Next Generation Meta Operating S

D2.3 Enhancing NEMO rying
Technolo

Document Identification

Status Final 30/12/2024

Version 1.0 Submission Date 31/12/2024

Related WP 2 Document Reference D23

Related

) Dissemination Level (*) PU

Lead Participan Lead Author Luis M Contreras

TID, TSG, COMS,
INTRA, UC3M,

Dimitrios Skias

Contributors WIND3, CMC, Reviewers . —
Gianluca Rizzi

AEGIS, SU, UPM,
STS, ATOS, SYN

Cybersecure Micro-services’ Digital Twins, Cybersecure Federated Deep Reinforcement Learning,

Federated Machine Learning, federated meta Network Cluster Controller, Time Sensitive Networking

This document is issued within the frame and for the purpose of the NEMO project. This project has received funding from the European
Union’s Horizon Europe Framework Programme under Grant Agreement No. 101070118. The opinions expressed and arguments employed
herein do not necessarily reflect the official views of the European Commission.

The dissemination of this document reflects only the author’s view, and the European Commission is not responsible for any use that may be
made of the information it contains. This deliverable is subject to final acceptance by the European Commission.

This document and its content are the property of the NEMO Consortium. The content of all or parts of this document can be used and
distributed provided that the NEMO project and the document are properly referenced.

Each NEMO Partner may use this document in conformity with the NEMO Consortium Grant Agreement provisions.

(*) Dissemination level: (PU) Public, fully open, e.g., web (Deliverables flagged as public will be automatically published in CORDIS project’s
page). (SEN) Sensitive, limited under the conditions of the Grant Agreement. (Classified EU-R) EU RESTRICTED under the Commission
Decision No02015/444. (Classified EU-C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified EU-S) EU
SECRET under the Commission Decision No2015/444.

Document Information

&3¢ NEMO

List of Contributors

Name Partner ‘
Luis M. Contreras, Guillermo Sanchez, TID
Alejandro Muiiiz

Gregor Cerar, Blaz Bertalani, Matija Cankar COMS
Victor Gabillon TSG
Spyridon Vantolas, Konstantinos Raftopoulos, | AEGIS
Nikolaos Papadakis, Manos Karampinakis

Mika Skarp, Jose Costa-Requena CMC
Skias Dimitrios INTRA
G.Spanoudakis, Y.Papaefstathiou STS
Mohamed Legheraba SU
Borja Nogales, Ivan Vidal, Francisco Valera, uciMm
Luis F. Gonzalez

Alberto del Rio, Javier Serrano, David Jimenez |UPM
Gianluca Rizzi WIND3

Document History

Version Date

Change editors

Changes

S

0.1 18/10/2024 oC draft and work assignments
0.2 22/10/2024 |TID puts in Executive Summary and section 1
COMS efinition of the final structure, first inputs and
22/10/2024 CMC work assignment in sections 2, 3, 4 and 5.
0.3 5/11/2024 | AL First iteration

19/11/2024

Second iteration

Final contributions in sections 2, 3, 4 and 5.

Final contributions in sections 6 and 7.

First Review

Second Review

23/12/2024

TID, ALL

Review’s corrections pending to be accepted

26/12/2024 | TID FINAL VERSION TO BE SUBMITTED
30/12/2024 |ATOS Quality review and final version
Quality Control
Role Who (Partner short name) ‘ Approval Date
Deliverable leader Luis M Contreras (TID) 30/12/2024
Quality manager Rosana Valle Soriano (ATOS) 30/12/2024
Project Coordinator Enric Pages Montanera (ATOS) 30/12/2024
Technical Manager Terpsi Velivassaki (SYN) 30/12/2024
Document name: D2.3 Enhancing NEMO Underlying Technology Page: 2 of 60
Reference: D2.3 |Dissemination: [PU [Version: [1.0 Status: Final

&3¢ NEMO

Table of Contents

DOCUMENT TNTOIMIATION 1.eeiviiiiiiiiiiiiieieeeie ettt ee e et et e e et e et st s eaestaes e s es e s aseaeasaaaesaasaasessasasssssssassasessaeaan 2
TADIE OF CONLENES .ceeeeeieee ettt e et e ettt e e e e e ee e e e et eeesesseeaaaaeeeesssasaasaaaeeessssesnnsseseeeesnns 3

List of Tables

ST OF FIZUIES ...eviiiiieiieiie ettt ettt sttt ettt et e steeesseesbeessaessaessaesssessseasseessaessaesssesssesssensseesenns

LIST Of ACTONYIMIS.....eetiiiieiiieiieeie et esteestestesteeebeesseesseesseessseasseasseesseessaeseesssessseassessseesseesseesssesssensseensenns

EXECULIVE SUMIMATYeitiiiiiiiiiieit ettt ettt ettt e bt e e bt e eat e et e e bt e bt e bt e sbeesaeesmeeenteebeesneesneesans

1 INETOUCTION ettt e e e e e ettt e e e e e e eeeeaaaeeeeeessssenaaaeeeeessssssnnaareeeessenans

1.1 Purpose of the dOCUMENL.........c.ccirieiiieiieieiieee et

1.2 Relation to other project WOTK..........ccoecvveviierierieriesieeeeeeeeee e

1.3 Structure of the dOCUMENTcoovviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees

2 Cybersecure Micro-services Digital Twins (CMDT)

2.1 OVEIVIEW ..ottt eeeteeaeaeeeseseseaeseaeeeseaees

2.2 Architecture and Approachccccceeeveevievieneeneennennnnd

2.3 Internal and External Interfacing

2.4 CONCIUSION «.evvvieieeeeeeeeceeeeee e o ettt e e e e reeeeeseeeeaes

3 Cybersecure Federated Deep Reinforcem

3.1 OVEIVIEW .eeeeeeieeeeeeeeeeeeeeeee e eeeeeeeeeeeee s

3.2 Architecture and APProach £iiiiee ot b e eeas

3.2.1

CFDRL and

4.1 Overvi
4.2
4.
. Network Metrics EXPOSUIEoecuieiieriieiierite ettt ettt st snee e s 24
4.2.3 Technology Connectivity AdaPtorS........c.eevveeviieriieriierieereereesieeseeseresaeereesreeseaessneens 29
4.2.4 Network Performance MONItOring........ccoeeeverierierierirrienenteneseetesie et 34
T 103 1 1o] 1313 ()& USRS 35
5 Time Sensitive NETWOTKINGcc.coueiriiitirtiiiieteree ettt ettt ebe et e s 36
R B) 7 T TSR 36
5.2 Architecture and APPrOaChcciiviiiiieiiieieceeee ettt 36
5.3 Internal and External INterfacingc.ccccvevuierierieniieiieieeieerte ettt 37
R 00} 1 o1 L] 10 s TSRS 37
6 PTOOT OF COMCEPLS ..eeuvieiieeiiieiieieeite sttt ettt et e st e st e et e e bt et e ebeessaesasesnseenseessaesseesssesnsesnseenseenseensens 38
Document name: D2.3 Enhancing NEMO Underlying Technology Page: 3 of 60
Reference: D2.3 |Dissemination: [PU [Version: [1.0 Status: Final

6.1 CMDT first StADIE VEISION. .. .ccueeieeeieieetieietietiete st eiete st e e steestete et etesseeneesesseeneessesneeseeneensenns 38
6.1.1 Detailed deSCIIPIONccvviiierieiie et et esiee e steere e e ebe e e esseeseeesssessseesseesseesseessaesssenns 38
6.2 CF-DRL first Stable VEISIONcecuiitieiiiieiieiieiieie sttt ie ettt et ete st enaesseeseeseeseensenes 41
6.3 mNCC hybrid clusters and intent NEtWOTKING...........c.cccveevieriierierierieeieeseeseesresresreeseesseesenes 43
6.3.1 Single Cluster Connectivity throughout L2SM overlay adaptorcccccveeevienenen. 43
6.3.2 Intent-Based SYStEIMcc.eiiiiiiiiiieies ettt et 46
6.3.3 Multi-Cluster monitoring and EXPOSULE.........ccveeveeereerreerreereereesressseesseesseeseesaesssenns 52

7 Conclusions
8 RETEIEIICES .ooeiiiiieeeeeeee ettt et e e ettt e e e e s e e e et e e eeeeseas e aaaeeeeesssasaasaaseesssssannnaseesneeeseas

D ANNEXES . oeeeeeeeeeeeeeeeeee ettt ettt ettt ettt ettt rarararaaaes

9.1 TFS interface and example intent
9.2 L2SM example INTeNL......ccccouirierieriirienienieienieeitetesie ettt

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 4 of 60
Reference: D2.3 |Dissemination: [PU [Version: [1.0 Status: Final

List of Tables

Table 1: objectContext for 5G adapter
Table 2: expectationTarget for 5G adapter
Table 3: targetContext for 5G adapter
Table 4: expectationContext for 5G adapter
Table 5: intentContext for all adapters
Table 6: objecttContext for L2SM adapter
Table 7: objrctContext for L2SM adapter
Table 8: expectationContext for L2SM adapter
Table 9. NeMeX input metrics

Table 10: 0bjectContext fOr L2VPN.........cccc oottt ettt ettt
Table 11: expextationTargets for L2ZVPN
Table 12: objectContext for BGP session
Table 13: expectationContext for BGP session

Document name:

D2.3 Enhancing NEMO Underlying Technology

Page:

5 of 60

Reference:

D2.3 |Dissemination: [PU [Version: [1.0

Status:

Final

ya

&8s NEMO

List of Figures

Figure 1 CMDT architecture and integration points. 13
Figure 2 CMDT data collection and passing to RabbitMQ 14
Figure 3 Current version of CMDT AMPQ message 16
Figure 4 Intent-based API interface that contains PPEF information 18
Figure 5 Result of querying the API (filtering RAM and CPU usage of the workload of interest) 18
Figure 6 Retrieving the information from the Meta orchestrator through Rabbit MQ 19
Figure 7 Retrieving the information from the Meta orchestrator through Rabbit MQ 20
Figure 8 Intent workflow schema 23

Figure 9 NeMeX internal workflow.
Figure 10 mNCC metrics data model.
Figure 11 Towards integration workflow 5G adapter
Figure 12: Private peering interactions
Figure 13: TSN Architecture
Figure 14: List of resources per workload.

