

This document is issued within the frame and for the purpose of the NEMO project. This project has received funding from the European
Union’s Horizon Europe Framework Programme under Grant Agreement No. 101070118. The opinions expressed and arguments employed
herein do not necessarily reflect the official views of the European Commission.
The dissemination of this document reflects only the author’s view, and the European Commission is not responsible for any use that may be
made of the information it contains. This deliverable is subject to final acceptance by the European Commission.
This document and its content are the property of the NEMO Consortium. The content of all or parts of this document can be used and
distributed provided that the NEMO project and the document are properly referenced.
Each NEMO Partner may use this document in conformity with the NEMO Consortium Grant Agreement provisions.

(*) Dissemination level: (PU) Public, fully open, e.g., web (Deliverables flagged as public will be automatically published in CORDIS project’s
page). (SEN) Sensitive, limited under the conditions of the Grant Agreement. (Classified EU-R) EU RESTRICTED under the Commission
Decision No2015/444. (Classified EU-C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified EU-S) EU
SECRET under the Commission Decision No2015/444.

Next Generation Meta Operating System

D2.3 Enhancing NEMO Underlying
Technology

Keywords:
Cybersecure Micro-services’ Digital Twins, Cybersecure Federated Deep Reinforcement Learning,
Federated Machine Learning, federated meta Network Cluster Controller, Time Sensitive Networking

Document Identification
Status Final Due Date 30/12/2024
Version 1.0 Submission Date 31/12/2024

Related WP WP2 Document Reference D2.3
Related
Deliverable(s) D2.1, D2.2, D3.2 Dissemination Level (*) PU

Lead Participant TID Lead Author Luis M Contreras

Contributors

TID, TSG, COMS,
INTRA, UC3M,
WIND3, CMC,
AEGIS, SU, UPM,
STS, ATOS, SYN

Reviewers
Dimitrios Skias

Gianluca Rizzi

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 2 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

Document Information

List of Contributors
Name Partner
Luis M. Contreras, Guillermo Sánchez,
Alejandro Muñiz

TID

Gregor Cerar, Blaž Bertalani, Matija Cankar COMS
Victor Gabillon TSG
Spyridon Vantolas, Konstantinos Raftopoulos,
Nikolaos Papadakis, Manos Karampinakis

AEGIS

Mika Skarp, Jose Costa-Requena CMC
Skias Dimitrios INTRA
G.Spanoudakis, Y.Papaefstathiou STS
Mohamed Legheraba SU
Borja Nogales, Iván Vidal, Francisco Valera,
Luis F. González

UC3M

Alberto del Rio, Javier Serrano, David Jimenez UPM
Gianluca Rizzi WIND3

Document History
Version Date Change editors Changes
0.1 18/10/2024 TID First ToC draft and work assignments
0.2 22/10/2024 TID First Inputs in Executive Summary and section 1

22/10/2024 COMS, TSG, TID,
CMC

Definition of the final structure, first inputs and
work assignment in sections 2, 3, 4 and 5.

0.3 5/11/2024 ALL First iteration
0.4 19/11/2024 ALL Second iteration
0.5 26/11/2024 ALL Final contributions in sections 2, 3, 4 and 5.

2/12/2024 ALL Final contributions in sections 6 and 7.
0.6 17/12/2024 WIND3 First Review
0.7 20/12/2024 INTRA Second Review
0.9 23/12/2024 TID, ALL Review’s corrections pending to be accepted
0.91 26/12/2024 TID FINAL VERSION TO BE SUBMITTED
1.0 30/12/2024 ATOS Quality review and final version

Quality Control
Role Who (Partner short name) Approval Date
Deliverable leader Luis M Contreras (TID) 30/12/2024
Quality manager Rosana Valle Soriano (ATOS) 30/12/2024
Project Coordinator Enric Pages Montanera (ATOS) 30/12/2024
Technical Manager Terpsi Velivassaki (SYN) 30/12/2024

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 3 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information ...2
Table of Contents ...3
List of Tables ..5
List of Figures ..6
List of Acronyms ..7
Executive Summary ...10
1 Introduction ..11

1.1 Purpose of the document ..11
1.2 Relation to other project work..11
1.3 Structure of the document ..11

2 Cybersecure Micro-services Digital Twins (CMDT) ...12
2.1 Overview ..12
2.2 Architecture and Approach ..12
2.3 Internal and External Interfacing ...15
2.4 Conclusion ...17

3 Cybersecure Federated Deep Reinforcement Learning (CF-DRL) ..18
3.1 Overview ..18
3.2 Architecture and Approach ..18

3.2.1 CFDRL and Meta Orchestration .. 18
3.3 Conclusion ...19

4 Federated meta-Network Cluster Controller (mNCC) ...20
4.1 Overview ..20
4.2 Architecture and Approach ..21

4.2.1 Intent-Based System .. 21
4.2.2 Network Metrics Exposure .. 24
4.2.3 Technology Connectivity Adaptors ... 29
4.2.4 Network Performance Monitoring ... 34

4.3 Conclusion ...35
5 Time Sensitive Networking ..36

5.1 Overview ..36
5.2 Architecture and Approach ..36
5.3 Internal and External Interfacing ...37
5.4 Conclusion ...37

6 Proof of Concepts ...38

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 4 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

6.1 CMDT first stable version ..38
6.1.1 Detailed description ... 38

6.2 CF-DRL first stable version ...41
6.3 mNCC hybrid clusters and intent networking ..43

6.3.1 Single Cluster Connectivity throughout L2SM overlay adaptor 43
6.3.2 Intent-Based System .. 46
6.3.3 Multi-Cluster monitoring and exposure ... 52

7 Conclusions ..55
8 References ..56
9 Annexes ..57

9.1 TFS interface and example intent ..57
9.2 L2SM example intent ...59

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 5 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

List of Tables

Table 1: objectContext for 5G adapter ... 21
Table 2: expectationTarget for 5G adapter .. 22
Table 3: targetContext for 5G adapter ... 22
Table 4: expectationContext for 5G adapter ... 22
Table 5: intentContext for all adapters ... 22
Table 6: objecttContext for L2SM adapter ... 22
Table 7: objrctContext for L2SM adapter ... 23
Table 8: expectationContext for L2SM adapter .. 23
Table 9. NeMeX input metrics. .. 28
Table 10: objectContext for L2VPN .. 32
Table 11: expextationTargets for L2VPN ... 32
Table 12: objectContext for BGP session ... 34
Table 13: expectationContext for BGP session ... 34

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 6 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

List of Figures

Figure 1 CMDT architecture and integration points. ___ 13
Figure 2 CMDT data collection and passing to RabbitMQ __ 14
Figure 3 Current version of CMDT AMPQ message ___ 16
Figure 4 Intent-based API interface that contains PPEF information ________________________________ 18
Figure 5 Result of querying the API (filtering RAM and CPU usage of the workload of interest) __________ 18
Figure 6 Retrieving the information from the Meta orchestrator through Rabbit MQ ____________________ 19
Figure 7 Retrieving the information from the Meta orchestrator through Rabbit MQ ____________________ 20
Figure 8 Intent workflow schema __ 23
Figure 9 NeMeX internal workflow. __ 27
Figure 10 mNCC metrics data model. __ 29
Figure 11 Towards integration workflow 5G adapter __ 31
Figure 12: Private peering interactions ___ 33
Figure 13: TSN Architecture __ 36
Figure 14: List of resources per workload. ___ 39
Figure 15 The CMDT message example which is transported over RabbitMQ _________________________ 40
Figure 16 CFDRL communication architecture for scaling the replicas of the workloads in the Meta-
Orchestrator __ 41
Figure 17: Code snippet for request __ 42
Figure 18: RabbitMQ connectiviy snipped ___ 43
Figure 19: Metric retrieving __ 43
Figure 20 K8s clusters of this PoC ___ 43
Figure 21 Resources present in the clusters in the PoC ___ 44
Figure 22 API endpoint generation __ 44
Figure 23 K8s cluster token generation ___ 44
Figure 24 Configuration file used to create a new slice with the L2S-M-md component __________________ 45
Figure 25 CLI used to create the slice between the clusters __ 45
Figure 26 L2S-M resources successfully installed in both clusters __________________________________ 46
Figure 27 IBS importing libraries __ 46
Figure 28 IBS importing executioners __ 47
Figure 29 IBS input intent __ 47
Figure 30 IBS first classification __ 47
Figure 31: IBS subintent generation. ___ 48
Figure 32 IBS second classification __ 48
Figure 33 IBS tfs_l2vpn translation __ 49
Figure 34 IBS "sys_out" executioner ___ 49
Figure 35 IBS "tfs_connector" executioner __ 49
Figure 36 IBS http request to TFS ___ 50
Figure 37 TFS webui L2VPN service status __ 50
Figure 38 TFS webui L2VPN service details ___ 50
Figure 39: Intent classification. L2SM case. ___ 51
Figure 40: Final L2SM translation. __ 51
Figure 41: L2SM intercluster network active. __ 52
Figure 42 Logs from the network probes in the first cluster. _______________________________________ 52
Figure 43 Logs from the network probes in the second cluster. _____________________________________ 53
Figure 44 Metrics saved in the internal Prometheus in the first cluster. ______________________________ 53
Figure 45 On the top, the logs of two Nemex components deployed in two clusters. In the bottom, the RabbitMQ
updates. __ 54

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 7 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation /
acronym

Description

AAA Authentication, Authorization, and Accounting
AD Architecture Description
AF Application Function
AI Artificial Intelligence
AMF Access and Mobility Management Function
AMPQ Advanced Message Queuing Protocol
API Application Programming Interface
CFDRL Cybersecure Federated Deep Reinforcement Learning
CI/CD Continuous Integration & Continuous Delivery/Continuous Deployment
CMDT Cybersecure Micro services Digital Twin
CN Core Network
CNC Centralised Network Configuration element
CNCF Cloud-Native Computing Foundation
CNI Container Network Interface
CPU Central Processing Unit
CR Custom Resource
DAST Dynamic Application Security Testing
DLT Distributed Ledger Technology
DQN Deep Q-Network
DS TT Device Side TSN translator
Dx.y Deliverable number y belonging to WP x
E2E End-to-End
EC European Commission
GDPR General Data Protection Regulation
gPTP generic Precision Time Protocol
gRPC Google Remote Procedure Call
HLA High-Level Architecture
HW Hardware
IAM Identity and Access Management
IAST Interactive Application Security Testing
IBMC Intent-Based Migration Controller
IBS Intent-Based System
IDCO Inter-Cluster Connectivity Orchestrator
IMC Intent-based Migration Controller
IoT Internet of Things
K8s Kubernetes
KPI Key Performance Indicator

