle Manager tracks events of broken objectives
and additionally caters for secure audit logging.
Meta-Orchestration is core functionality of the NEMO metaOS. The open-source Meta-Orchestrator
enables the decentralization and distribution of computing workflows across the IoT to Edge to Cloud
Continuum. By acting as a central orchestrator, it manages the coordination and execution of complex
distributed systems while addressing the challenges posed by their increasing complexity and
heterogeneity [21]. The Meta-Orchestrator is complemented by the Intent-based Migration Controller
(IMC), which facilitates seamless and efficient migration of computing workloads across distributed
systems, encompassing IoT devices, edge computing infrastructure, and cloud environments.
The challenges regarding the Data Management of the running microservices [22] are addressed by
NEMO's Cybersecure Micro-services Digital Twin (CMDT), which supports advanced data
sovereignty.
CMDT supports microservice discovery in the metaOS, ensuring that every microservice and workload,
from creation to retirement, is meticulously tracked and reported. In essence, CMDT acts as a reliable
source of truth about the status and location of every microservice within its registry.
Service Management functionalities are provided by NEMO's open-source Intent-based API and SDK,
as well as the LCM and MOCA components. The Intent-based API and SDK expose NEMO
functionality through a set of resources of programmatic interfaces resources. Both API service
description and implementation are foreseen, which facilitate external users in accessing the metaOS
services, but also the NEMO system to limit access to its resources only to eligible entities and roles.
Moreover, the NEMO LCM allows metaOS users to install and deploy registered applications, services,
or plugins to the metaOS automatically and transparently to the user. Based on users' intents, the NEMO
LCM performs automated continuous delivery operations, security controls and event-based responses,
following Infrastructure as Code (IaC) principles. In addition, MOCA realizes innovative smart
contracts' based business models for monetizing the metaOS resource usage, implementing a consensus-
based distributed architecture for sharing networking, computing, and storage resources from various
end-users and (competing) telecom and cloud providers.
Regarding to the crosscutting functions, AI is vertically present in the metaOS architecture. The
Cybersecure Federated Deep Reinforcement Learning (CFDRL) component provides capacity of
learning decision-making models in a collaborative and distributed way between communicating
nodes/entities. The learning procedure combines two complementary learning paradigms: Federated
Learning (FL) and Reinforcement Learning (RL). In order to address privacy preservation challenges in
knowledge aggregation and transfer, and, subsequently, in CF-DRL, NEMO introduces FREDY
(Federated Resilience Enhanced with Differential Privacy) [23] which integrates Flower with Private
Aggregation of Teacher Ensembles (PATE) [24] to bolster privacy features.
Security in the metaOS is built on the concept of ZeroTrust. NEMO Access Control (NAC) allows the
implementation of a comprehensive approach to applying flexible, easily configurable, granular

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 47 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

privileged access to NEMO resources by either internal components or, beyond the perimeter, to external
entities. NAC provides a security substrate to NEMO resources, enforcing that any attempted connection
is brokered through a common API gateway. Then, access control is applied based on a set of modular
criteria, which may include identity management, catering for Authentication, Authorization, and
Accounting (AAA), but also traffic flow controls and universal controls for specific IPs through whitelist
and blacklist rules.
Moreover, the intercommunication security module of NEMO is based on a message broker, enabling
communication and synchronization among distributed systems and applications. It acts as an
intermediary, facilitating secure message exchange while offering essential capabilities like message
routing, queuing, and transformation. In addition, NEMO's Secure Execution Engine (SEE) enhances
Kubernetes via its a Unikernel runtime and its NEMO migration extension for K8s, which is necessary
to enable the migration of microservices across nodes in the IoT-Edge-Cloud continuum.
Furthermore, security features are integrated within other components, too. The LCM provides secure
audit logging, and the API performs IaC vulnerability scanning. In addition, mNCC enables network
slice creation for secure microservice isolation. Secure AI operations are addressed via privacy
preserving Federated Learning, as well as FL attack detection and mitigation components.

3.3 MetaOS Architecture Extensions

Figure 14: NEMO platform ecosystem building

The idea of the meta-Operating System (metaOS) refers to effective integration of highly diversified
software and hardware resources, enabling homogenized flexible orchestration of diverse workloads
across heterogeneous and dispersed devices. In NEMO, the architecture is extensible, allowing further
functionalities to be added as NEMO plugins. With the NEMO Kernel in the role of the core system,
plugins are meant to provide additional features as plugins to the core, providing extensibility,
flexibility, and isolation of application or custom metaOS logic. Plugins may refer to horizontal services
or domain-independent services that aim to provide some basic and common functions that extend the
NEMO capabilities.
NEMO strategy for ecosystem building is depicted in Figure 14, identifying four main steps towards
realizing NEMO as a SaaS, PaaS and IaaS platform, on which third parties may build upon. These
include integration, APIs, open call programs and finally the platform ecosystem.
Integration is the simplest way of onboarding third parties on NEMO and may refer to integration of
either workloads, resources or data. NEMO provides integration points for potential application, service
and AI providers, wishing to deploy their products on NEMO metaOS. Similarly, hardware providers,
which may host metaOS workloads, can be easily integrated as NEMO resources, spanning IoT, edge
and cloud devices. Moreover, data providers have the possibility to integrate their historical or real-time
data streams into the metaOS. Integration at this level is user-friendly, exposing graphical and
programmatic capabilities with minimal deviation from common development practices. In addition,
NEMO suggests and implements business models for monetising workloads, resources and data.