39

Figure 15 The CMDT message example which is transported over RabbitMQ 40
Figure 16 CFDRL communication architecture for scaling the replicas of the wo e Meta-
Orchestrator 41
Figure 17: Code snippet for request 42
Figure 18: RabbitMQ connectiviy snipped 43
Figure 19: Metric retrieving 43
Figure 20 K8s clusters of this PoC 43
Figure 21 Resources present in the clusters in the PoC 44
Figure 22 API endpoint generation 44
Figure 23 K8s cluster token generation 44
Figure 24 Configuration file used to create a ne 2S-M-md component 45
Figure 25 CLI used to create the slice between the 45
Figure 26 L2S-M resources successfully installed in both clusters 46
Figure 27 IBS importing libraries 46
Figure 28 IBS importing execution 47
Figure 29 IBS input inten 47
Figure 30 IBS first classi 47
48
48
49
49
49
50
S webui L2VPN service status 50
igure 38 TFS webui L2VPN service details 50
igure 39: Intent classification. L2SM case. 51
igure 40: Final L2SM translation. 51
Figure 41: L2SM intercluster network active. 52
Figure 42 Logs from the network probes in the first cluster. 52
Figure 43 Logs from the network probes in the second cluster. 53
Figure 44 Metrics saved in the internal Prometheus in the first cluster. 53
Figure 45 On the top, the logs of two Nemex components deployed in two clusters. In the bottom, the RabbitMQ
updates. 54

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 6 of 60
Reference: D2.3 |Dissemination: [PU [Version: [1.0 Status: Final

List of Acronyms

&8s NEMO

Abbreviation / Description
acronym
AAA Authentication, Authorization, and Accounting
AD Architecture Description
AF Application Function
Al Artificial Intelligence
AMF Access and Mobility Management Function
AMPQ Advanced Message Queuing Protocol
API Application Programming Interface
CFDRL Cybersecure Federated Deep Reinforcement Learning
CI/CD Continuous Integration & Continuous Delivery/Continuous D. ‘@m
CMDT Cybersecure Micro services Digital Twin
CN Core Network
CNC Centralised Network Configuration element
CNCF Cloud-Native Computing Foundation
CNI Container Network Interface
CPU Central Processing Unit
CR Custom Resource
DAST Dynamic Application Se
DLT Distributed Ledger Techne
DQN Deep Q-Netw
DSTT Device Side, TSN translator
Dx.y Deliv belonging to WP x
E2E End~to-End
EC Eu ommission
GDPR General Data Protection Regulation
gPTP eric Precision Time Protocol
gRPC Google Remote Procedure Call

L High-Level Architecture

w Hardware

AM Identity and Access Management

IAST Interactive Application Security Testing
IBMC Intent-Based Migration Controller
IBS Intent-Based System
IDCO Inter-Cluster Connectivity Orchestrator
IMC Intent-based Migration Controller
IoT Internet of Things
KS8s Kubernetes
KPI Key Performance Indicator

Document name:

D2.3 Enhancing NEMO Underlying Technology

Page:

7 of 60

Reference:

D2.3 |Dissemination: [PU [Version: [1.0

Status:

Final

&8s NEMO

LCM Life Cycle Management
LCM Ul Life Cycle Management User Interface
LLDP Link Layer Discovery Protocol
MANO Management and Orchestration
MEC Multi-access Edge Computing
meta-OS Meta-Operating System
ML Machine Learning
mNCC meta—Network Cluster Controller
mRA meta-Reference Architecture
MO meta-Orchestrator
MOCA Monetization and Consensus-based Accountability
NAC NEMO Access Control
NED Network Edge Device
NFV Network Function Virtualization
NGIoT Next-Generation [oT
NWTT Network TSN Translator
oS Operating System
PA-LCM Plugin & Apps Lifecycle Manager
PCF Policy Control Function
PoC Proof of Concept
PPEF PRESS and Policies FrameWork
PRESS Privacy, data pRotection,cs, ecurity & Societal
ifigtand poli
ecurity Protection
State Transfer
Access Control
orcement Learning
ware Development Kit
Software Defined Networking

Standard Development Organization

Software-Defined Wide Area Network

Service Level Agreement

Service Level Objective
SMF Session Management Function
TEE Trusted Execution Environment
TSCAI Time Sensitive Communication Assistance Information
UPF User Plane Function
UUID Universally Unique Identifier
V&V Validation & Verification
VM Virtual Machine
VNF Virtual Network Function
Document name: D2.3 Enhancing NEMO Underlying Technology Page: 8 of 60
Reference: D2.3 |Dissemination: [PU [Version: [1.0 Status: Final

&8s NEMO

WP

Work Package

YAML

Yet Another Markup Language

Document name:

D2.3 Enhancing NEMO Underlying Technology

Page:

9 of 60

Reference:

D2.3 |Dissemination: [PU [Version: [1.0

Status:

Final

Executive Summary

The main goal for this document is to outline the work conducted in the three tasks of WP2, emphasizing
the components that form the underlay layer of the meta-OS of NEMO (i.e., three components plus the
TSN capabilities). In here it is provided a thorough description, focusing on overcoming the initial
challenges related to the development of these components as they begin to coexist within the same
ecosystem. Through this discussion, the reader will gain a clear understanding of the advancements
proposed by NEMO partners relative to the deployment and advances for the technologies utilized.

The document highlights the achievements made thus far during the Enhance phase, with particular
attention to the overall deployments and internal integrations employed to develop and report the Progf
of Concepts (PoC) for each of the main subcomponent. This phase finalizes with three of theafour
components (CMDT, mNCC and TSN) in an integration stage, with some functional and non-funetional
improvements from the previous version, and with the final stable version of the CE;DRI.

To completely understand this work it is important to have had a previous readingofithe D2%2 Enhancing
NEMO Underlying Technology [1] as this document, due to the fact that is an extension, of it and it works
as a continuation for the initial integration done in the previous phases

Once finalized, the reader should end with a big-picture knowledge, of the four main components
depicted in here, being able to understand the motivation and functionality of each of these components
and have a clear view about what to expect for the final developing phase.

The main results for this document included;

e A final approach to a stable version fowthe Cybersecure Micro-Services Digital Twin, with an
overlook about how it is deployed and hew'it works.

o A final stable version of(the G¥bersecure Federated Deep Reinforcement Learning with a
comprehension of the internal architecture and a description of each of the algorithms available
to be run in the firsf'stableyversion.

e A final approachito aistable version for the Federated meta-Network Cluster Controller, with an
initial deploymentyof®the service provisioning and the network monitoring and exposure
capabilities.

e Afinal approach to a stable version of the Time Sensitive Network component for 5G networks.

AS conelusion, this document depicts the main advances in the deployment of the NEMO technological
cnables, providing a deep understanding of how each of them works and the updated contributions
already”done in a concluded development and deployment phase. During the elaboration of this
document some initial approaches proposed in the previous stage have been enhanced and some others
have been dropped as there were considered as unnecessary or redundant. Also, the presence of external
difficulties has made CMDT and mNCC suffer changes to adapt to the new consortium status, impacting
these difficulties in the completeness of these components but not in a critical way.

In the current phase, it is expected to develop the final deployment and validation for each of the four
components, and an improvement on the integration inside the full NEMO meta-OS ecosystem.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 10 of 60
Reference: D2.3 |Disseminqtion: IPU |Version: |1 .0 Status: Final

1 Introduction

1.1 Purpose of the document

This document works as an update from D2.2 Enhancing NEMO Underlaying Technology [1] ,providing
an updated view of each of the three components defined in WP2. The main goal is to describe the latest
version of each component and its parts, providing a complete knowledge about each of them and how
is the final stable version. Additionally, it is also depicted how these components interact with other
NEMO components, focusing on the functionalities provided and the interfaces exposed, being this
crucial for the overall NEMO stack integration steps. Moreover, the document will serve to evaluate the
latest status of the components against the NEMO KPIs. The three components described (each of them
carried out in one of the Task withing the Work Package) are going to focus on topics as cloud,andedge
computing, networking, Al operations, and microservices-oriented architectures, beingfimportant to
have a background on these technologies.

1.2 Relation to other project work

D2.3 Enhancing NEMO Underlaying Technology works as an update, togD2.2 Enhancing NEMO
Underlaying Technology, providing advancements on the technologies defined in there and giving the
latest view of its implementation. D2.3 will follow the same stfuctureiand objectives as D3.2 and D4.2
providing a jointed view of NEMO architecture and implementation®and*working as a description of the
integration work and the evaluation of Use Cases deSéribed in D5.2 NEMO Living Labs use cases
evaluation results at Milestones 8§ and 11.

1.3 Structure of the document

This document starts with an intzéduction and¥explanation of the context and goals defined to be
addressed here. Then, there will be a séction for each of the three WP2 components, and a last one for
the Time Sensitive Networking,qduestesits characteristics. In each of these sections dedicated to the
components it is provided an overview of what is being pursued in each of them, the final improved
architecture, how eaeh, ofithese components works and the interfaces to communicate with the rest of
NEMO components.

Once components are depicted in the theoretical way, there is also a section 6 for the explanation and
validationef ®aghot'them, showing proofs of concept that evaluate the functionalities and bring a view
onghow the ntegration with the rest of NEMO WP2 architecture it’s done. For the pending integrations
withythe rest of the NEMO components, proper descriptions and reporting will be included in the
ongoing'D4.3.

Finally, all the information expressed in sections 2 to 6 will be summarized in the Conclusions section,
focusing on the results obtained related to the goals and challenges expected for the technologies
depicted. Also, as this is the final document for the work package, this conclusion section will provide
a big picture about the work realized and the benefits that these technologies bring not only to the rest
of the NEMO architecture, also to the general State-of-the-Art.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 11 of 60
Reference: D2.3 IDisseminqtion: IPU |Version: |1 .0 Status: Final

2 Cybersecure Micro-services Digital Twins (CMDT)

2.1 Overview

The Deliverable D2.2 [1] describes all potential expected functionalities of the Cybersecure Micro-
services Digital Twins (CMDT) component, which plays a pivotal role in monitoring and assessing the
status and availability of each workload defined as a Digital Twin (DT). This service is responsible for
aggregating data from all available clusters, organizing and enriching it with crucial metadata—such as
service ownership details—and providing consolidated, actionable insights to other services.