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 8 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

LCM Life Cycle Management
LCM UI Life Cycle Management User Interface
LLDP Link Layer Discovery Protocol
MANO Management and Orchestration
MEC Multi-access Edge Computing
meta-OS Meta-Operating System
ML Machine Learning
mNCC meta–Network Cluster Controller
mRA meta-Reference Architecture
MO meta-Orchestrator
MOCA Monetization and Consensus-based Accountability
NAC NEMO Access Control
NED Network Edge Device
NFV Network Function Virtualization
NGIoT Next-Generation IoT
NW TT Network TSN Translator
OS Operating System
PA-LCM Plugin & Apps Lifecycle Manager
PCF Policy Control Function
PoC Proof of Concept
PPEF PRESS and Policies Framework
PRESS Privacy, data pRotection, Ethics, Security & Societal
PSFP Per-stream filtering and policing
RAN Radio Access Network
RASP Run-time Application Security Protection
REST Representational State Transfer
RBAC Role-Based Access Control
RL Reinforcement Learning
SDK Software Development Kit
SDN Software Defined Networking
SDO Standard Development Organization
SD-WAN Software-Defined Wide Area Network
SLA Service Level Agreement
SLO Service Level Objective
SMF Session Management Function
TEE Trusted Execution Environment
TSCAI Time Sensitive Communication Assistance Information
UPF User Plane Function
UUID Universally Unique Identifier
V&V Validation & Verification
VM Virtual Machine
VNF Virtual Network Function

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 9 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

WP Work Package
YAML Yet Another Markup Language

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 10 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

The main goal for this document is to outline the work conducted in the three tasks of WP2, emphasizing
the components that form the underlay layer of the meta-OS of NEMO (i.e., three components plus the
TSN capabilities). In here it is provided a thorough description, focusing on overcoming the initial
challenges related to the development of these components as they begin to coexist within the same
ecosystem. Through this discussion, the reader will gain a clear understanding of the advancements
proposed by NEMO partners relative to the deployment and advances for the technologies utilized.

The document highlights the achievements made thus far during the Enhance phase, with particular
attention to the overall deployments and internal integrations employed to develop and report the Proof
of Concepts (PoC) for each of the main subcomponent. This phase finalizes with three of the four
components (CMDT, mNCC and TSN) in an integration stage, with some functional and non-functional
improvements from the previous version, and with the final stable version of the CF-DRL.

To completely understand this work it is important to have had a previous reading of the D2.2 Enhancing
NEMO Underlying Technology [1] as this document, due to the fact that is an extension of it and it works
as a continuation for the initial integration done in the previous phase.

Once finalized, the reader should end with a big-picture knowledge of the four main components
depicted in here, being able to understand the motivation and functionality of each of these components
and have a clear view about what to expect for the final developing phase.

The main results for this document included:

 A final approach to a stable version for the Cybersecure Micro-Services Digital Twin, with an
overlook about how it is deployed and how it works.

 A final stable version of the Cybersecure Federated Deep Reinforcement Learning with a
comprehension of the internal architecture and a description of each of the algorithms available
to be run in the first stable version.

 A final approach to a stable version for the Federated meta-Network Cluster Controller, with an
initial deployment of the service provisioning and the network monitoring and exposure
capabilities.

 A final approach to a stable version of the Time Sensitive Network component for 5G networks.

As conclusion, this document depicts the main advances in the deployment of the NEMO technological
enables, providing a deep understanding of how each of them works and the updated contributions
already done in a concluded development and deployment phase. During the elaboration of this
document some initial approaches proposed in the previous stage have been enhanced and some others
have been dropped as there were considered as unnecessary or redundant. Also, the presence of external
difficulties has made CMDT and mNCC suffer changes to adapt to the new consortium status, impacting
these difficulties in the completeness of these components but not in a critical way.

In the current phase, it is expected to develop the final deployment and validation for each of the four
components, and an improvement on the integration inside the full NEMO meta-OS ecosystem.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 11 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the document
This document works as an update from D2.2 Enhancing NEMO Underlaying Technology [1] ,providing
an updated view of each of the three components defined in WP2. The main goal is to describe the latest
version of each component and its parts, providing a complete knowledge about each of them and how
is the final stable version. Additionally, it is also depicted how these components interact with other
NEMO components, focusing on the functionalities provided and the interfaces exposed, being this
crucial for the overall NEMO stack integration steps. Moreover, the document will serve to evaluate the
latest status of the components against the NEMO KPIs. The three components described (each of them
carried out in one of the Task withing the Work Package) are going to focus on topics as cloud and edge
computing, networking, AI operations, and microservices-oriented architectures, being important to
have a background on these technologies.

1.2 Relation to other project work
D2.3 Enhancing NEMO Underlaying Technology works as an update to D2.2 Enhancing NEMO
Underlaying Technology, providing advancements on the technologies defined in there and giving the
latest view of its implementation. D2.3 will follow the same structure and objectives as D3.2 and D4.2
providing a jointed view of NEMO architecture and implementation and working as a description of the
integration work and the evaluation of Use Cases described in D5.2 NEMO Living Labs use cases
evaluation results at Milestones 8 and 11.

1.3 Structure of the document
This document starts with an introduction and explanation of the context and goals defined to be
addressed here. Then, there will be a section for each of the three WP2 components, and a last one for
the Time Sensitive Networking, due to its characteristics. In each of these sections dedicated to the
components it is provided an overview of what is being pursued in each of them, the final improved
architecture, how each of these components works and the interfaces to communicate with the rest of
NEMO components.
Once components are depicted in the theoretical way, there is also a section 6 for the explanation and
validation of each of them, showing proofs of concept that evaluate the functionalities and bring a view
on how the integration with the rest of NEMO WP2 architecture it’s done. For the pending integrations
with the rest of the NEMO components, proper descriptions and reporting will be included in the
ongoing D4.3.
Finally, all the information expressed in sections 2 to 6 will be summarized in the Conclusions section,
focusing on the results obtained related to the goals and challenges expected for the technologies
depicted. Also, as this is the final document for the work package, this conclusion section will provide
a big picture about the work realized and the benefits that these technologies bring not only to the rest
of the NEMO architecture, also to the general State-of-the-Art.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 12 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

2 Cybersecure Micro-services Digital Twins (CMDT)

2.1 Overview
The Deliverable D2.2 [1] describes all potential expected functionalities of the Cybersecure Micro-
services Digital Twins (CMDT) component, which plays a pivotal role in monitoring and assessing the
status and availability of each workload defined as a Digital Twin (DT). This service is responsible for
aggregating data from all available clusters, organizing and enriching it with crucial metadata—such as
service ownership details—and providing consolidated, actionable insights to other services.
The role and functionalities of the CMDT have improved the previous CMDT version presented in D2.2.
The main changes are in the distinction of the components’ goal inside the NEMO MetaOS framework,
removing unnecessary functionalities and clarifying the integration interfaces of the tool. With these
changes, CMDT became near real-time data fusion and distribution service, capturing and DT life-cycle
anomalies and passing them to the user interface. This means that the CMDT dashboards will remain,
but will be used only for NEMO super-users, while the DT information, crucial for the end user is
integrated in the NEMO LCM UI.
Additionally, the CMDT integration is finally detailed, including the definition of course of the data that
is passed over the AMPQ message bus (e.g., RabbitMQ). This information is crucial to transmit the
status from the distributed NEMO environment to the LCM UI in a near real-time manner. The messages
include the following data:

 Timestamp: Depicts the exact time when the data was prepared and message sent, ensuring
chronological order.

 Workload ID: Represents a unique identifier for the workload (e.g. Digital Twin).
 UserID: Represents a unique identifier for the user.
 LinkerD retrieved info such as network traffic to/from pod, traffic rate, and response stats.
 Kube-state-metrics info such as memory, and CPU utilization,
 Number of replicas: Represents a current number of replica instances (k8s pods) running for a

workload. It indicates the number of instances or replica instances.
 Status: Describes the current and past state of the workload or k8s pods, which can be:

o Running
o Restart
o Ready
o Failure

The message details currently cover all KPIs defined in section 2.2 of previous deliverable “D2.2
Enhancing NEMO Underlying Technology". The list of message data attributes is not fixed and could
be updated in the future due to the stakeholder requests for better user experience. In the following
subsections we point out the specific changes made on CMDT architecture in the last development and
integration period.

2.2 Architecture and Approach
The initial iteration of the CMDT implementation was ambitious, incorporating numerous data sources–
some of which were redundant–to gather as much information as possible and gain a comprehensive
understanding of the system and its Digital Twin deployments. Following the initial deployment, we
evaluated the collected data and compared the CMDT’s capabilities with other NEMO services. This
led us to reshape the architecture to better align with the NEMO meta-OS framework, ensuring it
complemented the functionality of other services effectively.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 13 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

The new version of CMDT still provides a comprehensive approach for in detail management of DT,
however, the architecture is restructured in a way to guarantee seamless and real-time provision of DT
status to the LCM graphical user interface (LCM UI), organized by each workload or user. In essence,
this version still includes the same core functionality, without the parts as Grafana and Prometheus,
which were used only to showcase the CMDT results in the past. In this final version of CMDT, which
is fully integrated into the NEMO operating system, the interfaces mentioned became redundant and
were removed from the core CMDT architecture.
The revised CMDT architecture is presented in Figure 1. The core services consist of k8s Agent
aggregation engine, Service Mesh Network Aggregation Engine, CMDT data fusion and broker.
Mentioned services and their processes streamline the DT status message delivery from the
infrastructure and software layer to the user space in LCM UI. Both aggregation engines rely on the data
gathered through special agents locally collecting the data on each pod. The reader can find these agents
shown on the bottom of Figure 1, where each cluster is monitored by Service mesh monitoring and Pod
monitor. The gathered and CMDT processed data is shared on the AMPQ service (RabbitMQ). The data
is consumed by NEMO services, like the LCM – UI, which uses the data to represent and status of the
Digital twin health.