API

integration

APIs

open call
programs

platform
ecosystem

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 48 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

Moreover, it is flexible enough to support other business models, which would be implemented as smart
contracts.
Exposed APIs are foundational features for ecosystem building. NEMO’s Intent-based API aim to
expose NEMO lower-level functionality to the outside world in an easily accessible format, minimizing
the effort needed on their side to adapt applications, services and plugins to NEMO-capable ones, but
also introducing minimal distraction compared to common practice for proficient cluster users. The API
will automatically discover and expose resources of registered and deployed workloads in NEMO,
enforcing privileged control to their access. Moreover, the NEMO API supports the registration and
deployment of workloads into the NEMO resources.
NEMO has already realized extensions through additions developed by the 1st Open Call projects. Six
winning proposals have been identified, specifically MetaFOX, by Vodéna, Serbia working on Machine
Learning and AI technologies; CorMOS, by Business & IoT Integrated Solutions, Cyprus focusing on
cross-domain orchestration of MetaOS edge resources; ARGO, by Intellia ICT, Greece, investigating
porting AR/XR technologies in the metaOS; Eros4NRG, by Martel Innovate BV, Netherlands offering
ZeroTrust IoT Analytics with focus on Smart Energy applications; GENESYS, by SWHARD srl, Italy
providing an edge gateway for the NEMO MetaOS; and MARINEMO, by BEAM Innovation, Romania
working on an efficient resource utilization and maritime network slicing plugin for the NEMO MetaOS.

3.3.1 MetaOS and Data Spaces
Data Spaces might be relevant for the metaOS in 2 directions. First, the metaOS’s control flow might
be integrated into a dedicated Data Space, e.g. metaOS Data Space, allowing controlled exchange of
relevant data and logs across different metaOS implementations, but also among metaOS stakeholders,
such as the metaOS Provider, the metaOS Consumer (Application Provider) and the metaOS Partner
(Resource Provider). On the other hand, the metaOS may integrate with Industrial Data Spaces (IDS)
for different application verticals, serving as the venue for secure data sharing and monetization. In that
respect, the metaOS may host the services that implement the roles of the Service Provider, the Broker
Service Provider, the Clearing House and the App Store Provider, as defined in the IDSA Reference
Architecture Model [25]. Figure 15 presents the metaOS positioning among the Data Space roles and
interactions. At the same time the metaOS will ensure that these services are executed across metaOS
resources with assured performance, security requirements, energy efficiency targets, etc.

Figure 15: MetaOS positioning across IDS roles and interactions

In order to integrate IDS, additional metaOS functionalities must be in place, beyond those of the core
metaOS components. In NEMO, the architecture is extensible, allowing further functionalities to be
added as NEMO plugins. With the NEMO Kernel in the role of the core system, plugins are meant to
provide additional features as plugins to the core, providing extensibility, flexibility, and isolation of

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 49 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

application or custom metaOS logic. Plugins may refer to horizontal services or domain-independent
services that aim to provide some basic and common functions extending NEMO capabilities.

3.3.2 Case study: FIWARE based Data Space Connector for NEMO
The main objective of the IDS Connector is to ensure data privacy and sovereignty, as well as
interoperability among the Data Space stakeholders, especially the Data Providers and Data Consumers.
A Data Space Connector relevant for managing application data exchanges within the metaOS can be
implemented based on the architecture depicted in Figure 16 [26]. The proposed IDS connector
comprises the FIWARE Orion Context Broker [27], and as well as the relevant IoT agent [28] and
system adapters for connecting with devices and systems, respectively, acting as data sources. Moreover,
it includes an Access Control component, acting as Policy Enforcement Point and allowing to keep
control of the data.

Figure 16: Indicative IDS Connector for integrating NEMO with Data Spaces

FIWARE [29] offers several open API (usually open source as well) reusable components, called
Generic Enablers (GEs), that can be used in a variety of contexts and applications, including IoT. Indeed,
several IoT platform solutions have been built based on FIWARE [30] [31]. In general, the architectural
approach aims to allow devices to connect to an IoT Agent, which abstracts the complexity of the
networking protocols and translates the relevant information into data models and protocols compliant
with the OMA Next Generation Service Interfaces (NGSI) 9/10 specifications [32]. Moreover, it aims
to push the device-provided information to a context broker supporting the OMA NGSI 9/10 standard.
From this context broker, external systems such as Complex Event Processing Engines or third-party
applications, may get updates on the devices’ identities and status.
Using the NEMO Access Control component for the relevant component of the IDS Connector allows
the implementation of a comprehensive approach to applying flexible, easily configurable, granular
privileged access to metaOS resources -and thus data- by either internal components or, beyond the
perimeter, to external entities. It provides a security substrate to NEMO resources, enforcing that any
attempted connection is brokered through a common API gateway. The Access Control protects
internet-exposed endpoints from unprivileged data breaches. It is appropriate for the hybrid and highly
diverse environment within the metaOS.
Every access request can be evaluated against a set of defined access control criteria. This allows the
application of chaining access control criteria, which may differentiate among endpoints or even user
roles. In any case, AAA controls are applied, relying on Keycloak as the identity management solution.
Additional criteria might include traffic flow controls and universal controls for specific IPs through
whitelist and blacklist rules. Once the evaluation check is successful and defined access control criteria
are respected for both the endpoint in question and the entity requesting access (user, third-party or

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 50 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

NEMO service), then the request is routed to the relevant Orion Context Broker endpoint. This leads to
the request being processed and the relevant response to be communicated to the requester in a
synchronous manner. In the opposite case, in which at least one control criterion fails, access is not
granted, and the requester is provided with a relevant response text and code, indicating that access to
the requested resource is forbidden. In this way, this IDS Connector addresses functionalities of the
Connector Core Services, identified by IDSA [33], namely Authentication Service, Policy Engine and
Data Management.