The role and functionalities of the CMDT have improved the previous CMDT version presented in D212,
The main changes are in the distinction of the components’ goal inside the NEMO MetaOS framework,
removing unnecessary functionalities and clarifying the integration interfaces of the toolsWith these
changes, CMDT became near real-time data fusion and distribution service, capturing and DT lifexcycle
anomalies and passing them to the user interface. This means that the CMDT dashboardsywill remain,
but will be used only for NEMO super-users, while the DT information, crucial for the end user is
integrated in the NEMO LCM UL

Additionally, the CMDT integration is finally detailed, including the defimitionof course of the data that
is passed over the AMPQ message bus (e.g., RabbitMQ). This informationis crucial to transmit the
status from the distributed NEMO environment to the LCM Ul ima nearreal-time manner. The messages
include the following data:

e Timestamp: Depicts the exact time when the data was prepared and message sent, ensuring
chronological order.
Workload ID: Represents a unique identifierifor the workload (e.g. Digital Twin).
UserID: Represents a unique identifieggfor the user.
LinkerD retrieved info sugh*a® networkgfatfic to/from pod, traffic rate, and response stats.
Kube-state-metrics info such a§' memory, and CPU utilization,
Number of replicas: Representsa current number of replica instances (k8s pods) running for a
workload. It indicates*the number of instances or replica instances.
e Status: Deseribesitheicurrent and past state of the workload or k8s pods, which can be:

o <Running

o Restart
o ‘Ready
o Failure

Theymiessagedetails currently cover all KPIs defined in section 2.2 of previous deliverable “D2.2
Enhancing NEMO Underlying Technology". The list of message data attributes is not fixed and could
be updated in the future due to the stakeholder requests for better user experience. In the following
subsections we point out the specific changes made on CMDT architecture in the last development and
integration period.

2.2 Architecture and Approach

The initial iteration of the CMDT implementation was ambitious, incorporating numerous data sources—
some of which were redundant—to gather as much information as possible and gain a comprehensive
understanding of the system and its Digital Twin deployments. Following the initial deployment, we
evaluated the collected data and compared the CMDT’s capabilities with other NEMO services. This
led us to reshape the architecture to better align with the NEMO meta-OS framework, ensuring it
complemented the functionality of other services effectively.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 12 of 60
Reference: D2.3 IDisseminqtion: IPU |Version: |1 .0 Status: Final

NEMO

The new version of CMDT still provides a comprehensive approach for in detail management of DT,
however, the architecture is restructured in a way to guarantee seamless and real-time provision of DT
status to the LCM graphical user interface (LCM UI), organized by each workload or user. In essence,
this version still includes the same core functionality, without the parts as Grafana and Prometheus,
which were used only to showcase the CMDT results in the past. In this final version of CMDT, which
is fully integrated into the NEMO operating system, the interfaces mentioned became redundant and
were removed from the core CMDT architecture.

The revised CMDT architecture is presented in Figure 1. The core services consist of k8s Agent
aggregation engine, Service Mesh Network Aggregation Engine, CMDT data fusion and broker.
Mentioned services and their processes streamline the DT status message delivery from
infrastructure and software layer to the user space in LCM UI. Both aggregation engines rely onthe dal
gathered through special agents locally collecting the data on each pod. The reader can fin :
shown on the bottom of Figure 1, where each cluster is monitored by Service mesh mom

monitor. The gathered and CMDT processed data is shared on the AMPQ service (Ré data
is consumed by NEMO services, like the LCM — UI, which uses the data to re and s of the
Digital twin health.

LCM - Ul B RabbitMQ Inten &

|:_‘ CMDT Super E

-I ISer access

data fusion and
broker service

{

a
0oo,

Service Mesh k8s Agent Aggregation
ork Aggregation Engine Engine

Life-Cycle Manager (LCM)

Pod monitor

’Sentice mesh 2 {Service mesh 2
monltorlng Emoniloring

777] Meta-Orchestrator
CMDT infrastructure with monitoring agents
Cybersecure Micro-services Digital Twins (CMDT)
Figure 1 CMDT architecture and integration points.
Document name: D2.3 Enhancing NEMO Underlying Technology Page: 13 of 60

Reference: D2.3 |Dissemination: [PU [Version: [1.0 Status: Final

&8s NEMO

The sequence diagram from Figure 2 outlines the process of CMDT near real-time notifications for the
LCM-UI within a distributed infrastructure. The LCM-UI monitors the #CMDT channel via RabbitMQ
to receive updates. CMDT Core Services interact with multiple clusters (Cluster 1 to Cluster N)
distributed across the infrastructure, gathering network mesh and service data from pods. This DT data
is processed, aligned, annotated, and relayed to RabbitMQ as cluster status updates. RabbitMQ acts as
a mediator, ensuring that LCM-UI remains informed of the latest statuses from each cluster, enabling
near real-time notifications and streamlined monitoring capabilities for the system.

CMDT near real-time notifications for LCM-UI

LCM-UI RabbitMQ CMDT Core services Cluster 1 Cluster ... Cluster N V
- 1 — | I |
I |

|
: Distnbuted infrastructure
|
Monitoring the: !
#CMDT channel |
>
Data
- ----=- - - -
Metwork Mesh and
Service Data
DT data Alignmei
al n
Passing status
Cluster1____
Data
< ___________
Network Mesh and
Sernvice Data
‘ ___________ U R ——
DT data Alignment
and Fusion
Passing status of
Cluster2 |
Network Mesh and
Service Data
< ___________ i g P e ——
DT data Alignment
and Fusion
Passing status of
Cluster 3
Data
< ___________
ne me ne T T mn
Figure 2 CMDT data collection and passing to RabbitMQ
Document name: D2.3 Enhancing NEMO Underlying Technology Page: 14 of 60

Reference: D2.3 |Dissemination: [PU [Version: [1.0 Status: Final

&8s NEMO

2.3 Internal and External Interfacing

CMDT uses only internal interfaces to communicate with the rest of the NEMO components. The input
and output interfaces include the following information:

e INPUT:
o Internal tools:
= LinkerD (https://linkerd.io/) API to gather internal and external network traffic

stats.

= Kube-state-metrics (https://github.com/kubernetes/kube-state-metrics) API to
gather Kubernetes nodes’ stats (CPU, memory, storage utilization).

= Prometheus (https://prometheus.io/) API to access internal storage to qu
retrospective stats.
= Kubernetes API to gather services’ and pods’ state and logs.
o Intent-based API to access mapping between pods and workload UUID. O

o User/workload relations.

e OUTPUT:
o AMPQ messages: RabbitMQ periodic and event-drive
to be consumed by other services, such as LCM a
o Optional GUI dashboard for NEMO.

ts/Changes) messages

Message Message format
destination

<AMPQ url | Payload (Screeshot of JSON)
on
RabbitMQ>

The message format:

Channel:
#CMDT

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 15 of 60
Reference: D2.3 |Dissemination: [PU [Version: [1.0 Status: Final

m
[im

',.-' £ g NEMO

|

"pod_name"
"timestamp
"workloa
“status":

"status_
"status”
"last_tr

"message"”:

"status
"status":
"last_tra
"message”:
s5ag

"last_transitiom_time":

message™: null

"labels
"app™:
"linker
"linkerd.iofpro
"linkerd.io/
‘ eu/workload™

"p9
"p95s
o7
"p5@":

Figure 3 Current version of CMDT AMPQ message

Document name:

D2.3 Enhancing NEMO Underlying Technology Page: 16 of 60

Reference:

D2.3 |Disseminqtion: IPU |Version: |1.0 Status: Final

&8s NEMO

2.4 Conclusion

The CMDT has significantly changed in the last development period. The key improvement was the
definition of the essential content gathered and annotated by CMDT and the most efficient and useful
integration point through AMPQ.

Current simulations show that the LCM-UI will be able to gain responsiveness and near real-time digital
twin visualization by using the CMDT notifications. For advanced NEMO administration users, the
CMDT will still maintain the backdoor access for easier status debugging.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 17 of 60
Reference: D2.3 |Dissemination: [PU [Version: [1.0 Status: Final

".-' It -(N EM O

3 Cybersecure Federated Deep Reinforcement
Learning (CF-DRL)

3.1 Overview

One of the main applications of CF-DRL within NEMO is to help orchestrate microservices in the Meta-
Orchestrator as described in D2.2

3.2 Architecture and Approach

3.2.1 CFDRL and Meta Orchestration

e Designing a Deep Q-Network (DQN) Algorithm. Because the Thales library for
reinforcement learning is closed source, it was not possible to share the libraryas 1s,on the One
lab cluster. However, it has been recoded the specific DQN algorithm_fogthef@EDRL-NEMO
application.

e Connection to PPEF: The PPEF can provide information aboutsthejstatus of the workload that
concern the workload’s intents’ expectations set by the NEMO user. CEDRL needs to query the
intent-based API automatically using a Keycloack identifierygThe CFDRL queries the API at
intent-api.nemo.onelab.eu/api. Then the information iSnretrieved and filtered in order to
extract the relevant information. In the case ofsthe PPEE] the relevant information' is the usage
of CPU and RAM and whether it exceeds the limits.set for a normal execution.