Figure 1 CMDT architecture and integration points.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 14 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

The sequence diagram from Figure 2 outlines the process of CMDT near real-time notifications for the
LCM-UI within a distributed infrastructure. The LCM-UI monitors the #CMDT channel via RabbitMQ
to receive updates. CMDT Core Services interact with multiple clusters (Cluster 1 to Cluster N)
distributed across the infrastructure, gathering network mesh and service data from pods. This DT data
is processed, aligned, annotated, and relayed to RabbitMQ as cluster status updates. RabbitMQ acts as
a mediator, ensuring that LCM-UI remains informed of the latest statuses from each cluster, enabling
near real-time notifications and streamlined monitoring capabilities for the system.

Figure 2 CMDT data collection and passing to RabbitMQ

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 15 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

2.3 Internal and External Interfacing
CMDT uses only internal interfaces to communicate with the rest of the NEMO components. The input
and output interfaces include the following information:

 INPUT:
o Internal tools:

 LinkerD (https://linkerd.io/) API to gather internal and external network traffic
stats.

 Kube-state-metrics (https://github.com/kubernetes/kube-state-metrics) API to
gather Kubernetes nodes’ stats (CPU, memory, storage utilization).

 Prometheus (https://prometheus.io/) API to access internal storage to query
retrospective stats.

 Kubernetes API to gather services’ and pods’ state and logs.
o Intent-based API to access mapping between pods and workload UUID.
o User/workload relations.

 OUTPUT:

o AMPQ messages: RabbitMQ periodic and event-driven (on events/changes) messages
to be consumed by other services, such as LCM and CF-DRL.

o Optional GUI dashboard for NEMO.

Message
destination

Message format

<AMPQ url
on
RabbitMQ>

Channel:
#CMDT

Payload (Screeshot of JSON)

The message format:

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 16 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

Figure 3 Current version of CMDT AMPQ message

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 17 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

2.4 Conclusion
The CMDT has significantly changed in the last development period. The key improvement was the
definition of the essential content gathered and annotated by CMDT and the most efficient and useful
integration point through AMPQ.
Current simulations show that the LCM-UI will be able to gain responsiveness and near real-time digital
twin visualization by using the CMDT notifications. For advanced NEMO administration users, the
CMDT will still maintain the backdoor access for easier status debugging.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 18 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

3 Cybersecure Federated Deep Reinforcement
Learning (CF-DRL)

3.1 Overview
One of the main applications of CF-DRL within NEMO is to help orchestrate microservices in the Meta-
Orchestrator as described in D2.2

3.2 Architecture and Approach

3.2.1 CFDRL and Meta Orchestration
 Designing a Deep Q-Network (DQN) Algorithm. Because the Thales library for

reinforcement learning is closed source, it was not possible to share the library as is on the One
lab cluster. However, it has been recoded the specific DQN algorithm for the CFDRL-NEMO
application.

 Connection to PPEF: The PPEF can provide information about the status of the workload that
concern the workload’s intents’ expectations set by the NEMO user. CFDRL needs to query the
intent-based API automatically using a Keycloack identifier. The CFDRL queries the API at
intent-api.nemo.onelab.eu/api. Then the information is retrieved and filtered in order to
extract the relevant information. In the case of the PPEF, the relevant information1 is the usage
of CPU and RAM and whether it exceeds the limits set for a normal execution.

Figure 4 Intent-based API interface that contains PPEF information

Figure 5 Result of querying the API (filtering RAM and CPU usage of the workload of interest)

1 The information from the PPEF is not only limited to the CPU and RAM, but intents also include other details
such as compute expectations (CPU, RAM), energy expectations, security, etc.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 19 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

It’s possible to follow over time the variations of the values of the CPU usage and RAM usage with
respect to the maximum target values in the following figures. One thing to notice is that the usage
values in blue here do not go over the limit target value in orange.

 Connection with the MO: The connection with the meta-orchestrator is through RabbitMQ.

On the CFDRL side the connection is made in python using the pika library. A queue was set in
the RabbitMQ so that CFDRL can query it for general info about static cluster
resource/specification information (such as its CPU, RAM, storage, etc), as illustrated in Figure
6 below. CFDRL obtains information about the cluster id, capacity such as CPU and memory.

Figure 6 Retrieving the information from the Meta orchestrator through Rabbit MQ

3.3 Conclusion
The CFDRL was uploaded to the Onelab cluster and connected to the Meta Orchestrator and the PPEF
so that the RL model could learn from interacting with the monitoring data.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 20 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

4 Federated meta-Network Cluster Controller
(mNCC)

4.1 Overview
The mNCC module is tasked with managing network connectivity and the assessment and exportation
of network characteristics within the NEMO system. It serves as an intermediary between NEMO and
the underlying physical network topology, providing connectivity and abstracting network services from
the deployment specifics. The mNCC enables real-time access to network characteristics, allowing
services to autonomously update their network perspective.
Recent updates to the mNCC have significantly enhanced its capabilities and integration within the
NEMO ecosystem. The first stable version has been successfully integrated, marking a major milestone
in the module's development. The intent-based library has been expanded with additional service
libraries, broadening the range of network functionalities that can be expressed through high-level
intents. Furthermore, the integration of expected technology adaptors has been completed, enabling the
mNCC to interface with a wider array of network technologies seamlessly.
Moreover, the integration of the metric reporting and exposure capabilities has been completed, allowing
for more comprehensive network monitoring and analysis. This update enables the mNCC to provide
more accurate and detailed network characteristics to other NEMO components. The achievement of
automated deployment, supported by the MO and the CI/CD frameworks in NEMO, represents a
significant step forward in operational efficiency, streamlining the process of implementing and scaling
the mNCC across various network environments.
The interaction of the different modules of the component is represented in Figure 7.

Figure 7 Retrieving the information from the Meta orchestrator through Rabbit MQ

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 21 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

4.2 Architecture and Approach
In this section, are described the components of the mNCC. These include the Intent-Based System
(IBS), which translates network requests into specific technology implementations, and the Network
Metrics Exposure (NeMeX), which integrates and exports network topology and performance metrics.
The mNCC also incorporates Technology Adaptors, such as the 5G Adapter and Teraflow SDN
Controller, which manage specific network technologies. The Connectivity Controller, based on L2SM
technology, provides secure link-layer connectivity between microservices within Kubernetes clusters.

4.2.1 Intent-Based System

4.2.1.1 Introduction
The Intent Based System (IBS) is a translator between different technologies, abstracting the specific
details of network components from the general directives of higher-level components. This abstract
order is known as Intent (an intention). It expresses an expectation of what the underlying technologies
should do without knowing “the how”. This concept adapts nicely with the paradigm of the mNCC to
be able to scale with new Network Adaptors. Just with the addition of a new intent library, the IBS can
translate an intention to a new network technology.
In the following section, there is a general overview of recent updates and the current status of the
software. Additionally, how the Meta-Orchestrator (MO) utilizes intents to request different types of
networks and the work in progress of the integration will be explored. This insight into the system's
evolution and functionality will demonstrate how the Intent Based System continues to enhance network
management and orchestration capabilities.

4.2.1.2 Intent structure
In this section, the different targets, context and expectations that will trigger the different network
adaptors in the mNCC will be described. Notice that the intent structure has not received any update
from the version reported in [D2.2], the structure defined the 3GPP specification [3gpp 28.321]. For the
sake of simplicity, not all the objects will be described. Also, the targets, contexts and expectations will
be divided in tables, although the intent requests must have the complete structure defined in the Gitlab
repository2.

Table 1: objectContext for 5G adapter

ob
je

ct
C

on
te

xt
s objectType contextAttribute contextCondition contextValueRange

5G_SLICE_FLOW

ip4Address IS_EQUAL_TO ip string
type IS_EQUAL_TO 'BOTH'

portNumber IS_EQUAL_TO port string

portType IS_EQUAL_TO 'UDP' / 'TCP'

2Gitlab: https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-infrastructure-management/federated-
meta-network-cluster-controller/intent-based-system

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 22 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

Table 2: expectationTarget for 5G adapter
ex

pe
ct

at
io

nT
ar

ge
ts

 objectType targetName targetCondition targetValueRange

5G_SLICE_FLOW

ulCapacity IS_EQUAL_TO ip string

dlCapacity IS_EQUAL_TO ‘BOTH’

Table 3: targetContext for 5G adapter

ta
rg

et
C

on
te

xt
s

targetName contextAttribute contextCondition contextValueRange

dlCapacity/ulCapacity profile IS_EQUAL_TO profile string (audio4k)

Table 4: expectationContext for 5G adapter

ex
pe

ct
at

in
C

on
te

xt
s objectType contextAttribute contextCondition contextValueRange

5G_SLICE_FLOW

startTime IS_EQUAL_TO RFC 3339 – Date/time
format

stopTime IS_EQUAL_TO RFC 3339 – Date/time
format

url IS_EQUAL_TO url string

Table 5: intentContext for all adapters

in
te

nt
C

on
te

xt
s userLabel contextAttribute contextCondition contextValueRange

Cloud_continuum (NEMO) NEMO_WORKLOAD IS_EQUAL_TO NEMO uuid

Table 6: objecttContext for L2SM adapter

ob
je

ct
C

on
te

xt
s objectType contextAttribute contextCondition contextValueRange

K8S_L2_NETWORK

name IS_EQUAL_TO network string

providerName IS_EQUAL_TO provider string

uc3m IS_EQUAL_TO domain string

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 23 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

Table 7: objrctContext for L2SM adapter
ob

je
ct

C
on

te
xt

s objectType contextAttribute contextCondition contextValueRange

K8S_CLUSTER_CONFIG

name IS_EQUAL_TO network string

beare_token IS_EQUAL_TO token string

api_key IS_EQUAL_TO key string

Table 8: expectationContext for L2SM adapter

ex
pe

ct
at

io
nC

on
te

xt
s objectType contextAttribute contextCondition contextValueRange

K8S_CLUSTER_CONFIG

k8s_l2_network IS_EQUAL_TO network string

url IS_EQUAL_TO url string

The complete set of possible intents and examples continue in the annexes 9.1 and 9.2.