3.4 Alignment to EUCEI Reference Architecture
NEMO has been one the research projects funded by the EC to develop meta-operating system as a
future platform for the edge, funded under the topic HORIZON-CL4-2021-DATA-01-05 [34]. NEMO
and other research and innovation actions funded under this or similar topics, approach the challenge of
metaOS building from different perspectives, addressing various aspects of the continuum. The projects’
efforts towards developing platform and technologies around the IoT, edge and cloud are coordinated
within the EUCEI community [35]. The EUCEI project members are collaborating in the metaOS
building around diverse concepts, including strategic liaisons, open-source engagement, architecture,
ecosystem engagement, market & sectors and communications.
On the architectural side of metaOS development, a common Reference Architecture has been
developed for the cloud-edge-IoT continuum, incorporating the efforts of EUCEI members. In the
following subsections, the NEMO architecture is mapped into different views of the EUCEI architecture.

3.4.1 Functional View
EUCEI architecture definition is based on eight building blocks [36], corresponding to NEMO’s
Functional View. EUCEI’s building blocks are mapped to NEMO’s functional blocks, as depicted in
Figure 17, where the circles with the ticks on each building block indicate by their colour the NEMO
functional block which delivers similar functionality.

Figure 17: NEMO Alignment to EUCEI RA functional view [36]

EUCEI identifies the minimum set of functionalities included per building block.
The Monitoring & Observability services in EUCEI cover automated monitoring, system health, SLA
management, compliance and observability. In NEMO such capabilities are part of the NEMO PRESS
& Policy Enforcement Framework (PPEF), grouped under the umbrella of intent management and
enforcement.
Network management urges for essential abstraction and programmability of network infrastructure.
This is addressed by the Network EUCEI block, while NEMO similarly identifies a dedicated horizontal
block, namely Infrastructure Management. Network functions such as slicing, tunneling, mobility, Time
Sensitive Networking (TSN) in 5G and beyond are envisaged in both EUCEI and NEMO.
In addition, core functionalities of metaOS are envisaged for the orchestration services. Thus,
orchestration in both EUCEI and NEMO are at the centre of the architectures and undertake
orchestration of both services (workloads) and resources (host infrastructure) to abstract underlying
heterogeneity and provide homogeneous management of both, including workload deployment,

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 51 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

migration and scaling, load balancing, lifecycle management, service brokerage, as well as intelligence
support in workload placement and migration. NEMO Kernel functional block addresses these
functionalities, delegating the intelligence part to the CFDRL vertical layer.
The Resource Management building block in EUCEI deals with federation, ad-hoc clustering, discovery,
registry and communication services. Such capabilities in NEMO are delivered primarily by the NEMO
kernel as part of the meta-orchestration responsibilities, assisted by the microservices’ digital twinning.
Moreover, registry services are provided by NEMO’s Service Management layer.
The Trust & Reputation building block includes trust algorithms, reputation mechanisms, traceability
and accountability. The Service Management functional block of NEMO addresses traceability and
accountability, as well as data sovereignty in relevant transactions, while trust and reputation could be
part of NEMO PPEF.
Moreover, the Data Management building block in EUCEI reference architecture embraces operations
around data, such as processing, curation, interoperability, semantic annotation, thinning patterns
definition, discovery, consistency, availability and storage. Thanks to NEMO flexibility, data
management is addressed through NEMO extensions in the Service Management Layer.
For Security, the functionalities identified include security, privacy, anomaly detection, smart contracts,
authorization. In NEMO, this functionality is mostly addressed by the Cybersecurity &
Unified/Federated Access Control (blue box in the functional view), which is -similarly- designed to
address security needs as a vertical layer in the architecture. As security mechanisms and tools are
designed specifically for workload execution and AI modules, CFDRL and NEMO Kernel layers are
attributed part of this functionality in the figure.
The second vertical building block in EUCEI refers to Artificial Intelligence (AI), addressing frugal AI,
tiny AI, distributed AI and Federated Learning. NEMO identifies a dedicated vertical layer for AI, too,
referred as NEMO Cybersecure Federated Deep Reinforcement Learning. This NEMO block, addresses
federated learning, reinforcement learning, as well as these too integrated, gossip learning, ML
operations, including model storage, sharing and serving, as well as cybersecurity in ML.

3.4.2 Compositional View
Each of the EUCEI RA building blocks is further analysed in development needs through the RA’s
Compositional view [37], which provides information about metaOS capabilities, at a finer level of
detail, which is useful for development teams. Similar information is provided in NEMO through the
development architectural view [1]. In the following, a further mapping of individual components is
described among the two approaches.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 52 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

3.4.2.1 Security

Figure 18: Security and privacy components of EUCEI RA mapped to NEMO

The components addressing security and privacy in EUCEI RA include (Figure 18):
 Identity and registry manager: NEMO identifies Identity Management for similar support.
 Authenticator: The Identity Management and the Access Control components address

authentication and authorization services in NEMO.
 Threat and vulnerability detector: In NEMO, vulnerabilities, threats, attacks and mitigation are

considered in different levels, mostly as part of the defined CNAPPs [38], while the relevant
functionality whose design is based on ML tools and services is incorporated within CFDRL.
Specifically, NEMO considers Privacy Preserving Federated Learning and delivers the FREDY
(Federated Resilience Enhanced with Differential Privacy) framework as implementation of it.
Moreover, attack detection in training and inference data streams, as well as relevant
countermeasures complement combined FL/RL modules within NEMO’s CFDRL [39].

 HW abstraction layer (for security): Trusted execution environments and virtualization are
present in NEMO as the Secure Execution Engine.

Secure Execution Engine

CFDRL

Identity Management

Access Control

CNAPPs

Intercommunication
Management /
Security

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 53 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

3.4.2.2 Trust and reputation

Figure 19: Trust and reputation components of EUCEI RA mapped to NEMO

The components addressing trust and reputation in EUCEI RA include (Figure 19):
 Trust calculator: NEMO does not foresee a dedicated component for this functionality, but it

foresees PRESS monitoring and compliance within the PPEF.
 Reputation calculator: NEMO does not foresee a dedicated component for this functionality,

but it can be supported as additional metric calculator within PPEF.