ZRjRMCmX rHTV GV kw2 QkpHd2dXTENGZKS0Z] 1 Cb1FZNLLpS3BVInG . eyl eHALO] E3HZM1MDHYNzks InLhdCI6MT czHzosNj A3osEdn

Server response

Code Details

200 Response body

i
user_] label: Deli omputir: 1rkle
FALSE

0_WORKLOAD
tance: b6a77b9a-4ch2-41e9-953b-0a0b569cscdb
Tectivity: null
object_contexts: [1

(base) victor@capucin:~/nemo/test_cfdrl_rabbitmqg_new/code$ python main_cfdrl.py
hello bitcoonec to rab

bna??an -41e9- - 69C8: cpu_achieved ©.551 ram_achieved 1.5 cpu_usage_target 20 ram_usage_target 200
- 3 67 cpu_achieved 095 ram_achieved 2.7 cpu_usage_target 4000 ram_usage_target 100
cpu_achieved 28.4 ram_achieved 1.233 cpu_usage_target 480 ram_usage_target 200
cpu_achieved 643 ram_achieved 27.3 cpu_usage_target 5000 ram age_target 200

d8ffc7c9-ea20-4106-bb75-0e08acf792d7 cpu_achieved 0.739 ram_achieved 31.8 cpu_usage_target 20 ram_usage_target 100

9e7a5346-df92-43f3-a151-3c167da3c65¢c . ed 24.9 cpu_usage_target 20 ram_usage_target 100
6 86 ed 26.2 cpu_usage_target 20 ram_usage_target 100
1o d 25.1 cpu_usage_target 20 ram_usage_target 10@

-d1f15fB395ae { 2.2 ed 21.3 cpu_usage_target 20 ram_usage_target 108

4-2cd2f98c0976 cpu_achieved 3 ieved 16.6 cpu_usage_target 20 ram_usage_target 100

1e277400- -cc39b2180221 cpu_achieved ram_achieved 15.9 cpu_usage_target 26 ram_usage_target 108
bf4c24eb-c263-4854-b886-51b915d79264 cpu_achieved 26.7 ram_achieved 8.594 cpu_usage_target 20 ran_usage_target 100

Figure 5 Result of querying the API (filtering RAM and CPU usage of the workload of interest)

! The information from the PPEF is not only limited to the CPU and RAM, but intents also include other details
such as compute expectations (CPU, RAM), energy expectations, security, etc.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 18 of 60
Reference: D2.3 IDisseminqtion: IPU |Version: |1 .0 Status: Final

L oy
aTe)

&< NEMO

=

It’s possible to follow over time the variations of the values of the CPU usage and RAM usage with
respect to the maximum target values in the following figures. One thing to notice is that the usage
values in blue here do not go over the limit target value in orange.

Cpu usage of bfdc24eb-c263-4854-b886-51b915d79264

. Cpu usage of bba77ba-4ch2-41e9-9530-0a0b569cBedh Ram usage of b5Bd0fec-0418-471-.9142-6e78bb100c57

25 25 251
M’V‘MW’T\‘M’“’*WM |

[50 100 150 200 250 o 50 100 150

e Connection with the MO: The connection with the meta-orchestrator is through RabbitMQO.
On the CFDRL side the connection is made in python using the pika library. A qu€ue was\set in
the RabbitMQ so that CFDRL can query it for general info abeug Static gluster
resource/specification information (such as its CPU, RAM, storage, etc), @s illustrated®in Figure
6 below. CFDRL obtains information about the cluster id, capacity sichyasiCPU and memory.

READY

db 1/1
fdrl-rabbit-dep

Figure 6 Retrieving the informatieft fromythedMet# orchestrator through Rabbit MQ

3.3 Conclusion

The CFDRL was uploaded to the Onelab gluster and connected to the Meta Orchestrator and the PPEF
so that the RL model couldilearn from"interacting with the monitoring data.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 19 of 60
Reference: D2.3 IDisseminqtion: IPU |Version: |1 .0 Status: Final

NEMO

4 Federated meta-Network Cluster Controller
(MNCC)

4.1 Overview

The mNCC module is tasked with managing network connectivity and the assessment and exportation
of network characteristics within the NEMO system. It serves as an intermediary between NEMO and
the underlying physical network topology, providing connectivity and abstracting network services from
the deployment specifics. The mNCC enables real-time access to network characteristics, allowi
services to autonomously update their network perspective.

Recent updates to the mNCC have significantly enhanced its capabilities and integration

NEMO ecosystem. The first stable version has been successfully integrated, marking a m ton
in the module's development. The intent-based library has been expanded wi it rvice
libraries, broadening the range of network functionalities that can be express gh-level

intents. Furthermore, the integration of expected technology adaptors has eted, enabling the
mNCC to interface with a wider array of network technologies seamle

s hasbeen completed, allowing
s enables the mNCC to provide
ponents. The achievement of
rameworks in NEMO, represents a
process of implementing and scaling

Moreover, the integration of the metric reporting and exposure capab
for more comprehensive network monitoring and analysis. Thi
more accurate and detailed network characteristics to other
automated deployment, supported by the MO and 1/C
significant step forward in operational efficiency, stt€amlining t
the mNCC across various network environm

The interaction of the different modules of t ponent is represented in Figure 7.

: /" [Intent-Based (; N Compute & Net
RabbitMQ ‘ { System J | NeMeX ‘ White Shark| technologies

Ve ™

CC

Service Req (SLOs, EP)

Network Connectivity (SLOs, EP)
OK

SERVICE PROVISIONING

Serv Modification (Conn, SLOs)

Update Connection (SLOs, EP)
OK

0K

N [/

Network Probing(Lat, BW, ...)
Network Status

Network Status

Monitoring Compute Status (VIM)

Compute Status

Update Network Status ()

INFORMATION EXPOSURE

/
.

Figure 7 Retrieving the information from the Meta orchestrator through Rabbit MQ

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 20 of 60
Reference: D2.3 |Dissemination: [PU [Version: [1.0 Status: Final

4.2 Architecture and Approach

In this section, are described the components of the mNCC. These include the Intent-Based System
(IBS), which translates network requests into specific technology implementations, and the Network
Metrics Exposure (NeMeX), which integrates and exports network topology and performance metrics.
The mNCC also incorporates Technology Adaptors, such as the 5G Adapter and Teraflow SDN
Controller, which manage specific network technologies. The Connectivity Controller, based on L2SM
technology, provides secure link-layer connectivity between microservices within Kubernetes clusters.

4.2.1 Intent-Based System

42.1.1 Introduction

The Intent Based System (IBS) is a translator between different technologies, abstracting the ‘Specifi¢
details of network components from the general directives of higher-level components. AFhis abstraet
order is known as Intent (an intention). It expresses an expectation of what the underlying technologies
should do without knowing “the how”. This concept adapts nicely with the paradigm of the mNCC to
be able to scale with new Network Adaptors. Just with the addition of a new intent librany, the IBS can
translate an intention to a new network technology.

In the following section, there is a general overview of recent updatesjand the current status of the
software. Additionally, how the Meta-Orchestrator (MO) utilizes mtentS to réquest different types of
networks and the work in progress of the integration will be'explored. This insight into the system's
evolution and functionality will demonstrate how the Intent Based SyStem continues to enhance network
management and orchestration capabilities.

4.2.1.2 Intent structure

In this section, the different targets, contextiand expectations that will trigger the different network
adaptors in the mNCC will be described. Notice that the intent structure has not received any update
from the version reported in [D2.2], the stfucture defined the 3GPP specification [3gpp 28.321]. For the
sake of simplicity, not all the objects, will be described. Also, the targets, contexts and expectations will
be divided in tables, althodghythe intentrequests must have the complete structure defined in the Gitlab
repository?.

Table 1: objectContext for 5G adapter

- } objectType contextAttribute | contextCondition | contextValueRange
% ip4Address IS EQUAL_TO ip string
5 | type IS EQUAL TO 'BOTH'
3 SGSLICE_FLOW portNumber IS EQUAL TO port string
£ portType IS EQUAL TO 'UDP'/'TCP'
2Gitlab:
Document name: D2.3 Enhancing NEMO Underlying Technology Page: 21 of 60

Reference: D2.3 IDisseminqtion: IPU |Version: |1.0 Status: Final

Table 2: expectationTarget for 5G adapter

&8s NEMO

objectType targetName targetCondition targetValueRange
5 ulCapacity IS EQUAL _TO ip string
=
= 5G_SLICE_FLOW
b3
:é; dlCapacity IS EQUAL TO ‘BOTH’

Table 3: targetContext for 5G adapter

targetName contextAttribute | contextCondition

dlCapacity/ulCapacity profile

targetContexts

Lo

| contextCondition |

Table 4: expectationContext for 5

objectType | contextAttribute

contextValueRange

(audiodk)

contextValueRange

g startTi \ |ISIEQUAL TO |RFC 3339 - Date/time
S format

£ 5G SLICE FLOW opTi IS EQUAL TO |RFC 3339 — Date/time
5 — — format

é’. IS EQUAL TO |url string

o

Table 5: intentContext for all adapters

nserfLabe contextAttribute
v

intentContexts

| contextCondition | contextValueRange

NEMO uuid

Table 6: objecttContext for L2SM adapter

- objectType | contextAttribute | contextCondition | contextValueRange
‘E name IS EQUAL TO network string

=]

o

b K85_L2_NETWORK providerName | IS EQUAL TO provider string
=

S uc3m IS EQUAL_TO domain string

Document name: D2.3 Enhancing NEMO Underlying Technology

Page:

22 of 60

Reference: D2.3 |Dissemination: [PU [Version: [1.0

Status:

Final

&3¢ NEMO

Table 7: objrctContext for L2SM adapter

objectType contextAttribute | contextCondition contextValueRange

g name IS EQUAL TO network string
=

% K8S_CLUSTER_CONFIG beare token IS EQUAL TO token string
2

° api_key IS EQUAL TO key string

Table 8: expectationContext for L2SM adapter

objectType contextAttribute | contextCondition contextValueRange

k8s 12 network | IS EQUAL _TO

K8S_CLUSTER_CONFIG

IS EQUAL url string

The complete set of possible intents and examples continue in es 9.1 and 9.2.
4.2.1.3 Intent lifecycle

strator via the RabbitMQ queue. Once the
his phase, the classifier module of the IBS
s them with one of the Intent libraries installed
better subdivision of incoming intents into sub-
intents in the same file separated with the usual "yaml"
separator "---". This enables in O niore flexibility and scalability in the requests. In the current
version, the IBS can class intent 1n the cloud continuum library and then sub divide this intent to

be processed by one of‘theli capable of translating the intent into the specific technological
network adapto
mNCC