4.2.1.3 Intent lifecycle
The intent lifecycle starts with the request of the Meta-Orchestrator via the RabbitMQ queue. Once the
IBS consumes the intent, it starts the classification phase. In this phase, the classifier module of the IBS
compares the key attributes of the intent and matches them with one of the Intent libraries installed
[D2.2]. The classification has been updated with a better subdivision of incoming intents into sub-
intents. Also, the IBS can process several intents in the same file separated with the usual "yaml"
separator "---". This enables in the MO more flexibility and scalability in the requests. In the current
version, the IBS can classify an intent in the cloud continuum library and then sub divide this intent to
be processed by one of the libraries capable of translating the intent into the specific technological
network adaptor.

Figure 8 Intent workflow schema

Then, once the intent is translated by the corresponding library, the order is sent to the corresponding
executioners. As they are programmed to be interfaces towards the different technologies, if the
interfaces are the same, the executioners can be reused, giving the IBS flexibility and independence
between the different steps in the lifecycle.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 24 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

4.2.1.4 Intent model in NEMO cloud continuum paradigm
The implementation of the Intent Based System (IBS) as a micro-kernel architecture significantly
enhances the development and integration of new network adaptors. This modular design separates core
functionality from specific network adaptor implementations, allowing for seamless integration of new
technologies without modifying the central IBS components. As new network technologies emerge,
corresponding adaptors can be developed and plugged into the system with minimal disruption to
existing operations, ensuring scalability and future proofing. The micro-kernel approach also simplifies
maintenance and updates of individual components, including network adaptors. Furthermore, it offers
organizations the flexibility to develop or modify network adaptors to suit their specific needs without
altering the core IBS functionality. This architectural choice ultimately ensures that the IBS remains
highly adaptable, capable of evolving alongside the rapidly changing landscape of network technologies
in the cloud continuum paradigm.

4.2.2 Network Metrics Exposure
As defined in previous deliverables, the Network Metrics Exposure (NeMeX) is the component
serving as the North-Bound Interface (NBI) for mNCC. It interacts with the internal subcomponents of
mNCC and the RabbitMQ queue to export network topology and performance metrics for the managed
technological domains.
NeMeX has two main functions:

1. Topology view integration: it gathers information from multiple sources and combines it into
a unified, coherent topology view.

2. Data modeling and performance metrics delivery: it uses RabbitMQ to share information
with other NEMO components, ensuring scalability and interoperability for the integration of
technological controllers or add-ons in a standardized manner.

In its initial deployment, NeMeX establishes a connection with NEMO’s RabbitMQ broker. While this
version is manually configured, future versions aim to automate this process to enhance scalability,
availability, and robustness. Once connected, NeMeX maps multi-domain resources to create an
integrated view that combines performance values with domain-specific resources.
The process transforms three initial views into a unified topology by assigning common identifiers to
the same nodes. Every D seconds, updated values are sent to the designated RabbitMQ queue if changes
occur.

4.2.2.1 Technological dependencies and requisites
The NeMeX sub-component is based on the next technologies:

 Python33. This is the programming language used for almost all code in this component.
Python 3 is a high-level interpreted language designed to facilitate code usability, thereby
enhancing the potential for code improvements and extensions. Currently version
Python3.12 is used.

 Kubernetes (K8S)4. is used for managing distributed systems, specifically for monitoring
computational capacities required for virtualizing network resources. This choice is based
on the strong presence of Kubernetes in current systems and its compatibility with other

3 Python3 official release: https://www.python.org/download/releases/3.0/
4 Official K8S documentation: https://kubernetes.io/docs/home/

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 25 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

components of the NEMO meta-OS, from Kubernetes API we extract Node information
and launch the sub-component. Currently version 1.31 is used.

Internally with NEMO, there are also some dependencies:
 Underlay Network Probes. NeMeX requires the deployment of the Underlay Network Probes

to obtain the metrics extracted from the network. If probes are not deployed or are failing, there
would be no content to expose. This would not cause a crash in the system, but the behavior
would not be the expected one for the main workflow.

 RabbitMQ. Like what happens with the Underlay Network Probes, if there is no broker to
exchange the metrics, NeMeX will be unable to push them, and therefore the behavior will not
be the desired one. Also, it would neither kill NeMeX, just stopping the exposition service.

Also, there are some Python libraries also used and needed in this deployment. Although there is no
need for a specific version in each of those technologies, it may be interesting to mention them just in
case new implementations of those technologies include incompatibilities:

requests~=2.25
pika~=1.0
kubernetes~=31.0

About the System dependencies, all code has been tested and executed in Linux (Ubuntu 22.04 LTS)
but, as the code is deployed using Kubernetes and Python3 (an interpreted language) there is no special
dependency on the system to be used. Also, there are neither dependencies with hardware capabilities.
Finally, there are also configuration dependencies. These dependencies are related to the arguments to
be provided during the deployment of the component:

 delay: Time between updates (default: 3600)
 cluster: Cluster id (default: 'cluster-1')
 rmq_ip: IP where the RabbitMQ broker is available (default: '132.227.122.23')
 rmq_port: Port where the RabbitMQ broker is available (default: '30403')
 exchange: Exchange used int the Rabbit MQ (default: ' ')
 key: Key used in RabbitMQ (default: 'costs-map')
 user: Nemo user for pushing RabbitMQ messages (default: 'nemo-user')
 passwd: Password to push RabbitMQ messages (default: '1234')

These arguments should be passed using the Kubernetes manifest available in the NeMeX official
repository 5.

4.2.2.2 Internal workflow
When the NeMeX execution starts, this subcomponent evaluates if it has any topology stored locally
(for example, in case tests are performed and the function in charge of reading the metrics is launched
more than once without deleting the local data). In case there is no topology already stored, one will be
loaded natively. Initially this topology was enhanced through a graph management, to provide path

5 kubefiles/02_nemex-deployment.yaml · main · Eclipse Research Labs / NEMO Project / NEMO Infrastructure
Management / Federated Meta-Network Cluster Controller / Network Exposure module · GitLab

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 26 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

Computation capabilities, but due to the lack of demand for this service, we have proceeded to use local
dictionaries, which consume a smaller amount of memory and have a faster management.
Once the topology update is initialized, two data sources will be evaluated: Kubernetes to obtain the
mapping between the Kubernetes nodes and the IPs that represent them and the Underlay Network
Probes. From the Kubernetes API (client.CoreV1Api()) the node information is loaded, extracting the
name and IP values from the metadata.name and status.addresses field.
Afterwards, and having these measurements, the different metrics repositories of the Underlay Network
Probes, which are present in each node of the cluster through a Prometheus service on port 5001, are
analyzed. For each node, the metrics and properties are read and parsed into the format defined for the
output. If any node does not have the service available or does not provide these metrics, the error will
be detected, and it will be discarded from the process.
Once we have all the metrics processed, they are integrated in the same JSON, including the timestamp
of when they have been generated and the cluster from which they come, to allow the identification of
these. This resulting JSON is sent to the RabbitMQ broker indicated in the deployment and the process
is paused until the next iteration.
This process is depicted in Figure 9.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 27 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

Figure 9 NeMeX internal workflow.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 28 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

4.2.2.3 Deployment and permissions.
The NeMeX component is designed to be deployed in a Kubernetes environment, in which write
permissions are not required but read permissions are required. In the deployment process there are two
steps that must be performed sequentially: on the one hand the definition of the Namespace where they
will be executed (in the case of the Nemo project this is nemo-net) and the Deployment of the NeMeX
resources. Both documents are available in the eclipse repository 6.
Within NeMeX resources, we have 4 necessary deployments:

1. Deployment: this is the deployment of the code. Here the image to be instantiated is identified
as well as the parameters that will serve as variables. These parameters can be parameterized or
hardcoded. The user and password must be managed through Kubernetes secrets, which has not
been uploaded to the repository for security reasons.

2. ServiceAccount: Creates an identity in Kubernetes for the deployment to manage the necessary
resources for monitoring nodes.

3. ClusterRole: Role that NeMeX will perform within Kubernetes. In this section, read
permissions are requested for the pods at namespace level and for the nodes at cluster level.
This component can be replaced by a Role, but then it will only be able to monitor the pods at
namespace level and not the nodes.

4. ClusterRoleBinding: Maps the permissions requested in the Cluster Role with the Service
Account created. If a Role is used instead of a Cluster Role, a RoleBinding should be used
instead.

4.2.2.4 Inputs and outputs.
We can identify two main inputs: on the one hand we have the compute information obtained using the
Kubernetes API; this information will help to match the nodes with their IPs. This input is managed
using the Python3 Kubernetes API and the value obtained is a string with IP format per each node.
On the other hand, it is also received metric information from the network probes; these metrics will be
associated with nodes and links and will be summarized in the following table:

Table 9. NeMeX input metrics.

Name Description Type Valid values
network_metric_latency Delay between two probes at IP level.

Unit: ms
Float 0.01 – N

network_metric_throughput Data rate available in the link.
Unit: Mbps

Float 0.00 – N

network_metric_packet_loss Packet loss rate since last measurement.
Unit: %

Int 0 – 100

network_metric_link_energy Average power consumption.
Unit: W

Int 0 – N

network_metric_link_failure Number of times the link drops since last measure.
Unit: fails

Int 0 – N

6 https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-infrastructure-management/federated-meta-
network-cluster-controller/network-exposure-module/-/tree/main/kubefiles

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 29 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

These metrics are processed and formatted to be aligned with the node names and IPs used by the
Kubernetes resources to be managed. This integration returns the following data model:

Figure 10 mNCC metrics data model.