PRESS & Policy Enforcement Framework

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 54 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

3.4.2.3 Data management

Figure 20: Data management components of EUCEI RA mapped to NEMO

The components addressing data management in EUCEI RA include (Figure 20):
 Data catalogue: Discovery and catalogue within NEMO are addressed by the CMDT

component.
 Data broker and federator: NEMO’s Intercommunication Management / Security module is

foreseen as a message broker which serves for message exchange, providing features such as
message routing, queuing, and transformation [38]. The Apps & Plugins Lifecycle Manager
addresses data federation and may integrate a set of data connectors (e.g. DBs, Data Spaces,
blockchain networks) as NEMO extensions.

 The Translator (the lowest level to connect DBs) ensuring interoperability, uses data catalogue
for information on data models. NEMO’s Apps & Plugins Lifecycle Manager may integrate
such components as plugins.

 Data processor (also providing information for scheduling): NEMO’s Apps & Plugins Lifecycle
Manager may integrate such components as plugins.

Intercommunication
Management /

Security

Cybersecure Microservices’ Digital Twin

Apps & Plugins LCM

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 55 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

3.4.2.4 Resource Management

Figure 21: Resource management components of EUCEI RA mapped to NEMO

The components addressing resource management in EUCEI RA include (Figure 21):
 Management and scheduling module: In NEMO, the meta-Orchestrator is responsible for

managing computational resources across the IoT, edge and cloud continuum.
 Allocation module: The NEMO meta-Orchestrator covers resource allocation for workload

execution, consulting CFDRL for intelligent decision making.
 Discovery module: The NEMO meta-Orchestrator with the help of CFDRL ML models for

workload scheduling is responsible for resource selection per required activity.

3.4.2.5 Orchestration

Figure 22: Orchestration components of EUCEI RA mapped to NEMO

meta-Orchestrator

meta-Orchestrator

Intent-based Migration Controller

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 56 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

The components addressing orchestration in EUCEI RA include (Figure 22):
 Federation: This is dealt by the Meta-Orchestrator in NEMO, offering a control plane on top of

all integrated resources into the metaOS.
 Service description: This is addressed by the Intent-based API, which caters for workload

upload, validation and registration into the metaOS registry.
 High-Level Orchestration: The NEMO Meta-Orchestrator is responsible for the dynamic

orchestration of workloads in available resources, ensuring workload requirements for their
execution. In other words, the NEMO Meta-Orchestrator manages workload deployment,
migration and scaling, in case there are relevant recommendations from the CFDRL side, the
latter considering monitored performance as per defined intents.

 Low-Level Orchestration: The NEMO Meta-Orchestrator addresses general control actions
involving both workload and resources, such as deployment and scaling. In addition, workload
migration tasks, specifically, fall within the scope of NEMO’s Intent-based Migration
Controller.

3.4.2.6 Network

Figure 23: Network components of EUCEI RA mapped to NEMO

The component delivering network capabilities at metaOS level in the EUCEI RA include (Figure 23):
 Exposure module: Network probing, assessment and exposure of network characteristics are

incorporated into NEMO meta-Network Cluster Controller (mNCC).
 Network Orchestration: NEMO’s mNCC delivers such orchestration, overseeing network

connectivity management and ensuring multi-cluster connectivity and slice management.
Moreover, mNCC incorporates technology connectivity adaptors, which convert data between different
network protocols, enabling devices and systems using disparate protocols to communicate effectively.
These include:

 L2S-M, which enables the dynamic creation and management of isolated virtual networks
within metaOS clusters.

 5G adaptor, which supports deterministic communications through TSN bridges with 5G LAN
solutions. The 5G adaptor allows for applying, modifying and deleting data flows, while
supporting monitoring and analytics capabilities.

 SDN-based connectivity adaptor, supporting network management and programmability.

meta-Network Cluster Controller

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 57 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

3.4.2.7 Monitoring and Observability

Figure 24: Monitoring& observability components of EUCEI RA mapped toNEMO

The components envisaged in EUCEI RA for delivering monitoring and observability include (Figure
24):

 Service/app monitor: The PPEF component of NEMO delivers relevant workload monitoring
capabilities and exposes them at metaOS level.

 Resource monitor: Similarly, for resource monitoring NEMO PPEF caters for both probing and
metrics’ exposure, related to computing resources (e.g. servers or other physical devices)

 Network monitor: mNCC deals with network probing and exposure to PPEF.
 Observability Manager: PPEF manages the monitoring information about workload defined

requirements in the form of intents.
 Compliance Manager: Based on the monitoring feedback, as received from workload-level

aggregated observability, PPEF concludes on whether the defined intents per workload are
fulfilled or not, while they are running.

PRESS & Policy Enforcement Framework

meta-Network Cluster Controller

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 58 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

3.4.2.8 Artificial Intelligence

Figure 25: Artificial Intelligence components in EUCEI RA mapped to NEMO

The AI components envisaged in EUCEI RA include:

 Decision Support System: This is also foreseen as functionality of the NEMO CFDRL,
incorporating ML models to support the Meta-Orchestrator in making workload scheduling
(deployment, migration) and scaling decisions.

 Model catalogue (optional): A model storage component is also part of CFDRL.
 AI model personalizer (optional): CFDRL is seen as a family of ML operations, that support

Federated Learning, Reinforcement Learning, model sharing and serving. As such, AI model
personalisation is also addressed by CFDRL.

 Distributed ML component (optional): This is also addressed by Federated Learning component
of CFDRL.

3.4.2.9 Additional NEMO functionalities
NEMO envisages an accounting mechanism on top of the designed MetaOS. It is considered critical in
providing visibility, control, and cost management across multi-cluster environments. By tracking
resource usage and managing costs, it can assist in enforcing policies and generating insights in terms
of optimised resource utilization and expenses’ control. This leads to better resource allocation,
enhanced operational efficiency, and improved financial management in cloud-native environments.
Such functionality is part of the Service Management layer and specifically provided by the NEMO
Monetization and Consensus-based Accountability (MOCA) component, where Distributed Ledger
Technology (DLT) technology verifies data integrity.
MOCA aims to support monetization and accountability for both the applications and plugins running
on NEMO. It implements a consensus-based distributed architecture for sharing networking, computing
and workload resources across different stakeholders and end-users.