1BS

expectationContexts

The intent lifecycle starts with the request of th
IBS consumes the intent, it starts the classifigatio

compares the key attributes of the intent an tc
[D2.2]. The classification has bee ated
intents. Also, the IBS can proces§ se

-Orc
h t

ILU— [25M P GRPC exec grpc——» L25-M

o ——» RBQexe —® Classifier ——nollU—® Cloud_continuum ———ILlU————®» 5G Slice \‘

/——AP\ REST—# CMC_API

HTTPS exec

nollU=# L2VPN —ILU—P TFS_L2VPN \AP\ REST: » TFS

Figure 8 Intent workflow schema

Then, once the intent is translated by the corresponding library, the order is sent to the corresponding
executioners. As they are programmed to be interfaces towards the different technologies, if the
interfaces are the same, the executioners can be reused, giving the IBS flexibility and independence
between the different steps in the lifecycle.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 23 of 60
Reference: D2.3 |Dissemination: [PU [Version: [1.0 Status: Final

i NEMO

4.2.1.4 Intent model in NEMO cloud continuum paradigm

The implementation of the Intent Based System (IBS) as a micro-kernel architecture significantly
enhances the development and integration of new network adaptors. This modular design separates core
functionality from specific network adaptor implementations, allowing for seamless integration of new
technologies without modifying the central IBS components. As new network technologies emerge,
corresponding adaptors can be developed and plugged into the system with minimal disruption to
existing operations, ensuring scalability and future proofing. The micro-kernel approach also simplifies
maintenance and updates of individual components, including network adaptors. Furthermore, it offers
organizations the flexibility to develop or modify network adaptors to suit their specific needs without
altering the core IBS functionality. This architectural choice ultimately ensures that the IBS remains
highly adaptable, capable of evolving alongside the rapidly changing landscape of network technologies
in the cloud continuum paradigm.

4.2.2 Network Metrics Exposure

As defined in previous deliverables, the Network Metrics Exposure (NeMeX)gis,the component
serving as the North-Bound Interface (NBI) for mNCC. It interacts with the interfial subcompenents of
mNCC and the RabbitMQ queue to export network topology and performane€tetrics forthe managed
technological domains.

NeMeX has two main functions:

1. Topology view integration: it gathers information frofm,multiple sources and combines it into
a unified, coherent topology view.

2. Data modeling and performance metrics delivery: it uses RabbitMQ to share information
with other NEMO components, ensuring scalability and interoperability for the integration of
technological controllers or add-ons infa standardized manner.

In its initial deployment, NeMeX establishes a cenfiection with NEMO’s RabbitMQ broker. While this
version is manually configured, flture g/€xsions aim to automate this process to enhance scalability,
availability, and robustness. Oncejconnegcted, NeMeX maps multi-domain resources to create an
integrated view that combinesyperformance values with domain-specific resources.

The process transfomms threelinitial views into a unified topology by assigning common identifiers to
the same nodes.€very D se¢onds, updated values are sent to the designated RabbitMQ queue if changes
occur.

4.2.2¢F Technelogical dependencies and requisites
The,NeMeX sub-component is based on the next technologies:

¢ Python3’. This is the programming language used for almost all code in this component.
Python 3 is a high-level interpreted language designed to facilitate code usability, thereby
enhancing the potential for code improvements and extensions. Currently version
Python3.12 is used.

e Kubernetes (K8S)*. is used for managing distributed systems, specifically for monitoring
computational capacities required for virtualizing network resources. This choice is based
on the strong presence of Kubernetes in current systems and its compatibility with other

3 Python3 official release:
4 Official K8S documentation:

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 24 of 60
Reference: D2.3 |Disseminqtion: IPU |Version: |1 .0 Status: Final

i NEMO

components of the NEMO meta-OS, from Kubernetes API we extract Node information
and launch the sub-component. Currently version 1.31 is used.

Internally with NEMO, there are also some dependencies:

e Underlay Network Probes. NeMeX requires the deployment of the Underlay Network Probes
to obtain the metrics extracted from the network. If probes are not deployed or are failing, there
would be no content to expose. This would not cause a crash in the system, but the behavior
would not be the expected one for the main workflow.

e RabbitMQ. Like what happens with the Underlay Network Probes, if there is no broker to
exchange the metrics, NeMeX will be unable to push them, and therefore the behavior will not
be the desired one. Also, it would neither kill NeMeX, just stopping the exposition service.

Also, there are some Python libraries also used and needed in this deployment. Although there is no
need for a specific version in each of those technologies, it may be interesting to mention them just in
case new implementations of those technologies include incompatibilities:

requests~=2.25

pika~=1.0

kubernetes~=31.0

About the System dependencies, all code has been tested and executed in Linux (Ubuntu 22.04 LTS)
but, as the code is deployed using Kubernetes and Python3 (an interpreted language) there is no special
dependency on the system to be used. Also, there are neithet dependencies with hardware capabilities.

Finally, there are also configuration dependéncies#Thesesdependencies are related to the arguments to
be provided during the deployment of the components

delay: Time between updates (default: 3600)

cluster: Cluster id (default:\'cluster-1")

rmgq_ip: I[P wherefthe RabbitM@ broker is available (default: '132.227.122.23")
rmgq_port: Portiwhere the'RabbitMQ broker is available (default: '30403")
exchange?Exchange used int the Rabbit MQ (default: '")

key: Keyuwsed in RabbitMQ (default: 'costs-map')

user: Nemojuseér for pushing RabbitMQ messages (default: 'nemo-user')
passwd®Password to push RabbitMQ messages (default: '1234")

Theseyarguments should be passed using the Kubernetes manifest available in the NeMeX official
repository °.

4.2.2.2 Internal workflow

When the NeMeX execution starts, this subcomponent evaluates if it has any topology stored locally
(for example, in case tests are performed and the function in charge of reading the metrics is launched
more than once without deleting the local data). In case there is no topology already stored, one will be
loaded natively. Initially this topology was enhanced through a graph management, to provide path

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 25 of 60
Reference: D2.3 |Disseminqtion: IPU |Version: |1 .0 Status: Final

&8s NEMO

Computation capabilities, but due to the lack of demand for this service, we have proceeded to use local
dictionaries, which consume a smaller amount of memory and have a faster management.

Once the topology update is initialized, two data sources will be evaluated: Kubernetes to obtain the
mapping between the Kubernetes nodes and the IPs that represent them and the Underlay Network
Probes. From the Kubernetes API (client.CoreV1Api()) the node information is loaded, extracting the
name and IP values from the metadata.name and status.addresses field.

Afterwards, and having these measurements, the different metrics repositories of the Underlay Network
Probes, which are present in each node of the cluster through a Prometheus service on port 5001, are
analyzed. For each node, the metrics and properties are read and parsed into the format defined for the
output. If any node does not have the service available or does not provide these metrics, the error will
be detected, and it will be discarded from the process.

Once we have all the metrics processed, they are integrated in the same JSON, including the timestam
of when they have been generated and the cluster from which they come, to allow the idg i
these. This resulting JSON is sent to the RabbitMQ broker indicated in the deployment a
is paused until the next iteration.

This process is depicted in Figure 9. Q

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 26 of 60
Reference: D2.3 |Dissemination: [PU [Version: [1.0 Status: Final

Create an empty
topology

«No——

Initial
Deployment

l

Check
Topology

Dol havéé
~-._topology?

—Yes— >

Take current topology
as baseline

|

]

Read Sources

Read Kubernetes
API

Network

for Node in

Domain

Save Name, IP and
metrics

~Are there more

~. Nodes?

|

Read Underlay
Probes

for Node in Queue
entries

for link in Queue
entries

Save Name,

source, destiny and
metrics

Afe there more
_ Links?

NO
|

]

Integration of the

metrics

!

Pushing metrics to

RabbitMQ

Wait a defined
delay

Figure 9 NeMeX internal workflow.

&8s NEMO

Document name:

D2.3 Enhancing NEMO Underlying Technology

Page:

27 of 60

Reference:

D2.3 | Dissemination:

[PU

[Version: [1.0

Status:

Final

4.2.2.3 Deployment and permissions.

The NeMeX component is designed to be deployed in a Kubernetes environment, in which write
permissions are not required but read permissions are required. In the deployment process there are two
steps that must be performed sequentially: on the one hand the definition of the Namespace where they
will be executed (in the case of the Nemo project this is nemo-net) and the Deployment of the NeMeX
resources. Both documents are available in the eclipse repository °.

Within NeMeX resources, we have 4 necessary deployments:

1. Deployment: this is the deployment of the code. Here the image to be instantiated is identified
as well as the parameters that will serve as variables. These parameters can be parameterized or
hardcoded. The user and password must be managed through Kubernetes secrets, which has not
been uploaded to the repository for security reasons.

2. ServiceAccount: Creates an identity in Kubernetes for the deployment to manage the nééessary
resources for monitoring nodes.

3. ClusterRole: Role that NeMeX will perform within Kubernetes. In this (section}) read
permissions are requested for the pods at namespace level and for the nedes)at cluster level.
This component can be replaced by a Role, but then it will only be able to,moniter the pods at
namespace level and not the nodes.

4. ClusterRoleBinding: Maps the permissions requested in them€/ustér Role” with the Service
Account created. If a Role is used instead of a Cluster Role, a’RoleBinding should be used
instead.

4.2.2.4 Inputs and outputs.

We can identify two main inputs: on the one hafid weéyhave the compute information obtained using the
Kubernetes API; this information will helpito miatch the nodes with their IPs. This input is managed
using the Python3 Kubernetes API and the value obté@ined is a string with IP format per each node.

On the other hand, it is also receivéd metric information from the network probes; these metrics will be
associated with nodes and linkstandywill beé summarized in the following table:

Table 9. NeMeX input metrics.