In Section 6 there will be available an example of the deployment and exposure of metrics, showing a
demo scenario with three nodes.

4.2.3 Technology Connectivity Adaptors
The final working network adaptors. There are two types of connectivity adaptors: the ones part of the
NEMO project, and the ones external to the project but used as a proof of concept for the versatility and
flexibility of the mNCC architecture. In section 6 the demonstration for two cases will be shown.

4.2.3.1 L2SM connectivity solution
Link Layer Secure Microservices (L2SM) serves as a secure connectivity solution within the mNCC,
offering advanced network functionalities through an extension of the Kubernetes (K8s) API. It enables
the creation, management, and deletion of virtual networks and supports the use of custom overlay
networks. By taking advantage of the Software Defined Networking (SDN) capabilities, L2SM provides
an API that deploys a customized data plane and enforces rules within Open Virtual Switches (OVS) as
part of the overlay network topology.
L2SM has undergone significant advancements to align with the mNCC’s evolving requirements.
Initially, as presented in D2.2, L2SM handled internal cluster connectivity via overlays and introduced
the concept of Network Edge Devices (NEDs) to enable the interconnection of overlay networks across
different clusters. This concept has been further developed and implemented, facilitating communication
between workloads deployed through NEMO OS using a standardized interface.
L2SM MD
The creation and management of L2SM resources are now handled via the L2SM multi-Domain (L2SM
MD) client—a gRPC server that processes requests to create inter-cluster overlay topologies, add or
delete clusters, and manage inter-cluster virtual networks atop these overlays. This modular approach
simplifies the expansion of L2SM’s functionalities, integrating existing concepts of virtual networks
and overlay networks with the new NEDs and inter-cluster networking capabilities through a
standardized API. This enhances the efficiency of the mNCC’s connectivity adaptor.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 30 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

Specifically, L2SM MD implements the following methods:

 Create and Delete Networks: Allows the creation and deletion of virtual networks across
clusters, given a list of clusters and the name of the network.

 Create and Delete Overlays: Manages overlay network topologies that define the
interconnection of clusters, provided with a list of clusters and a name for the overlay.

 Add and Remove Clusters: Enables dynamic addition or removal of clusters within an overlay
network, specified by the overlay name and the cluster to modify.

To securely manage these operations, L2SM MD requires cluster information, including the K8s API
endpoint and a user’s bearer token with permissions to manage L2SM Custom Resource Definitions
(CRDs), Overlays, NEDs, and L2Networks in the managed clusters. Since the K8s API endpoint uses
HTTPS, L2SM MD needs access to the TLS certificate to establish secure communication. Therefore,
copies of the public certificates are stored securely within the control plane cluster as Kubernetes secrets.

To facilitate the setup of the gRPC server and ease the management of certificates and resources, L2SM
MD provides a Command Line Interface (CLI) with a set of tools:

 Apply-cert: Takes a .key file and a cluster name as input, containing the public certificate, and
stores it as a secret, allowing L2SM MD to access it securely.

 Generate-cr: Automates the generation of CRs by receiving input values for each resource. For
example, when creating an Overlay, you input the names of clusters and links, and it generates
the complete CR, including the necessary NED CRs required when connecting multiple clusters.
This CLI tool mirrors the utility of the gRPC server but without actually creating the resources,
serving as an alternative for quick fixes in case of errors in the workflow or for testing the
adaptor in a resource-constrained environment.

4.2.3.2 5G adapter: functions, capabilities and workflow update
The 5G adapter is responsible for managing data flows and providing monitoring and analytics
capabilities within the 5G network. Here are its key functions with an extended definition in D2.2:

Function Description
Applying Data Flows Sets up new data transmission paths for efficient

routing.
Modifying Data Flows Adjusts existing data flows due to changing

network conditions or to optimize performance.
Deleting Data Flows Removes unnecessary data flows to free up

network resources.
Performance Monitoring Tracks metrics like latency, throughput, and error

rates to ensure slice performance.
Utilization Monitoring Observes resource usage to identify underutilized

or overburdened slices.

Moreover, the deployment and request of 5G network flows has been updated to achieve an automated
deployment by the meta-orchestrator and the following API exposure towards the IBS. In such a way

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 31 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

that, the MO can request a new network flow using the unified interface provided by the IBS. This
workflow is not fully implemented at the date of this deliverable since MO tasks is part of WP3 and
ends later in time. The general workflow is depicted on Figure 11.

Figure 11 Towards integration workflow 5G adapter

In the Figure 11 there are shown three main phases internal interactions the network adapter:
 Deployment phase: is the one orchestrated by the MO, in charge of the deployment of the 5G

core components such as the UPF, AMF, SMF...
 Optional phase: This phase has been theoretically described, as there is the possibility of

connecting the different components of the core if deployed in different clusters through the
L2SM adapter. From the L2SM perspective, this could be treated as a common service being
connected through a L2SM network.

 Flow request phase: Once the adapter is deployed, the MO can start requesting new 5G flows
through the intent-based interface connected to the RabbitMQ queue specific for the mNCC.

4.2.3.3 IETF TeraFlow SDN-based connectivity adapter. (External)
The ETSI TeraFlowSDN7 is an innovative, open-source, cloud-native Software-Defined Networking
(SDN) controller and orchestrator designed to support smart networks and services for beyond 5G (B5G)
and 6G networks. Developed by the ETSI Software Development Group TeraFlowSDN, it employs a
micro-services architecture, enabling seamless integration with other ETSI initiatives such as
OpenSourceMANO and compliance with standards from bodies like IETF and [2].

TeraFlowSDN is characterized by its high performance, advanced SDN automation, and support for
transport network slicing, multi-tenancy, and cyberthreat analysis using machine learning (ML) and
deep learning (DL) components. It also incorporates features like distributed ledger technology and
smart contracts for secure network management. The controller is highly scalable, allowing for rapid

7 TFS controller GitLab: https://labs.etsi.org/rep/tfs/controller/-/wikis/home

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 32 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

prototyping and experimentation, and it supports the management of heterogeneous network equipment,
including packet optical, IP and microwave networks [3].

The latest release, TeraFlowSDN 2.1, has been used by the mNCC IBS library to create a VPN layer 2
translation. A complete example of a request and the translated version in TFS controller format is
shown in Annex 7. Briefly, the following context can be used to build an intent expectation to request a
layer 2 VPN.

Table 10: objectContext for L2VPN

ob
je

ct
C

on
te

xt
s

objectType contextAttribute contextCondition contextValueRange

L2VPN

nodeSrc IS_EQUAL_TO ip string
nodeDst IS_EQUAL_TO ip string

endpointSrc IS_EQUAL_TO interface string

vlanId IS_EQUAL_TO interface string

niName IS_EQUAL_TO name string

Table 11: expextationTargets for L2VPN

ex
pe

ct
at

io
nT

ar
ge

ts

objectType targetAttribute targetCondition targetValueRange

L2VPN

bandwidth IS_EQUAL_TO_OR_GREATER_THAN float

latency IS_LESS_THAN float

4.2.3.4 Network Slice Controller (External)
The IETF-based Network Slice Controller (NSC) processes end-to-end network slice requests initiated
by 5G customers. These requests are coordinated by the 5G end-to-end orchestrator, which configures
the Radio Access Network (RAN), and Core Network elements as needed and forwards the request to
the NSC for execution. The NSC subsequently collaborates with the relevant network controllers to
deploy the network slice within the transport network. [4]

There are some implementations of a network slice controller following the approach of the IETF draft
(e.g., in-house Telefónica development in progress, not yet fully release as open source8). In the context
of the project, the main characteristics that could have an intent for a slice request has been described as
followed:

8 Github: Telefonica/network_slice_controller: Repository created for the Network Slice Controller (NSC)
development

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 33 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

ob
je

ct
C

on
te

xt
s

objectType contextAttribute contextCondition contextValueRange

SLICE_SERVICE_SDP

slo-sle-policy IS_EQUAL_TO name string
sdp-id IS_EQUAL_TO id string

node-id IS_EQUAL_TO name string

sdp-ip-address IS_EQUAL_TO ip string

niName IS_EQUAL_TO name string

ob
je

ct
T

ar
ge

t

objectType contextAttribute contextCondition contextValueRange

SLICE_SERVICE_SDP

one-way-bandwidth IS_EQUAL_TO bandwidth string

one-way-delay-maximum IS_EQUAL_TO delay string

4.2.3.5 Auto peering API. (External)
Auto peering, as defined in this draft [5], refers to the automated process of establishing and managing
peering relationships between different Autonomous Systems (ASes). This involves using an API to
exchange necessary information, such as network details, routing policies, and contact information, to
facilitate the setup and maintenance of peering connections without the need for manual intervention.
The goal of auto peering is to simplify and streamline the peering process, reducing the time and effort
required to establish new peering relationships and ensuring more efficient and reliable interconnectivity
between networks. Although literally could not be perceived as a network connectivity adaptor, it is
very useful towards future adaptors that could involve BGP session to access new routes or link state
parameters [6] [7].

Figure 12: Private peering interactions

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 34 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

There is not a workable implementation of the process but, theoretically, the intents can be described
accordingly9. The intentExpectation objects to request a new peering could contain mainly the following
objectContexts:

Table 12: objectContext for BGP session

ob
je

ct
C

on
te

xt
s

objectType contextAttribute contextCondition contextValueRange

BGP_SESSION

localAsn IS_EQUAL_TO ASn integer
localIp IS_EQUAL_TO ip string

peerAsn IS_EQUAL_TO ASn integer

peerType IS_EQUAL_TO private

md5 IS_EQUAL_TO key string

Table 13: expectationContext for BGP session

ex
pe

ct
at

io
nC

on
te

xt
s objectType contextAttribute contextCondition contextValueRange

BGP_SESSION location IS_EQUAL_TO string

4.2.4 Network Performance Monitoring
The Network Performance Monitoring module within the mNCC provides the basic tools to evaluate
real-time network conditions. This component leverages a Python-based network performance probe to
measure key metrics across diverse network environments. By utilizing socket communication, it
collects granular data on throughput, latency, and packet loss. These metrics are critical for ensuring
efficient network operation and supporting the autonomous decision-making capabilities of other
NEMO components.
The monitoring probe supports configurable parameters, allowing for fine-tuned evaluations tailored to
specific network conditions or service requirements. For example, Users can define test duration, target
hosts, and ports to suit their operational needs. The monitoring tool seamlessly integrates with the
broader mNCC architecture, feeding network metrics directly into the meta-OS for actionable insights.
Its modular design supports deployment via containerized environments, ensuring scalability and
compatibility with multi-cluster scenarios. Leveraging the CI/CD framework of NEMO meta-OS, the
monitoring tool is deployed and updated automatically, aligning with the intent-based management
principles of the mNCC.