Cybersecure Federated Deep Reinforcement Learning

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 59 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

3.5 Alignment for Use Cases Architectural patterns
Inspired from architectural patterns as reusable solutions in software design, architectural patterns are
suggested for the categorization of use cases applied across the continuum, by EUCEI. The suggested
architectural patterns have been investigated for use cases in the Agricultural, Constructions, Energy,
Healthcare, Manufacturing and Transport sectors and refer to:

 L1: Location tracking for people, animals and devices.
 L2: Visual inspection based on images and videos analysed for surveillance and inspection for

people and devices (things, products, etc.)
 L3: Condition monitoring based on telemetry data analysed and referring to people, fixed or

mobile devices, risk/hazard, operations, etc.
 L4: Predictive maintenance, based on analytics over telemetry data which support reporting and

diagnostics for maintenance of fixed and mobile devices.
 L5: Command/Control, which refers to actuation capabilities enabled over systems and devices.
 L6: Process Management / Autonomous Operations, referring to systems with high AI

penetration and automation, potentially including autonomous robot systems, vehicles or even
buildings with automated management operations.

NEMO covers use cases in the Agriculture, Energy, Manufacturing, Transport and Media sectors. Table
5 lists the use cases considered in the NEMO Living Lab trials, categorized per EUCEI use cases
architectural patterns [40].

Table 5: NEMO use cases mapped in EUCEI L1-L6 architectural patterns

Sector L1:
Location
tracking

L2:
Visual
inspection

L3:
Condition
monitoring

L4:
Predictive
maintenance

L5:
Command/
Control

L6: Process
Management /
Autonomous
Operations

Agriculture Product
inspection

Hazard, Field Yes AGV. Process
management

Energy Hazard,
Fixed
equipment,
operations

Fixed
equipment,
operational
diagnostics &
reporting

 Process
management

Manufacturing Employee,
movable
assets

Product
inspection

Employee,
hazard

 Yes AGV, process
management

Transport Inspection Electric
Vehicles

Operational
reporting

 Process
management

Media Runner Surveillance,
Inspection

Telemetry,
remote
monitoring

AI analysis &
recommenda-
tions

Yes AR/XR
interactions,
process
management

As use case categorization in application verticals within the NEMO project is as defined in section 2,
Figure 26 indicates the NEMO Living Labs, which foresee validation of use cases for each of EUCEI
use case architectural pattern.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 60 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

Figure 26: NEMO Living Labs validating EUCEI use cases architectural patterns

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 61 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

4 V&V methodology - updates
NEMO provides a holistic approach for the evaluation of each new workload before it is deployed in
the continuum. As several third-party microservices are deployed to heterogeneous infrastructures (i.e.,
central cloud, edge, IoT devices) using different technologies (i.e., VMs, containers, k8s, Swift, etc.),
NEMO must ensure that the specific workload fulfils the requirements and Key Performance Indicators
(KPIs) and that it is compatible with the innovative features that the NEMO platform offers (i.e.,
resource scaling, high availability, full-stack automated operations, etc.). For this reason, a set of test
types is adopted to enhance services’ security, reliability, and performance. NEMO provides an intrinsic
component named Validation and Verification environment for test execution; however, some tests can
be executed in other components (e.g., Syntax testing runs on the Intent API component). As mentioned
in D1.2, the architectural approach is modular and integrated with NEMO’s DevOps cycle. In the
following sections, we present the test types that NEMO will offer and the appropriate testing tools and
frameworks that will be supported.

4.1 Testing Types

4.1.1 Acceptance testing
Acceptance testing is a crucial phase in the testing process that ensures the developed services fulfil the
specified user expectations and are compatible with the NEMO platform. The main purpose of
acceptance testing is to evaluate service compliance with user requirements and verify if the software is
ready for deployment via NEMO's actual production environment. This procedure aims to identify any
issues that may arise when deploying a real-world scenario. To address these issues, NEMO will perform
several tests during the registration of each workload and collect the appropriate results. Next, the
NEMO administrator could either accept the registered workload manually or define evaluation rules to
accept the workload automatically. The acceptance methodology will involve the following steps:

a) Definition of the Acceptance Criteria: Definition of the acceptance criteria that match the user
requirements and expectations and the compatibility with the NEMO platform.

b) Creation of the Test Cases: Development of automated pipelines that will execute well-
documented use cases to ensure the comprehensive testing procedure.

c) Testing Execution: Execution of the test cases in an environment that closely resembles the
production environment.

d) Test Results analysis: Collection and evaluation of the test results and identification of any
defects or issues that need to be addressed.

e) Acceptance approval: Approval for production deployment.

4.2 Syntax testing
In NEMO, we introduced a syntax testing approach that aims to catch errors early in the deployment
process of the workloads, reducing the likelihood of issues during the actual deployment. This process
ensures that the descriptors, configuration files, and scripts used to deploy the workload are syntactically
correct and can be successfully executed. Furthermore, during the syntax testing, NEMO will ensure
that the registered workload is correctly configured and provides all the necessary information that is
required by the NEMO platform not only for a successful deployment but also for the usage of the
specific features that NEMO offers like High Availability, Accountability, and Monetization, Intent-
based deployment and migration, etc. In detail the syntax testing procedure will include:

a) Configuration File Validation. Examination of all configuration files and scripts that are
associated with the NEMO workload such as property files, YAML files, or JSON files, to
ensure they are properly structured and adhere to the expected syntax.

b) Integrated Validation. Verification of the entire deployment process, including the execution of
scripts and the application of configuration settings, can be completed without any syntax-

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 62 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

related issues. For this reason, a full-stack validation will be performed by running the
deployment process in V&V environment.