Description \ Valid values
networkimetric, latenty Delay between two probes at IP level. Float | 0.01 - N
Unit: ms
network metric_throughput | Data rate available in the link. Float | 0.00 — N
Unit: Mbps
network metric_packet_loss | Packet loss rate since last measurement. Int 0-100
Unit: %
network _metric_link_energy | Average power consumption. Int 0-N
Unit: W
network metric_link failure | Number of times the link drops since last measure. | Int 0-N
Unit: fails
6
Document name: D2.3 Enhancing NEMO Underlying Technology Page: 28 of 60

Reference: D2.3 |Disseminqtion: IPU |Version: |1.0 Status: Final

These metrics are processed and formatted to be aligned with the node names and IPs used by the
Kubernetes resources to be managed. This integration returns the following data model:

Figure 10 mNCC metrics data model,

In Section 6 there will be available an example of the deployment ands€xposure of metrics, showing a
demo scenario with three nodes.

4.2.3 Technology Connectivity Adaptors

The final working network adaptors. There aregWo types of connectivity adaptors: the ones part of the
NEMO project, and the ones external to the projeet’butuséd as a proof of concept for the versatility and
flexibility of the mNCC architecture. In section.6 thesddemonstration for two cases will be shown.

4.2.3.1 L2SM connectivity solution

Link Layer Secure Microservices, (E2SM) serves as a secure connectivity solution within the mNCC,
offering advanced netwerk funeétignalities through an extension of the Kubernetes (K8s) API. It enables
the creation, management, and deletion of virtual networks and supports the use of custom overlay
networks. By taking advantage of the Software Defined Networking (SDN) capabilities, L2SM provides
an API that deploys a customized data plane and enforces rules within Open Virtual Switches (OVS) as
part of theteverlay network topology.

L28SM has “andergone significant advancements to align with the mNCC’s evolving requirements.
Initially, as,presented in D2.2, L2SM handled internal cluster connectivity via overlays and introduced
the coneépt of Network Edge Devices (NEDs) to enable the interconnection of overlay networks across
different clusters. This concept has been further developed and implemented, facilitating communication
between workloads deployed through NEMO OS using a standardized interface.

L2SM MD

The creation and management of L2SM resources are now handled via the L2SM multi-Domain (L2SM
MD) client—a gRPC server that processes requests to create inter-cluster overlay topologies, add or
delete clusters, and manage inter-cluster virtual networks atop these overlays. This modular approach
simplifies the expansion of L2SM’s functionalities, integrating existing concepts of virtual networks
and overlay networks with the new NEDs and inter-cluster networking capabilities through a
standardized API. This enhances the efficiency of the mNCC’s connectivity adaptor.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 29 of 60
Reference: D2.3 |Disseminqtion: IPU |Version: |1 .0 Status: Final

&l NEMO

Specifically, L2SM MD implements the following methods:

Create and Delete Networks: Allows the creation and deletion of virtual networks across
clusters, given a list of clusters and the name of the network.

Create and Delete Overlays: Manages overlay network topologies that define the
interconnection of clusters, provided with a list of clusters and a name for the overlay.

Add and Remove Clusters: Enables dynamic addition or removal of clusters within an overlay
network, specified by the overlay name and the cluster to modify.

To securely manage these operations, L2SM MD requires cluster information, including the K8s ARI
endpoint and a user’s bearer token with permissions to manage L2SM Custom Resource Definitio

(CRDs), Overlays, NEDs, and L.2Networks in the managed clusters. Since the K8s API
HTTPS, L2SM MD needs access to the TLS certificate to establish secure communicati
copies of the public certificates are stored securely within the control plane cluster e

To facilitate the setup of the gRPC server and ease the management of certi
MD provides a Command Line Interface (CLI) with a set of tools:

and resources, L2SM

Apply-cert: Takes a .key file and a cluster name as input, ¢
stores it as a secret, allowing L2SM MD to access it s ly.

e public certificate, and

Generate-cr: Automates the generation of CRs by receiving mput values for each resource. For

This CLI tool mirrors the utility of t
serving as an alternative for quick
adaptor in a resource-const

ut without actually creating the resources,
se of errors in the workflow or for testing the

4.2.3.2 5@ adapter: functions and workflow update

The 5G adapter is respo managing data flows and providing monitoring and analytics
capabilities within the . Here are its key functions with an extended definition in D2.2:

Description

Sets up new data transmission paths for efficient
routing.

Adjusts existing data flows due to changing
network conditions or to optimize performance.

Deleting Data Flows

Removes unnecessary data flows to free up
network resources.

Performance Monitoring Tracks metrics like latency, throughput, and error

rates to ensure slice performance.

Utilization Monitoring Observes resource usage to identify underutilized

or overburdened slices.

Moreover, the deployment and request of 5G network flows has been updated to achieve an automated
deployment by the meta-orchestrator and the following API exposure towards the IBS. In such a way

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 30 of 60

Reference: D2.3 |Dissemination: [PU [Version: [1.0 Status: Final

i NEMO

that, the MO can request a new network flow using the unified interface provided by the IBS. This
workflow is not fully implemented at the date of this deliverable since MO tasks is part of WP3 and
ends later in time. The general workflow is depicted on Figure 11.

MO 5GCMC IBS (mNCC)
r—deploy 5G components <manifest> : ;
>] Deployment
phase
components up? <API| endpoint>
<
L25M network between 5G components? <network request> L25M
‘ > Optional
components connectivity? <network 1D> < phase

5G slice request <API endpoint, 5G slice intent> |

«€—Slice request—— Flow request
phase

Flow IDr
5G Flow ID

Figure 11 Towards intggration workflow 5G adapter
In the Figure 11 there are shown three mainphases’intémal interactions the network adapter:

e Deployment phase: is the oneserchestrateddy the MO, in charge of the deployment of the 5G
core components such as the UPEy AMF,; SMF...

e Optional phase: This phase has been theoretically described, as there is the possibility of
connecting the different ‘components of the core if deployed in different clusters through the
L2SM adapter. Erom, the"L2SM perspective, this could be treated as a common service being
connectedsthroughia L2SM network.

e Flowgequest phase”Once the adapter is deployed, the MO can start requesting new 5G flows
throughythejintent-based interface connected to the RabbitMQ queue specific for the mNCC.

4.28°3 _IBLF TeraFlow SDN-based connectivity adapter. (External)

The\ETSI FeraFlowSDN’ is an innovative, open-source, cloud-native Software-Defined Networking
(SDN)eontroller and orchestrator designed to support smart networks and services for beyond 5G (B5G)
and 6G networks. Developed by the ETSI Software Development Group TeraFlowSDN, it employs a
micro-services architecture, enabling seamless integration with other ETSI initiatives such as
OpenSourceMANO and compliance with standards from bodies like IETF and [2].

TeraFlowSDN is characterized by its high performance, advanced SDN automation, and support for
transport network slicing, multi-tenancy, and cyberthreat analysis using machine learning (ML) and
deep learning (DL) components. It also incorporates features like distributed ledger technology and
smart contracts for secure network management. The controller is highly scalable, allowing for rapid

7TFS controller GitLab: https://labs.etsi.org/rep/tfs/controller/-/wikis/home

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 31 of 60
Reference: D2.3 |Disseminqtion: IPU |Version: |1 .0 Status: Final

&l NEMO

prototyping and experimentation, and it supports the management of heterogeneous network equipment,
including packet optical, [P and microwave networks [3].

The latest release, TeraFlowSDN 2.1, has been used by the mNCC IBS library to create a VPN layer 2
translation. A complete example of a request and the translated version in TFS controller format is

shown in Annex 7. Briefly, the following context can be used to build an intent expectation to request a
layer 2 VPN.

Table 10: objectContext for L2ZVPN

objectType contextAttribute contextCondition | contextValueRange

P nodeSrc IS EQUAL TO ip string
g nodeDst IS EQUAL TO ip string
=
S endpointSrc IS EQUAL TO e stri
2 L2VPN = = =
% vlanld IS EQUAL TO
=]

niName IS EQUAL TO

Table 11: expextationTargets for L2
objectType | targetAttribute | targetCondition | targetValueRange

bandwidth

IS EQUAL #O™OR_GREATER THAN float

latency , LESS THAN float

expectationTargets

4.2.3.4 Network Slice Contro

The IETF-based Netw
by 5G customers. The
the Radio Acce
the NSC for
deploy,t

)

troller (NSC) processes end-to-end network slice requests initiated
ts are coordinated by the 5G end-to-end orchestrator, which configures
), and Core Network elements as needed and forwards the request to
T'he NSC subsequently collaborates with the relevant network controllers to
¢ within the transport network. [4]

re e implementations of a network slice controller following the approach of the IETF draft

<., use Telefonica development in progress, not yet fully release as open source®). In the context

of the project, the main characteristics that could have an intent for a slice request has been described as
llowed:

8 Github:

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 32 of 60
Reference: D2.3 |Dissemination: [PU [Version: [1.0 Status: Final

objectType contextAttribute contextCondition contextValueRange
@ slo-sle-policy IS EQUAL TO name string
g sdp-id IS EQUAL TO id string
=
S node-id IS EQUAL_TO name string
-3 SLICE_SERVICE_SDP
.;; sdp-ip-address IS EQUAL_TO ip string
=]
niName IS EQUAL TO name string

contextAttribute

objectType ‘ contextCondition ‘ contextValueRange

one-way-bandwidth IS EQUAL_TO

SLICE_SERVICE_SDP

objectTarget

one-way-delay-maximum | IS EQUAL _TO

4.2.3.5 Auto peering API. (External)

Auto peering, as defined in this draft [5], refers to the automated pr of es
peering relationships between different Autonomous System
exchange necessary information, such as network detai

blishing and managing
his involves using an API to
1es, and contact information, to

required to establish new peering relationshi
between networks. Although literally could
very useful towards future adaptor; could
parameters [6] [

ore efficient and reliable interconnectivity
rceived as a network connectivity adaptor, it is

Customers of Peers

{J

Private Peers

7N

Peer-originated, User Routes,
customers of Peers Customer Routes

User Company
Full BGP Customer Routes

Downstream Peers

Figure 12: Private peering interactions

Document name:
Reference:

D2.3 Enhancing NEMO Underlying Technology Page: 33 of 60
D2.3 |Dissemination: [PU [Version: [1.0 Status: Final

NEMO

There is not a workable implementation of the process but, theoretically, the intents can be described
accordingly’. The intentExpectation objects to request a new peering could contain mainly the following
objectContexts:

Table 12: objectContext for BGP session

objectType contextAttribute contextCondition | contextValueRange
P localAsn IS EQUAL TO ASn integer
g locallp IS EQUAL TO ip string
5 peerAsn IS EQUAL TO ASn integer
T BGP_SESSION
% peerType IS EQUAL TO private
=]
md5 IS EQUAL TO key
Table 13: expectationContext for BGP session ’

" objectType | contextAttribute | contextCondition | con textValueRange

N v

O

=

=]

2

-§ BGP_ SESSION location IS _TO string

5

z)

»

5]
4.2.4 Network Performan ni g
The Network Performance,Mon dule within the mNCC provides the basic tools to evaluate
real-time network conditio is component leverages a Python-based network performance probe to

iverse network environments. By utilizing socket communication, it
ughput, latency, and packet loss. These metrics are critical for ensuring
on and supporting the autonomous decision-making capabilities of other

rk conditions or service requirements. For example, Users can define test duration, target
ports to suit their operational needs. The monitoring tool seamlessly integrates with the
roader mNCC architecture, feeding network metrics directly into the meta-OS for actionable insights.
s modular design supports deployment via containerized environments, ensuring scalability and
compatibility with multi-cluster scenarios. Leveraging the CI/CD framework of NEMO meta-OS, the
monitoring tool is deployed and updated automatically, aligning with the intent-based management
principles of the mNCC.