9 In fact, from NEMO Project standardization contributions are being proposed for the definition of interconnection
intents, e.g. https://datatracker.ietf.org/doc/draft-contreras-nmrg-interconnection-intents/.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 35 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

4.3 Conclusion
The Federated Meta-Network Cluster Controller represents a key module in the NEMO meta-operating
system, bringing an innovative solution for network management for edge-cloud environments.
Throughout its development, the mNCC has evolved into a robust and flexible framework designed to
address the challenges of scalability, adaptability and interoperability across diverse network
technologies and multi-cluster scenarios.
The technological progression of the mNCC highlights its work as an infrastructure manager that
simplifies and abstracts the complexities of network management. Conceptualized to cover the gap
between the NEMO meta-Orchestrator and underlying network infrastructures, the mNCC has deployed
its capabilities through the integration of intent-based networking and advanced metric exposure
mechanisms with a secure solution for network connectivity, that works as the main technological
adaptor, having also the capability to use up to five different technological adaptors according to the
needed scenario (KPI 3.3, at least 5 technological adaptors). These developments have allowed the
mNCC to not only provide seamless connectivity but also enable the capability of NEMO meta-OS to
make dynamic and data-driven decisions.
The mNCC's architecture is built around the principles of abstraction, interoperability, and automation,
enabling it to efficiently manage and monitor network operations across diverse environments. By
leveraging an intent-based system, the mNCC translates high-level service expectations into detailed
network configurations, allowing services to operate with greater autonomy and reduced reliance on
manual intervention. This capability significantly enhances scalability, a critical requirement in
distributed and multi-cluster settings, making the deployment of 50 Network Segments in 3.531s (KPI
3.1, < 5ms). Additionally, the integration of advanced metric collection and exposure mechanisms
provides real-time insights into network performance. This feature supports network optimization and
facilitates seamless interoperability between the mNCC and other NEMO components, such as the
Meta-Orchestrator.
Looking forward, several areas for improvement and expansion have been identified to ensure the
continued relevance and effectiveness of the mNCC. One priority is the integration of advanced security
features, such as Zero Trust solutions, which will strengthen the module’s defense mechanisms in
distributed network scenarios. Additionally, optimizing resource allocation in dynamic and resource-
constrained environments is an ongoing focus. Addressing these challenges, with the potential
introduction of AI-based engines, is one of the main paths to follow during the next steps of the
component.
In conclusion, the mNCC has completed the main goals expected for the component, even it is still at
an early Technology Readiness Level (TRL), the proofs of concept done show a potential solution for
multi-environment scenarios, allowing quick reactions and an abstraction level that reduces the
complexity to integrate it with external modules, being the first step for seamless operation in next-
generation network ecosystems.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 36 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

5 Time Sensitive Networking

5.1 Overview

Time Sensitive Networking (TSN) features enable synchronizing mobile network UEs. TSN can be used
to synchronize mobile network with existing IT infrastructure.

The industrial LAN may also consist of TSN-enabled Ethernet bridges. The latest release of 5G
specification (Rel. 18) supports the fully centralized TSN configuration model, where a central
controller should be able to configure both Ethernet and 5GS bridges as a unified network. The 5GS
supports the whole industrial network, both Medium Access Control (MAC) learning and flooding based
forwarding as well as the static forwarding configured by the central controller need to be supported.
3GPP has defined that a 5GS can be modelled as one or more virtual TSN bridges.

Within the context of NEMO, TSN will be a complement in the sense that the edge-cloud continuum
infrastructure becomes extended with TSN domains, where the control functional entities of the 5G
network, as well as other functions (e.g., content endpoints, application workloads, etc) are instantiated
leveraging on NEMO infrastructure and stack.

5.2 Architecture and Approach
TSN implementation ensures centralized, precise time distribution to UEs for ultra-reliable, low-latency
communication as shown in the Figure 13 below.

Figure 13: TSN Architecture

 CNC and TSN AF Integration: The TSN Centralized Network Controller (CNC) is

responsible for configuring bridges within the TSN-enabled network, allowing time-

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 37 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

synchronized data transfer from the Grand Master to each UE. The TSN Application
Function (AF) interfaces with the 5G control plane, translating TN parameters to 5GS-
specific settings and reporting the capabilities of the 5GS bridge (e.g., delay specifications
and topology details).

 5G QoS Mapping: Ethernet and TSN traffic flows are mapped to 5G QoS flows to maintain
service quality. This mapping allows the CNC to optimize flows’ handling across the
network, supporting per-stream filtering, traffic policing, and VLAN configuration in
compliance with IEEE 802.1Q.

 Seamless Redundancy and Preemption: TSN framework offers Seamless Redundancy for
ultra-reliable communication and Frame Preemption to prioritize time-critical information.

 Time Synchronization: Through the TSN Translator (DS-TT) on UEs, precise time
synchronization is achieved using gPTP messages, adhering to 3GPP specifications
(24.535).

5.3 Internal and External Interfacing

TSN AF is part of 5GC and provides the control plane translator functionality for the integration of the
5GS with a TSN network, e.g. the interactions with the CNC. The TSN AF interfaces towards the CNC
for the PSFP (IEEE Std 802.1Q) managed objects that correspond to the PSFP functionality
implemented by the DS-TT and the NW-TT. Thus, when PSFP information is provided by the CNC,
the TSN AF may extract relevant parameters from the PSFP configuration. The TSN AF calculates
traffic pattern parameters (such as burst arrival time with reference to the ingress port and periodicity).
TSN AF also obtains the flow direction. TSN AF is responsible for forwarding these parameters in TSC
Assistance Information (TSCAI) Container to the SMF (via PCF). TSN AF may enable aggregation of
TSN streams if the TSN streams belong to the same traffic class, terminate in the same egress port and
have the same periodicity and compatible Burst arrival time. One set of parameters and one container
are calculated by the TSN AF for multiple TSN streams to enable aggregation of TSN streams to the
same QoS Flow.

NW TT (Network TSN Translator): supports link layer connectivity discovery and reporting as defined
in IEEE Std 802.1AB for discovery of Ethernet devices attached to NW-TT. When integrating normal
devices, we cannot assume that would be a DS-TT does not support link layer connectivity discovery
and reporting, then NW-TT performs link layer connectivity discovery and reporting as defined in IEEE
Std 802.1AB for discovery of Ethernet devices attached to DS-TT on behalf of DS-TT. If NW-TT
performs link layer connectivity discovery and reporting on behalf of DS-TT, it is assumed that LLDP
frames are transmitted between NW-TT and UE on the QoS Flow with the default QoS rule.
Alternatively, SMF can establish a dedicated QoS Flow matching on the Ethertype defined for LLDP
(IEEE Std 802.1AB).

DS-TT (Device Side TSN translator): translate the TSN 802.1 protocols on top of 5G networks but
cannot be assumed that would be a DS-TT capable UEs.

5.4 Conclusion
As it points out, TSN main characteristics are performed: Seamless Redundancy that permits ultra-
reliability due to the duplicity of buffers, Frame Pre-emption that includes a priority of the information
that produces, and time critical communication. In addition to the Time Aware Shaper that allows
scheduling of the outputs and Time Synchronization.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 38 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

6 Proof of Concepts

The Proof of Concepts chapter demonstrates the practical implementation and functionality of the key
components developed within the NEMO project. This section showcases the integration and
performance of the Cybersecure Micro-services Digital Twins (CMDT), Cybersecure Federated Deep
Reinforcement Learning (CF-DRL), and the meta-Network Cluster Controller (mNCC) in various
scenarios. Through detailed demonstrations and analyses, we evaluate the components against their
defined Key Performance Indicators (KPIs) and illustrate their interactions within the project ecosystem.
The following subsections provide in-depth insights into each component's deployment, operational
workflows, and achieved results, highlighting the advancements made from the initial versions.

6.1 CMDT first stable version

6.1.1 Detailed description
The easiest way of demonstrating the functionality of CMDT is to showcase it on a real example. For
this reason, we took an application developed for NEMO Meta-OS, deploy it as digital twin and present
the CMDT actions in live environment. For the app we selected the isolated ASM Terni deployment of
PMU devices and applications that are controlling it. This will be our Digital Twin for this section. The
simplified workload includes PMU devices deployed in the network, edge device for pre-processing the
data locally on the site and cloud service, which is used to aggregate the data from edge devices and
initiate actions towards the devices on the field. The application allows reviewing the status, gathering
data and Firmware update over the air (FOTA). The digital twin of the workload comprises all
mentioned device logs that can describe application footprint and behavior.
One crucial message that a user would request from the CMDT would be a list of services (Digital twin
components) that represent a digital twin, and a corresponding status. A list of all workloads that CMDT
can get from NEMO infrastructure is presented in Figure 14.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 39 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

Figure 14: List of resources per workload.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 40 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

Figure 15 The CMDT message example which is transported over RabbitMQ

The CMDT monitors the status of each workload component continuously and distributes this
information accordingly. This represents workloads DT status, which is timestamped for each event and
transmitted the LCM and LCM – UI service. This notification path is crucial to notify the user about the
status of any component in the workload. The messages that are passed over the RabbitMQ are sent for
each component on the #CMDT channel. Example of such CMDT message structure (Figure 15)
includes all information that was already explained and defined in the Deliverable D2.2, e.i. rates of
times in quantiles and rates of response codes, e.g. 200 for OK and 500 for Server Error. From
“res_rate_by_code” parameter (Figure 15) user can find that our demo application two requests per
minute with return the content successfully (code 200) and once per 6 minutes application responded
with server error (Code 500).