4.2.1 Performance testing
NEMO performance evaluation as system focuses is features like speed, responsiveness, stability, and
resource utilization, under various load conditions. This type of testing aims to identify potential
bottlenecks, optimize system performance, and ensure that NEMO meets the required performance
criteria. In this context, special attention will be paid to NEMO API testing to verify their functionality,
reliability, and performance. These tests will include:

a) Stress testing: Evaluation of the system behaviour under normal and extreme load conditions.
b) Soak testing: Evaluation of the system’s behaviour and resource consumption over an extended

period.
c) Spike testing: Evaluation of the system’s behaviour in case of sudden and large increases in

load.

4.2.2 Security testing
NEMO provides specific security features supporting the deployment of secured workload over the
continuum. For this reason, NEMO integrates well-known open-source tools and frameworks according
to the SAST/DAST paradigm that evaluate each workload before the deployment in production. The
appropriate tests are executed either as part of the registration process or in the V&V environment in
which each workload can be deployed and tested in an isolated and safe sandbox. The security features
that can be deployed by NEMO are:

a) Secure Code Review: Code analysis tools to scan the codebase for known security patterns and
potential vulnerabilities. NEMO scans container images, file systems, and configuration files
(such as Kubernetes) for known vulnerabilities.

b) Penetration Testing: Simulation of real-world attacks to evaluate the ability to withstand and
detect malicious activities.

c) Compliance Checks: NEMO will integrate open-source frameworks to check compliance
standards, such as CIS Benchmarks, HIPAA, and GDPR, and can check for violations within
container images, file systems, and IaC configurations.

d) Dependency Tracking: Analysis of the dependencies within container images, file systems, and
NEMO configurations files to identify known dependencies.

4.2.3 Functional testing
NEMO through V&V, will support functionality testing feature to check specific a slice of functionality
in a workload focusing on particular behaviours or even a complex one composed by many units micro-
services over the continuum. The purpose of this testing approach is to evaluate test whether the
expected behaviour is successfully done by the system rather than the internal structure or
implementation.

4.3 Open-source frameworks for testing
NEMO V&V will provide a well-structured framework, as part of the DevOps approach, that will
facilitate several test types for each new workload from the development, integration, and deployment
phases. This ensures that each new service will fulfil the requirements, Key Performance Indicators
(KPIs) and is compatible with the innovative features that the NEMO platform offers (i.e., resource
scaling, high availability, full-stack automated operations, etc.). One of the essential characteristics of
the NEMO V&V framework is modularity, meaning that the system should be flexible enough to
integrate new services and test tools easily. Considering the heterogeneity of modern network services,
each service requires different testing approaches and tools. For this reason, NEMO will integrate
several open-source testing tools and frameworks to address the different needs of each service and
provide flexibility to developers to choose or introduce the framework of their choice as they know

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 63 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

better the needs of their implementation. Next, we present the open-source state-of-the-art frameworks
that are already used by the industry and will be integrated into NEMO.

4.3.1 Selenium
Selenium [41] is a testing framework that allows web application testing across multiple web browser
platforms and supports multiple modern programming languages. It is an umbrella project for a range
of tools and libraries that enable and support the automation of web browsers by providing extensions
to emulate user interaction with browsers, a distribution server for scaling browser allocation, and the
infrastructure for implementations of the W3C WebDriver specification that lets you write
interchangeable code for all major web browsers. Selenium brings together browser vendors, engineers,
and enthusiasts into an ecosystem for the automation of web application testing and development.
NEMO Integrates Selenium tests into the CI/CD pipelines to enhance the performance of the
development cycles. So, every code change triggers a new build, followed by unit tests, integration
testing, and Selenium-based automated tests.

Figure 27: CI/CD pipeline for automated testing based on Selenium

4.3.2 Trivy
Trivy [42] is an open-source and comprehensive security scanner for container images, file systems, git
repositories, VMs, K8s clusters, etc. It is designed to provide an easy and efficient way to identify and
address vulnerabilities in software artifacts. It can identify dependencies between OS packages and
software implementations, known vulnerabilities, IaC issues and miss configurations, sensitive
information and secrets, software licenses, etc.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 64 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

Figure 28: Vulnerability report by Trivy

4.3.3 Syft
Syft [43] is a powerful and easy-to-use open-source tool for generating Software Bill of Materials
(SBOMs) for container images and filesystems. It provides detailed visibility into the packages and
dependencies in your software, helping you manage vulnerabilities, license compliance, and software
supply chain security. It can be used as a standalone tool or it can be combined with Grype [44], and
supports OCI, Docker and Singularity image formats. It can be easily integrated into CI/CD pipelines
as it supports execution on several OS (i.e. Alpine, Debian, Redhat), programming languages (i.e.
C/C++, Go, Java, Python, etc.), and frameworks (i.e. Jenkins).

Figure 29: Automated Software Bill of Materials (SBOMs) by Syft

4.3.4 Grype
Grype [44] framework is a powerful and versatile vulnerability scanning tool that helps organizations
improve the security and compliance of their software systems. It is designed for speed and efficiency,
with the ability to scan container images and file systems, even for large and complex software artifacts.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 65 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

This framework can easily be integrated into CI/CD pipelines, scan software artifacts, prioritize
vulnerabilities, and track recommendation efforts. It can be also used to perform compliance checks
with industry-specific standards, such as CIS Benchmarks, HIPAA, and GDPR, helping organizations
ensure that their software artifacts adhere to relevant regulations and best practices. Overall, Grype
provides visibility into the security of software components, including dependencies, to better manage
software supply chain risks.