? In fact, from NEMO Project standardization contributions are being proposed for the definition of interconnection
intents, e.g. https://datatracker.ietf.org/doc/draft-contreras-nmrg-interconnection-intents/.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 34 of 60
Reference: D2.3 |Dissemination: [PU [Version: [1.0 Status: Final

4.3 Conclusion

The Federated Meta-Network Cluster Controller represents a key module in the NEMO meta-operating
system, bringing an innovative solution for network management for edge-cloud environments.
Throughout its development, the mNCC has evolved into a robust and flexible framework designed to
address the challenges of scalability, adaptability and interoperability across diverse network
technologies and multi-cluster scenarios.

The technological progression of the mNCC highlights its work as an infrastructure manager that
simplifies and abstracts the complexities of network management. Conceptualized to cover the gap
between the NEMO meta-Orchestrator and underlying network infrastructures, the mNCC has deployed
its capabilities through the integration of intent-based networking and advanced metric exposute
mechanisms with a secure solution for network connectivity, that works as the main technglogical
adaptor, having also the capability to use up to five different technological adaptors according toythe
needed scenario (KPI 3.3, at least 5 technological adaptors). These developments have allowed the
mNCC to not only provide seamless connectivity but also enable the capability of NEMO, meta-OS to
make dynamic and data-driven decisions.

The mNCC's architecture is built around the principles of abstraction, intezgperability, and automation,
enabling it to efficiently manage and monitor network operations acgossydiverse environments. By
leveraging an intent-based system, the mNCC translates high-level service @xpectations into detailed
network configurations, allowing services to operate with greater autonomy and reduced reliance on
manual intervention. This capability significantly enhances) séalability, a critical requirement in
distributed and multi-cluster settings, making the deployment off50 Nétwork Segments in 3.531s (KPI
3.1, < 5ms). Additionally, the integration of advaficed metric|collection and exposure mechanisms
provides real-time insights into network perfomftance. This feature supports network optimization and
facilitates seamless interoperability betweefl, thegmNEE#and other NEMO components, such as the
Meta-Orchestrator.

Looking forward, several areas fof improvement and expansion have been identified to ensure the
continued relevance and effectigen@ss of the mNCC. One priority is the integration of advanced security
features, such as Zero Trust solutionsy#which will strengthen the module’s defense mechanisms in
distributed network sceharios. Additionally, optimizing resource allocation in dynamic and resource-
constrained envirefifents) ishan ongoing focus. Addressing these challenges, with the potential
introduction of "Al-based emgines, is one of the main paths to follow during the next steps of the
component.

In comnelusion,thexmNCC has completed the main goals expected for the component, even it is still at
anfearlysTechnology Readiness Level (TRL), the proofs of concept done show a potential solution for
muwlticenvisenment scenarios, allowing quick reactions and an abstraction level that reduces the
complefity to integrate it with external modules, being the first step for seamless operation in next-
generation network ecosystems.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 35 of 60
Reference: D2.3 |Disseminqtion: IPU |Version: |1 .0 Status: Final

&8s NEMO

5 Time Sensitive Networking

5.1 Overview

Time Sensitive Networking (TSN) features enable synchronizing mobile network UEs. TSN can be used
to synchronize mobile network with existing IT infrastructure.

specification (Rel. 18) supports the fully centralized TSN configuration model, where a central
controller should be able to configure both Ethernet and 5GS bridges as a unified network. The 5
supports the whole industrial network, both Medium Access Control (MAC) learning and flooding,bas
forwarding as well as the static forwarding configured by the central controller need to 0
3GPP has defined that a 5GS can be modelled as one or more virtual TSN bridges.

The industrial LAN may also consist of TSN-enabled Ethernet bridges. The latest release of 5G V

Within the context of NEMO, TSN will be a complement in the sense that the ntinuum
infrastructure becomes extended with TSN domains, where the control entities of the 5G

network, as well as other functions (e.g., content endpoints, apphcatlo? s, ete) are instantiated

leveraging on NEMO infrastructure and stack.

5.2 Architecture and Approach v

TSN implementation ensures centralized, preci distribution to UEs for ultra-reliable, low-latency
communication as shown in the Figure 13 below.

N) Bridge
Device side o .
of Bridge 6 E st pes
: o :

2

.

?»
E. = B e
E3

PCF | TSV AF |

N2
. . H
[T system B
! NW-TT [
‘- e - ' : ;
‘e ‘

Figure 13: TSN Architecture

e CNC and TSN AF Integration: The TSN Centralized Network Controller (CNC) is
responsible for configuring bridges within the TSN-enabled network, allowing time-

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 36 of 60
Reference: D2.3 |Dissemination: [PU [Version: [1.0 Status: Final

synchronized data transfer from the Grand Master to each UE. The TSN Application
Function (AF) interfaces with the 5G control plane, translating TN parameters to 5GS-
specific settings and reporting the capabilities of the SGS bridge (e.g., delay specifications
and topology details).

e 5G QoS Mapping: Ethernet and TSN traffic flows are mapped to 5G QoS flows to maintain
service quality. This mapping allows the CNC to optimize flows’ handling across the
network, supporting per-stream filtering, traffic policing, and VLAN configuration in
compliance with IEEE 802.1Q.

e Seamless Redundancy and Preemption: TSN framework offers Seamless Redundancy for
ultra-reliable communication and Frame Preemption to prioritize time-critical information.

e Time Synchronization: Through the TSN Translator (DS-TT) on UEs, precise time
synchronization is achieved using gPTP messages, adhering to 3GPP specifications
(24.535).

5.3 Internal and External Interfacing

TSN AF is part of 5GC and provides the control plane translator functionality*for th€ integration of the
5GS with a TSN network, e.g. the interactions with the CNC. The TSN AF interfacesjtowards the CNC
for the PSFP (IEEE Std 802.1Q) managed objects that correspond tof the PSFP functionality
implemented by the DS-TT and the NW-TT. Thus, when PSFP information 1s provided by the CNC,
the TSN AF may extract relevant parameters from the PSFP ¢enfiguration. The TSN AF calculates
traffic pattern parameters (such as burst arrival time with referéngce topthe ingress port and periodicity).
TSN AF also obtains the flow direction. TSN AF is rg§ponsible for forwarding these parameters in TSC
Assistance Information (TSCAI) Container to the SMF (viasPCF). TSN AF may enable aggregation of
TSN streams if the TSN streams belong to the’same traffic/Class, terminate in the same egress port and
have the same periodicity and compatible Busstfarrival time. One set of parameters and one container
are calculated by the TSN AF for multiple TSN, stfeams to enable aggregation of TSN streams to the
same QoS Flow.

NW TT (Network TSN Translator): supports link layer connectivity discovery and reporting as defined
in IEEE Std 802.1AB for discoveryof Ethernet devices attached to NW-TT. When integrating normal
devices, we cannoprassume, that would be a DS-TT does not support link layer connectivity discovery
and reporting, then NWST T performs link layer connectivity discovery and reporting as defined in IEEE
Std 802.1AB fer discoyery of Ethernet devices attached to DS-TT on behalf of DS-TT. If NW-TT
performs lifkelayer connectivity discovery and reporting on behalf of DS-TT, it is assumed that LLDP
framies are“transmitted between NW-TT and UE on the QoS Flow with the default QoS rule.
Altematively;”SMF can establish a dedicated QoS Flow matching on the Ethertype defined for LLDP
(IEEE)Std 802.1AB).

DS-TT (Device Side TSN translator): translate the TSN 802.1 protocols on top of 5G networks but
cannot be assumed that would be a DS-TT capable UEs.

5.4 Conclusion

As it points out, TSN main characteristics are performed: Seamless Redundancy that permits ultra-
reliability due to the duplicity of buffers, Frame Pre-emption that includes a priority of the information
that produces, and time critical communication. In addition to the Time Aware Shaper that allows
scheduling of the outputs and Time Synchronization.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 37 of 60
Reference: D2.3 IDisseminqtion: IPU |Version: |1 .0 Status: Final

6 Proof of Concepts

The Proof of Concepts chapter demonstrates the practical implementation and functionality of the key
components developed within the NEMO project. This section showcases the integration and
performance of the Cybersecure Micro-services Digital Twins (CMDT), Cybersecure Federated Deep
Reinforcement Learning (CF-DRL), and the meta-Network Cluster Controller (mNCC) in various
scenarios. Through detailed demonstrations and analyses, we evaluate the components against their
defined Key Performance Indicators (KPIs) and illustrate their interactions within the project ecosystem.
The following subsections provide in-depth insights into each component's deployment, operational
workflows, and achieved results, highlighting the advancements made from the initial versions.