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 41 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

An additional improvement from the last version of CMDT is the introduction of the pod status block.
For higher reliability and avoiding missing the information when some services are restarted, the block
includes last N status changes attributed with the timestamps. As already presented in this document,
the recipient of this data is LCM UI, which creates graphics and continuously updates user with the
status of his digital twin workload living on NEMO infrastructure.
In this proof of concept, we presented the CMDT operation on real-world example that is deployed in
NEMO. The workload status is constantly monitored, processed, collected and sent to the LCM UI.
With the demonstrated example we showed the effectiveness of the CMDT service and outline the
progress from the previous deliverable D2.2.

6.2 CF-DRL first stable version
We demonstrate the run of the CFDRL for the scaling the replicas of the workloads in the Meta-
Orchestrator.

Figure 16 CFDRL communication architecture for scaling the replicas of the workloads in the Meta-Orchestrator

The first step is to deploy the CFDRL docker container to the Onelab cluster. Once the code is
containerized. It is sent to the cluster using the commands:

export KUBECONFIG="/home/victor/nemo/victor.gabillon-kubeconfig.yaml"

kubectl apply -f -n nemo-ai

Then the run of the CFDRL can be monitored using the kubernetes functions:
kubectl get pods -n nemo-ai

kubectl logs cfdrl-rabbit-deployment9-8677686865-tjxdb

The CFDRL automatically connects to the Meta Orchestrator with RabbitMQ and with the PPEF
through the intent-based API.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 42 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

Figure 17: Code snippet for request

In the code the connection in Python to the intent-based API is made witha request to https://intent-
api.nemo.onelab.eu/api/v1/intent/
The connection to the intent-based API requires an identification token (bearer token) that expires every
2 hours. A curl request periodically is sent to the NEMO Identity Management component to re-initiate
the token.

The information received from the PPEF (through the intent-based API) is filtered in order to focus on
the CPU and RAM of each workloads.
This allow us to display the change of the CPU and RAM though time:

Meta Orchestrator connection:
The connection with the meta-orchestrator is through RabbitMQ. On the CFDRL side the connection is
made in python using the pika library.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 43 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

Figure 18: RabbitMQ connectiviy snipped

A queue was set in the RabbitMq so that CFDRL can query it for general info about the network as
illustrated in the Figure below. CFDRL obtains information about the cluster id, capacity such as CPU
and memory.

Figure 19: Metric retrieving

6.3 mNCC hybrid clusters and intent networking

6.3.1 Single Cluster Connectivity throughout L2SM overlay adaptor
In order to demonstrate the advances of the L2S-M connectivity adaptor in the NEMO project, this new
PoC showcases the automatic setup of the adaptor in a NEMO inter-domain cluster environment in order
to enable the deployment of virtualized workloads within the infrastructure of the project. Since the
internal components that enabled this connectivity were previously shown in D.2.2, this new PoC will
focus on showcasing the ability of the new L2S-M-MD module (described in Section 4) to properly
configure new k8s clusters to the NEMO project, ensuring their ability to create inter-domain virtual
networks that enable the connectivity of network functions in multiple K8s clusters.
Particularly, this setup consists of three separate K8s clusters: one controller cluster and two worker
clusters, all following the guidelines of the NEMO project hierarchy and its characteristics. In this
regard, for the K8s control plane cluster, the L2SM-MD-server, the IDCO provider and multidomain
DNS components were installed, while the L2S-M operator and its components were installed in the
L2S-M namespace of the K8s worker clusters. This setup can be seen in Figure 20: K8s clusters of this
PoC.

Figure 20 K8s clusters of this PoC

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 44 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

Figure 21 Resources present in the clusters in the PoC

Since we are interested in enabling the management cluster to configure and deploy new components
and K8s resources in the worker clusters, it is necessary to generate the public certificates of their
respective server APIs and the tokens that enable the management for K8s resources in each cluster,
which can be done using the K8s CLI as seen in Figure 22 and Figure 23.

Figure 22 API endpoint generation

Figure 23 K8s cluster token generation

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 45 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

Once all the elements have been created to enable the management of the K8s resources in the clusters
that are going to be managed by the mNCC component, the system administrator can proceed to create
a slice (i.e., inter cluster overlay that will logically connect both clusters) between both clusters. To do
so, it is necessary to introduce the API endpoints and the generated tokens to perform a gRPC call, as it
can be seen in Figure 24:

Figure 24 Configuration file used to create a new slice with the L2S-M-md component

 With these values, the administrator can proceed with the creation using the available API in the
manager cluster, which will install both NEDs and the overlay network (slice) in the managed K8s
clusters as their own resources, as seen in Figure 25:

Figure 25 CLI used to create the slice between the clusters

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 46 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

Figure 26 L2S-M resources successfully installed in both clusters

 After this installation, the mNCC can interconnect NEMO workloads in these managed K8s clusters,
which showcases how the new L2SM-MD component can greatly assist the procedure of setting up the
inter-cluster communication between K8s clusters belonging to a NEMO infrastructure.

6.3.2 Intent-Based System
In order to showcase the advancements in the Intent-Based System, two different cases will be described.
The purpose of the first one will be to describe the full intent lifecycle that the IBS follows to translate
an Intent to the specific network technology. In this case it will be using the TFS adaptor. The second
one, will show the integration with the L2SM component and making use of the cloud continuum intents
for intercluster connectivity.

6.3.2.1 Intent lifecycle. TFS L2VPN adaptor.
As explained in previous sections and deliverables (4.2.1, [1]), the Intent lifecycle is divided mainly in
classification, translation and execution. The next logs snippets are part of an execution of the IBS
managing the request of a new L2VPN creation in the intent format.
At the very beginning, the IBS detects all the intent libraries installed and loads all of them to later be
able to translate to the different underlying technologies. This phase is divided in two parts: the one
importing libraries Figure 27, and the one importing the executioners Figure 28.

Figure 27 IBS importing libraries

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 47 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

Figure 28 IBS importing executioners

All the executioners depicted in the previous figure are later available for the different libraries in case
they are required. There is a specific executioner created for debugging purposes called “sys_out”, used
to show the output of the intent translation. Any of them can be used at the same time, so at the end, the
one handling TFS and the one handling the system out print will be activated. The fact that this is
possible is showcasing also the flexibility of the architecture and the easy integration with different
executioners and libraries depending on the needs of the user.

The next screenshot shows the intent incoming and having a first format check. In Figure 29, an arrow
is showing the objectType of the intent, in this case “L2VPN”. It is important to remark this because the
intent will be understood as a layer two VPN but not yet as a TFS L2VPN.

Figure 29 IBS input intent

In the Figure 30, it is showed how the comparison between the different libraries is traversed, and at the
end, how the IBS is able to classify the intent as “L2VPN”. This is due to the fact that, in the
classification tree used, when the system reaches a leave, it means it fully matches all the keywords for
the library.

Figure 30 IBS first classification

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 48 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

The shows the IBS passing the intent to the L2VPN library. As this library doesn’t generate ILUs (Intent
Logic Units), the library reclassifies the intent (now called sub-intent), into a less abstracted library the
TFS controller one. This step is important to abstract less abstracted libraries from higher ones, this
means that the TFS controller library has no need to be aware of more abstracted L2VPN request, and
the L2VPN must be aware of the specific technology library but not of the full translation to the
technology. The step of reclassifying the intent is done until a library capable of generating an ILU is
executed.

Figure 31: IBS subintent generation.

Also, in the reclassification step, the library can make adjustments to the intent so that the following
library is able to detect the intent as own. As shown in Figure 31 the “objectType” of the intent has
changed. Now the sub-intent is passed through the classification again and detected as “tfs_controller”
intent.

Figure 32 IBS second classification

In the Figure 32, it is also shown how now the intent is classified as ILU. From this point, it starts the
translation phase. In the Figure 33, it is shown the parsing of the intent, and how it traverses all the
contexts, targets and expectations.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 49 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

Figure 33 IBS tfs_l2vpn translation

Finally, when the intent is translated, the library in charge of the translation calls the executioners needed
to execute the intent. As explained earlier this case shows a first one calling “sys_out” () and a second
one to the real “tfs_connector” ().

Figure 34 IBS "sys_out" executioner

Figure 35 IBS "tfs_connector" executioner

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 50 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

Now, the executioner starts the proper protocol to create a connection to TFS north bound interface and
makes a request for a new L2VPN connection.

Figure 36 IBS http request to TFS

As a result of the process, a VPN service in TFS controller is created. In Figure 37, notice how the
service is active on the nodes requested, and in Figure 38, are shown all the details translated from the
intentContext and the intentTargets specified in the input intent.

Figure 37 TFS webui L2VPN service status

Figure 38 TFS webui L2VPN service details

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 51 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

6.3.2.2 Cloud continuum Intent. L2SM MD connectivity
This section will show how an L2SM network is deployed through an intent coming to the IBS (full
intent on annex 9.2). In the Figure 39, it is shown how the classification step detects the L2SM intent
and calls the L2SM library.

Figure 39: Intent classification. L2SM case.

From this point, the L2SM library is in charge of translating the intent to the corresponding interface
that L2SM expects. The translation is depicted in next Figure 40.

Figure 40: Final L2SM translation.

Finally, once the translated intent is executed in L2SM, it creates a new Kubernetes intercluster network
as shown in Figure 41, where a Kubernetes command is executed to verify that everything works as
expected.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 52 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

Figure 41: L2SM intercluster network active.