Figure 30: Vulnerability report of container image by Grype

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 66 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

5 Conclusions
The present document has provided the final architectural specifications of the NEMO metaOS. The
document updates the initial NEMO metaOS meta-architecture, instantiated in D1.2.
Through the proposed metaOS meta-architecture, NEMO aims to facilitate the design and development
of higher-level (meta) operating systems for the smart Internet of Things with strong computing capacity
at the smart device, system and edge-level, embedded in a compute continuum from IoT-to-edge-to-
cloud. The final version of the NEMO meta-architecture specifies the architectural views defined in the
Meta-Architecture Framework (MAF) for the design of the NEMO metaOS.
The document clarifies the Network, User, Operational, Functional and Development views. In contrast,
the Logical, Process and Physical views realize updates or further extensions. The updates incorporate
development and integration options and needs, as well as feedback from Living Lab users. The
specified architecture is aligned to the reference architecture of the EUCEI community at functional and
component level. The outcome of this comparative analysis and mapping indicate that NEMO addresses
the full-fledged functionality of metaOS, as perceived by the EUCloudEdgeIoT community, realizing a
strong representation of European research and innovation teams across Europe.

Moreover, the document presents the NEMO Validation & Verification (V&V), with guided reference
to testing approaches, as well as appropriate validation tools, to be considered during the project’s
verification and validation activities.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 67 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

6 References

[1] NEMO, "D1.2 - NEMO meta-architecture, components and benchmarking. Initial version,"
HORIZON - 101070118 - NEMO Deliverable Report, 2023.

[2] P. Neuenschwander and S. Michelakis, "The infestation of Dacus oleae (Gmel.) (Diptera,
Tephritidae) at harvest time and its influence on yield and quality of olive oil in Crete," Zeitschrift
für Angewandte Entomologie, vol. 86, 1978.

[3] V. Vizzarri, L. Lombardo, C. Novellis, P. Rizzo, M. Pellegrino, G. Cruceli, G. Godino, F. Zaffina
and A. Ienco, "Testing the Single and Combined Effect of Kaolin and Spinosad against Bactrocera
oleae and Its Natural Antagonist Insects in an Organic Olive Grove," Life, 2023.

[4] H. Chen, Y. Lan, B. Fritz, W. C. Hoffmann and S. Liu, "Review of agricultural spraying
technologies for plant protection using unmanned aerial vehicle (UAV)," International Journal of
Agricultural ans Biological Engineering, vol. 14, no. 1, 2021.

[5] D. Tsouros, S. Bibi and P. Sarigiannidis, "A Review on UAV-Based Applications for Precision
Agriculture," Information, vol. 10, no. 11, 2019.

[6] C. Zhang and J. M. Kovacs, "The application of small unmanned aerial systems for precision
agriculture: a review," Precision Agriculture, 2012.

[7] A. A. Ayranci and B. Erkmen, "Edge Computing and Robotic Applications in Modern
Agriculture," in 2024 International Congress on Human-Computer Interaction, Optimization and
Robotic Applications (HORA), 2024.

[8] Z. Z. Al-Mashhadani and J.-H. Park, "Autonomous Agricultural Monitoring Robot for Efficient
Smart Farming," in 2023 23rd International Conference on Control, Automation and Systems
(ICCAS), 2023.

[9] S. R. L, J. J, A. S, A. Mallick and B. V, "Soil Moisture Monitoring and Seed Sowing Robot with
ThingSpeak Integration," in 2024 International Conference on Intelligent and Innovative
Technologies in Computing, Electrical and Electronics (IITCEE), 2024.

[10] W. Jiang, L. Quan, G. Wei, C. Chang and T. Geng, "A conceptual evaluation of a weed control
method with post-damage application of herbicides: A composite intelligent intra-row weeding
robot," Soil and Tillage Research, vol. 234, 2023.

[11] C.-H. Wang, Q.-K. Pan, X.-P. Li, H.-Y. Sang and B. Wang, "A multi-objective teaching-learning-
based optimizer for a cooperative task allocation problem of weeding robots and spraying drones,"
Swarm and Evolutionary Computation, vol. 87, 2024.

[12] NEMO, "D1.1 - Definition and analysis of use cases and GDPR compliance," HORIZON -
101070118 - NEMO Deliverable Report, 2023.

[13] NEMO, "D5.2 - Living Labs and Data Management Plan (DMP). Final version," HORIZON -
101070118 - NEMO Deliverable Report, 2024.

[14] ISO, "ISO/IEC/IEEE 42010:2022 Software, systems and enterprise — Architecture description,"
2022. [Online]. Available: https://www.iso.org/standard/74393.html. [Accessed 2023].

[15] M. Anisetti, F. Berto and M. Banzi, "Orchestration of data-intensive pipeline in 5G-enabled Edge
Continuum," in 2022 IEEE World Congress on Services (SERVICES), Barcelona, Spain, 2022.

[16] F. Tusa and S. Clayman, "End-to-end slices to orchestrate resources and services in the cloud-to-
edge continuum," Future Generation Computer Systems, vol. 141, 2023.

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 68 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

[17] I. Čilić, I. P. Žarko, and M. Kušek, "Towards Service Orchestration for the Cloud-to-Thing
Continuum," in 6th International Conference on Smart and Sustainable Technologies (SpliTech),
Split and Bol, Croatia, 2021.

[18] I. Tzanettis, C.-M. Androna, A. Zafeiropoulos, E. Fotopoulou and S. Papavassiliou.

[19] A. Orive, A. Agirre, H.-L. Truong, I. Sarachaga and M. Marcos, "Quality of Service Aware
Orchestration for Cloud–Edge Continuum Applications," Sensors, vol. 22, no. 5, 2022.

[20] A. N. Al-Quzweeni, A. Q. Lawey, T. E. H. Elgorashi and J. M. H. Elmirghani, "Optimized Energy
Aware 5G Network Function Virtualization," IEEE Access, vol. 7, 2019.

[21] A. Leivadeas and M. Falkner, "Autonomous Network Assurance in Intent Based Networking:
Vision and Challenges," in 32nd International Conference on Computer Communications and
Networks (ICCCN), 2023.

[22] A. Raghunandan, D. Kalasapura and M. Caesar, "Digital Twinning for Microservice
Architectures," in ICC 2023 - IEEE International Conference on Communications, 2023.

[23] Z. Anastasakis, T.-H. Velivassaki, A. Voulkidis, S. Bourou, K. Psychogyios, D. Skias and T.
Zahariadis, "FREDY: Federated Resilience Enhanced with Differential Privacy," Future Internet,
vol. 15, no. 9, 2023.

[24] N. Papernot, M. Abadi, Ú. Erlingsson, I. Goodfellow and K. Talwar, "Semi-supervised
Knowledge Transfer for Deep Learning from Private Training Data," arxiv.

[25] International Data Spaces Association, "IDSA Reference Architecture Model," 2022.

[26] O. Segou, D. Skias, T. H. Velivassaki, T. Zahariadis, E. Pages, R. Ramiro, R. Rossini, P. Karkazis,
A. M. D. Costa, L. M. C. Murillo, A. D. Rio, J. Serrano and Jimenez, "NExt generation Meta
Operating systems (NEMO) and Data Space: envisioning the future," in eSAAM'24 on Data
Spaces.

[27] FIWARE, "Orion Context Broker," [Online]. Available: https://github.com/telefonicaid/fiware-
orion/. [Accessed 2024].

[28] FIWARE, "IoT Agents," FIWARE Academy, [Online]. Available: https://fiware-
academy.readthedocs.io/en/latest/iot-agents/idas.html. [Accessed 2024].

[29] FIWARE, [Online]. Available: https://www.fiware.org. [Accessed 2024].

[30] FIWARE, "Build your own IoT platform with FIWARE enablers," 20215. [Online]. Available:
https://www.fiware.org/2015/03/27/build-your-own-iot-platform-with-fiware-enablers/.
[Accessed 2024].

[31] S. Sotiriadis, K. Stravoskoufos, E. G. Petrakis, V. Angelakis, E. Tragos, H. Pöhls, A. Kapovits
and A. Bassi, "Future Internet Systems Design and Implementation: Cloud and IoT Services Based
on IoT-A and FIWARE," in esigning, Developing, and Facilitating Smart Cities: Urban Design
to IoT Solutions, Cham, Springer International Publishing, 2017, pp. 193-207.

[32] FIWARE, "Knowage and NGSI," FIWARE Knowage, [Online]. Available:
https://knowage.readthedocs.io/en/6.1.1/user/NGSI/README/index.html. [Accessed 2024].

[33] IDSA, "IDS Connector," [Online]. Available: https://docs.internationaldataspaces.org/ids-
knowledgebase/v/ids-ram-4/layers-of-the-reference-architecture-model/3-layers-of-the-
reference-architecture-model/3_5_0_system_layer/3_5_2_ids_connector. [Accessed 2024].

[34] EC, "Future European platforms for the Edge: Meta Operating Systems (RIA)," [Online].
Available: https://ec.europa.eu/info/funding-
tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl4-2021-data-01-05.
[Accessed 2024].

Document name: D1.3 NEMO meta-architecture, components and
benchmarking. Final version Page: 69 of 69

Reference: D1.3 Dissemination: PU Version: 1.1 Status: Final

[35] EUCloudEdgeIoT.eu, "Building the European Cloud, Edge & IoT Continuum for business and
research," European Commission Horizon Europe - 101070030 - 101070571, [Online]. Available:
https://eucloudedgeiot.eu/. [Accessed 2024].

[36] EUCEI, "Developing a Reference Architecture for the Continuum - Concept, Taxonomy and
Building Blocks," EC HORIZON Europe - 101070030 - OpenContinuum Report, 2023.

[37] EUCEI, "Compositional View of the Continuum Reference Architecture: Graphical representation
of common and potential capabilities," EC Horizon Europe, 2024.

[38] NEMO, "D3.1 - Introducing NEMO Kernel," HORIZON - 101070118 - NEMO Deliverable
Report, 2023.

[39] NEMO, "D2.1 Analysis Nemo Underlying Technology," HORIZON - 101070118 - NEMO
Deliverable Report, 2023.

[40] UNLOCK-CEI, "Technology Implementation Model and Architectural Patterns for CEI Use
Cases," HORIZON - 101070571 - UNLOCK-CEI, 2024.

[41] Selenium, "Selenium," [Online]. Available: https://www.selenium.dev/. [Accessed 2024].

[42] Aqua Security Software, "Trivy," [Online]. Available: https://trivy.dev/. [Accessed 2024].

[43] Anchore, "Syft," [Online]. Available: https://github.com/anchore/syft. [Accessed 2024].

[44] Anchore, "Grype," [Online]. Available: https://github.com/anchore/grype/. [Accessed 2024].

[45] B. Keith , "Near, Far or Tiny: Defining and Managing Edge Computing in a Cloud Native World,"
2021. [Online]. Available: https://vmblog.com/archive/2021/04/27/near-far-or-tiny-defining-and-
managing-edge-computing-in-a-cloud-native-world.aspx.

[46] Canonical, "MicroK8s - The lightweight Kubernetes," 2023. [Online]. Available:
https://microk8s.io/.

[47] Rancher Labs, "K3s - Lightweight Kubernetes," 2023. [Online]. Available: https://k3s.io/.

[48] Mirantis, "K0s," 2023. [Online]. Available: https://k0sproject.io/.

[49] The Kubernetes Authors, "minikube," 2023. [Online]. Available:
https://minikube.sigs.k8s.io/docs/.

[50] The KubeEdge Project Authors, "KubeEdge," 2023. [Online]. Available: https://kubeedge.io/.

[51] "Checkov homepage," BridgeCrew, [Online]. Available: https://www.checkov.io. [Accessed 25
Feb. 2022].