6.3.3 Multi-Cluster monitoring and exposure
In order to perform the PoC of the multi-cluster monitoring and exposure, the mNCC components in
charge of monitoring and exposure of the mNCC have been deployed in a scenario with 3 nodes. The
mNCC monitoring and exposure process is explained in section 4, so we will not extend with this
explanation, but it is worth remembering that the monitoring is based on the communication between
pods deployed in each node and then shared with the exposure module through a local Prometheus.
Once the exposure module has those metrics, it formats them and indicates to which cluster they belong
and at what time they have been generated.
For these tests, we have reduced the monitoring and exposure time to 2 minutes (120 seconds) to show
how the RabbitMQ queue is being updated, although in the joint environment these measurements would
be hourly (3600s) to avoid saturation in the network and in the metrics queues.
In the process of evaluating the mNCC metrics exposure we must start with the deployment of the probes
and the exposure module (Nemex for short) in each cluster, counting on a pod of probes per worker
node and a Nemex per cluster. For this proof of concept, we will perform the evaluation on 2 clusters in
parallel.
In Figure 42 and Figure 43 we can see a test run of the monitoring pods in which the logs of one of the
probes of each cluster are obtained. These logs show the measurements taken periodically and shared
with the Nemex through an internal Prometheus (Figure 44 shows the format of these logs).

Figure 42 Logs from the network probes in the first cluster.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 53 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

Figure 43 Logs from the network probes in the second cluster.

Figure 44 Metrics saved in the internal Prometheus in the first cluster.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 54 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

In order to show this last capture, we have performed a port-forwarding to the host system, since this
service is only exposed within the nemo-net network, so that other systems or users cannot access them
autonomously.
In parallel, the Nemex component performs periodic queries to this Prometheus, and integrates the
metrics together with the information of the cluster and the time when the exposure is performed. In this
way, the components that require this information will be able to access it.
In Figure 45 we can see how from RabbitMQ we can see the pushes to the mncc_cmv queue (mNCC
Cost Map Vectorial), where at the beginning we have a series of short peaks and after a while more
elongated peaks appear. This is due to the fact that, at the beginning, only one cluster was launched, but
when testing with several clusters, they started to send the metrics slightly out of sync. Also, in the upper
part of the figure, the logs are shown from the two Nemex pods. Reading the first lines it is possible to
check that the upper-left window shows the “kind-kind” cluster and the upper-right the “kind-kind-2”
cluster. These clusters were launched in two different devices in the same lab, in order to check the
correct behavior of the multi-cluster monitoring and exposure functionality.

Figure 45 On the top, the logs of two Nemex components deployed in two clusters. In the bottom, the RabbitMQ

updates.

These metrics in turn are accessible by the Meta Orchestrator and CF-DRL components to make
decisions having knowledge of the state of the monitored network.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 55 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

7 Conclusions

This document reports the final outcomes of the components developed in Work Package 2, namely the
CMDT, the CF-DRL and the mNCC. It also includes details on the TSN capabilities integrated on the
NEMO edge-cloud continuum for satisfying specific use cases requiring time-sensitive behavior.
This deliverable summarizes the progress of the developments, the integration aspects with respect other
components of the NEMO stack, as well as provides exemplary details of the functional behavior of the
components.
Final integration efforts will be reported in deliverables from other work packages when required.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 56 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

8 References

[1] N. w. partners, "NEMO_D2.2-Enhancing-NEMO-Underlying-Technology_v1.1.pdf," [Online].
Available: https://meta-os.eu/wp-content/uploads/2024/09/NEMO_D2.2-Enhancing-NEMO-
Underlying-Technology_v1.1.pdf. [Accessed 15 10 2024].

[2] "ETSI TeraFlowSDN Alignment With TIP OOPT MUST Requirements | TeraFlow," [Online].
Available: https://www.teraflow-h2020.eu/publications/etsi-teraflowsdn-alignment-tip-oopt-
must-requirements. [Accessed 1 12 2024].

[3] R. V. (. R. M. (. Pol Alemany (CTTC), "D4.1_Preliminary evaluation of TeraFlow security and
B5G network integration," [Online]. Available: https://www.teraflow-
h2020.eu/sites/teraflow/files/public/content-
files/deliverables/D4.1_Preliminary%20evaluation%20of%20TeraFlow%20security%20and%20
B5G%20network%20integration.pdf. [Accessed 5 11 2024].

[4] B. W. a. D. D. a. R. R. a. T. S. a. J. Mullooly, "A YANG Data Model for the RFC 9543 Network
Slice Service," IETF, no. draft-ietf-teas-ietf-network-slice-nbi-yang-17, 2024.

[5] J. Ramseyer, "Peering API," IETF draft, no. draft-ramseyer-grow-peering-api-00, 2024.

[6] T. L. S. H. Y. Rekhter, "A Border Gateway Protocol 4 (BGP-4)," Draft standard, no. rfc4271,
2006.

[7] G. D. a. C. F. a. K. T. a. M. C. a. D. B. a. B. Decraene, "Border Gateway Protocol - Link State
(BGP-LS) Extensions for Segment Routing over IPv6 (SRv6)," RFC editor, no. RFC 9514, 2023.

[8] "ETSI Software Development Group TeraFlowSDN - SDG TFS," [Online]. Available:
https://tfs.etsi.org/news/20230720_teraflowsdn_release_21/. [Accessed 1 12 2024].

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 57 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

9 Annexes

9.1 TFS interface and example intent
TeraFlowSDN controller input (python function) for descriptor file. L2VPN creation request.
 vpn_descriptor={

 "services": [

 {"service_id": {

 "context_id": {"context_uuid": {"uuid": self.__params['context_uuid']}},

 "service_uuid": {"uuid": self.__params['service_uuid']} },

 "service_type": 2,

 "service_status": {"service_status": 1},

 "service_endpoint_ids": [

 {"device_id": {"device_uuid": {"uuid": self.__params['node_src']}}, "endpoint_uuid": {"uuid": "0/0/1-
"+self.__params['endpoint_src']}},
 {"device_id": {"device_uuid": {"uuid": self.__params['node_dst']}}, "endpoint_uuid": {"uuid": "0/0/1-
"+self.__params['endpoint_dst']}}

],

 "service_constraints": [

 {"custom": {"constraint_type": "bandwidth[gbps]", "constraint_value": self.__params['bandwidth']}},

 {"custom": {"constraint_type": "latency[ms]", "constraint_value": self.__params['latency']}}

],

 "service_config": {"config_rules": [

 {"action": 1, "custom": {"resource_key": "/settings", "resource_value": {

 }}},

 {"action": 1, "custom": {"resource_key": "/device["+self.__params['node_src']+"]/endpoint[0/0/1-
"+self.__params['endpoint_src']+"]/settings", "resource_value": {

 "sub_interface_index": 0,

 "ni_name":self.__params['ni_name'],

 "vlan_id": int(self.__params['vlan_id']),

 "circuit_id": self.__params['circuit_id'],

 "remote_router":self.__params['node_dst']

 }}},

 {"action": 1, "custom": {"resource_key": "/device["+self.__params['node_dst']+"]/endpoint[0/0/1-
"+self.__params['endpoint_dst']+"]/settings", "resource_value": {

 "sub_interface_index": 0,

 "ni_name":self.__params['ni_name'],

 "vlan_id": int(self.__params['vlan_id']),

 "circuit_id": self.__params['circuit_id'],

 "remote_router":self.__params['node_src']

 }}}

]}

 }

]

 }

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 58 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

mNCC Intent: L2VPN request.
Intent:

 id: 'new_intent_2'

 userLabel: 'cloud_continuum'

 intentExpectations:

 - expectationId: '1'

 expectationVerb: 'DELIVER'

 expectationObject:

 objectType: 'L2VPN'

 objectInstance: 'l2vpn_tfs_1'

 objectContexts:

 - contextAttribute: 'nodeSrc'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: '3.3.3.3'

 - contextAttribute: 'nodeDst'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: '5.5.5.5'

 - contextAttribute: 'endpointSrc'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'GigabitEthernet0/0/0/1'

 - contextAttribute: 'endpointDst'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'GigabitEthernet0/0/0/1'

 - contextAttribute: 'vlanId'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: '999'

 - contextAttribute: 'niName'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'ninametfs'

 expectationTargets:

 - targetName: 'bandwidth'

 targetCondition: 'IS_EQUAL_TO_OR_GREATER_THAN'

 targetValueRange: 10.0

 - targetName: 'latency'

 targetCondition: 'IS_LESS_THAN'

 targetValueRange: 15.2

 expectationContexts:

 - contextAttribute: 'url'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'http://192.168.165.10/restconf/data/ietf-l2vpn-svc:l2vpn-svc/vpn-services'

 intentContexts:

 - contextAttribute: 'NEMO_WORKLOAD'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'cbcb208a-d535-434b-bb35-217a64bd516b'

 intentPriority: 1

 observationPeriod: 60

 intentAdminState: 'ACTIVATED'

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 59 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

9.2 L2SM example intent

mNCC Intent: L2SM network request.
Intent:

 id: 'mncc_l2sm_1'

 userLabel: 'cloud_continuum'

 intentExpectations:

 - expectationId: '1'

 expectationVerb: 'DELIVER'

 expectationObject:

 objectType: 'K8S_L2_NETWORK'

 objectInstance: 'spain_network'

 objectContexts:

 - contextAttribute: 'name'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'spain_network'

 - contextAttribute: 'providerName'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'uc3m'

 - contextAttribute: 'domain'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: '172.18.0.2'

 expectationContexts:

 - contextAttribute: 'url'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'http://192.168.165.168:8080'

 - expectationId: '2'

 expectationVerb: 'DELIVER'

 expectationObject:

 objectType: 'K8S_CLUSTER_CONFIG'

 objectInstance: 'spain-network'

 objectContexts:

 - contextAttribute: 'name'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'kind-worker-cluster-1'

 - contextAttribute: 'bearer_token'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'eyJhbGciOiJSUzI1NiIsImtpZCI6Iktrd1hiRk9RWGZBVkFVWU82Rk5…’

 - contextAttribute: 'api_key'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'https://172.18.0.3:6443'

 expectationContexts:

 - contextAttribute: 'k8s_l2_network'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'spain-network'

 - contextAttribute: 'url'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'http://192.168.165.168:8080'

 intentContexts:

 - contextAttribute: 'NEMO_WORKLOAD'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'cbcb208a-d535-434b-bb35-217a64bd516b'

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 60 of 60
Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final

 intentPriority: 1

 observationPeriod: 60

 intentAdminState: 'ACTIVATED'