6.1 CMDT first stable version

6.1.1 Detailed description

The easiest way of demonstrating the functionality of CMDT is to showcase it on as€al example. For
this reason, we took an application developed for NEMO Meta-OS, deploy4if as digital twin and present
the CMDT actions in live environment. For the app we selected the isolatedyASM Terni deployment of
PMU devices and applications that are controlling it. This will be out Digital Bwin for this section. The
simplified workload includes PMU devices deployed in the network, @dge device for pre-processing the
data locally on the site and cloud service, which is used to aggregate the data from edge devices and
initiate actions towards the devices on the field. The application@llows reviewing the status, gathering
data and Firmware update over the air (FOTA).The digital{itwin of the workload comprises all
mentioned device logs that can describe application footprint and behavior.

One crucial message that a user would request frtom the CMDT would be a list of services (Digital twin
components) that represent a digital twin, and a‘correSponding status. A list of all workloads that CMDT
can get from NEMO infrastructurefs presented in Figure 14.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 38 of 60
Reference: D2.3 IDisseminqtion: IPU |Version: |1 .0 Status: Final

Figure 14: List of resources per workload.

Document name:

D2.3 Enhancing NEMO Underlying Technology

Page:

39 of 60

Reference:

D2.3 |Disseminqtion: IPU |Version: |1.0

Status:

Final

',.-' ”_\ N E M O

=

Figure 15 The CMDT message example which is transported over RabbitMQ

The CMDT monitors the status of each workload component continuously and distributes this
information accordingly. This represents workloads DT status, which is timestamped for each event and
transmitted the LCM and LCM — Ul service. This notification path is crucial to notify the user about the
status of any component in the workload. The messages that are passed over the RabbitMQ are sent for
each component on the #CMDT channel. Example of such CMDT message structure (Figure 15)
includes all information that was already explained and defined in the Deliverable D2.2, e.i. rates of
times in quantiles and rates of response codes, e.g. 200 for OK and 500 for Server Error. From
“res_rate by code” parameter (Figure 15) user can find that our demo application two requests per
minute with return the content successfully (code 200) and once per 6 minutes application responded
with server error (Code 500).

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 40 of 60
Reference: D2.3 |Disseminqtion: IPU |Version: |1 .0 Status: Final

&8s NEMO

An additional improvement from the last version of CMDT is the introduction of the pod status block.
For higher reliability and avoiding missing the information when some services are restarted, the block
includes last N status changes attributed with the timestamps. As already presented in this document,
the recipient of this data is LCM UI, which creates graphics and continuously updates user with the
status of his digital twin workload living on NEMO infrastructure.

In this proof of concept, we presented the CMDT operation on real-world example that is deployed in
NEMO. The workload status is constantly monitored, processed, collected and sent to the LCM UL
With the demonstrated example we showed the effectiveness of the CMDT service and outline the
progress from the previous deliverable D2.2.

6.2 CF-DRL first stable version

We demonstrate the run of the CFDRL for the scaling the replicas of the workloads in %
Orchestrator.

general info

cpu/ram usage

number of replicas

t KUBECONFIG="/home/victor/nemo/victor.gabillon-kubeconfig.yaml"

apply -f -n nemo-ai

Then the run of the CFDRL can be monitored using the kubernetes functions:

kubectl get pods -n nemo-ai
kubectl logs cfdrl-rabbit-deployment9-8677686865-tjxdb

The CFDRL automatically connects to the Meta Orchestrator with RabbitMQ and with the PPEF
through the intent-based APIL.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 41 of 60
Reference: D2.3 |Dissemination: [PU [Version: [1.0 Status: Final

Figure 17: Code snippet for request

In the code the connection in Python to the intent-based API is made witha request to https://intent-
api.nemo.onelab.eu/api/v1/intent/

The connection to the intent-based API requires an identification token (bearer token) that expires every

2 hours. A curl request periodically is sent to the NEMO Identity Management component to re-initiate
the token.

value_at_time.append(\

The information received from‘the'RPEF (through the intent-based API) is filtered in order to focus on
the CPU and RAM of eachiworkloads®

This allow us to display the change of the CPU and RAM though time:

Cpu usage of bfdc24eb-c263-4854-b886-51b915d79264

Meta Orchestrator connection:

The connection with the meta-orchestrator is through RabbitMQ. On the CFDRL side the connection is
made in python using the pika library.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 42 of 60
Reference: D2.3 IDisseminqtion: IPU |Version: |1 .0 Status: Final

O _(N E M O

Figure 18: RabbitMQ connectiviy snipped

A queue was set in the RabbitMq so that CFDRL can query it for general info about the network as
illustrated in the Figure below. CFDRL obtains information about the cluster id, capacity such as CRU
and memory.

Figure 19: Metric retrieving

6.3 mNCC hybrid clusters and intent nefworking

6.3.1 Single Cluster Connectivity throughout LZSM overlay adaptor

In order to demonstrate the advancesefithe L2S2Mg€onnectivity adaptor in the NEMO project, this new
PoC showcases the automatic setup of thesadaptor in a NEMO inter-domain cluster environment in order
to enable the deployment of vigtualized workloads within the infrastructure of the project. Since the
internal components that efiabled this*€onnectivity were previously shown in D.2.2, this new PoC will
focus on showcasing the,ability of‘the new L2S-M-MD module (described in Section 4) to properly
configure new k8s'clustersyto'the NEMO project, ensuring their ability to create inter-domain virtual
networks thatgenable the connectivity of network functions in multiple K8s clusters.

Particulathys, thisysetup”consists of three separate K8s clusters: one controller cluster and two worker
clusters, all, following the guidelines of the NEMO project hierarchy and its characteristics. In this
regardgfor the K8s control plane cluster, the L2SM-MD-server, the IDCO provider and multidomain
DNS components were installed, while the L2S-M operator and its components were installed in the
I£2S-Mnamespace of the K8s worker clusters. This setup can be seen in Figure 20: K8s clusters of this
PoC.

- S kind get clusters
control-plane

worker-cluster-1
worker-cluster-2

Figure 20 K8s clusters of this PoC

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 43 of 60
Reference: D2.3 IDisseminqtion: IPU |Version: |1 .0 Status: Final

NEMO

: $ kubectl get pods -n 12sm-system --context kind-worker-cluster-
NAME READY STATUS RESTARTS AGE
12sm-controller-79f946d5d8-zxdqgk 1/1 Running 0 34m
12sm- controller manager-6dcc4f94d5-t65ng 2/2 Running 2 (32m ago) 34m

- S kubectl get pods -n 12sm-system --context kind-worker-cluster-2
NAME READY STATUS RESTARTS AGE
12sm-controller-79f946d5d8-nv2zd 1/1 Running © 34m
12sm- controller -manager-6dcc4f94d5-4sg5f 2/2 Running 2 (32m ago) 34m

- S kubectl get pods -n nemo-net --context kind-control-plane
NAME READY STATUS RESTARTS AGE
12smmd-coredns-7b9cbfbc5f-9rgwg Running 0 13m
12smmd-idcoprovider-584cdbfc6d-4qngs Running 0 26m
12smmd-server-85dc97858c- jgnpl Running 0 13m

Figure 21 Resources present in the clusters in the PoC

Since we are interested in enabling the management cluster to configure and deploy new components
and K8s resources in the worker clusters, it is necessary to generate the public certificates ofatheir
respective server APIs and the tokens that enable the management for K8s resources infeach ¢luster,
which can be done using the K8s CLI as seen in Figure 22 and Figure 23.

3 $ kubectl get secrets -n nemo-net
NAME TYPE DATA AGE
kind-worker-cluster-1-cert Opaque 1 2m4s
kind-worker-cluster-2-cert Opaque 1 2m4s
: $ kubectl get secret -n nemo-net kind-worker-cluster-1-cert -o yaml
apiversion: vi
data:
cert-value: LSOtLS1CRUdITiBDRVIUSUZIQOFURSOtLSOtCk1ISUMvakNDQWVhZOF35SU3BZOLCQURBTkIna3Foa2lHOXcwQkFRcOZ
BREFWTVINdOVRWURWUVFERXdwCMRXSmwKY201bGRHVNPNQjRYRFRIME LUSXhNakV4TWpNeU5sb1hEVEOWTVRIeE1ERXhNak15TmxvdOzZU
RVRNQKVHQTFVRQpBEE1LYTNWaVpYSnVaWFJIsY3pDQOFTSXdEUV1KS29aSWh2YO5BUUVCQLFBRGANRVBBRENDQVFVQ2dnRUIBTUSVCNFtb
mswZVYzelYWQ2RrRUW4RWIOSUFOQVFOZzI5QkFoSHB4RORUeGFEeUUXZFU4N]LtRjNZe jLETU1BeXZ4NFIKCV1ZVIA2WLZTZ1I1dTI1RD
VWY jdBZULSNFNZT211R1dic3VETTBWCjFFZWtUdm51RF15d1R1b3dtZ3RpR1F1SQpiWHZaRVRreGFOaWZNM1NaeU1SU3EXY29CV243NVp
ab3RmZVQVUUh jcEJCd29WOUXQZOFTYUoOaF LyRmNSeXIyC jRvU1gwVUxydk9IcXc2cFVOen1CU3VIMFpETVhsRWFMWEdJOd3ZpQ3NWNHL1q
SO5pQi9mUGhSSmIXSOtGMOdpQLAKMLdLVk5XKzUyUnY3WUNibkhKaytsekRpd lVmRmMOVMF1PKzJ1TGLlzTX1CUU1VOVN2bmRWAC8ORTVYe
GdvbjVmcgpUQe10Z11hM110VmxsdnNTRTk4QOF3RUFBYUS5aTUZ jdORNWURWU jBQQVFILOIBUURBZOtr TUE4ROEXVWRFAOVCC193UUZNQU
1CQWY4dOhRWURWU jBPQkJZRUZDNEg1UkdkU1BEVGLQSNR3cLdXR1AYY2dsQLINQLVHQTFVZEVRUUSKTUF5QONtdDFZbVZ5Ym1WMFpYTXd
EUV1KS29aSWh2Y05BUUVMQLFBRGANRUJIBSHNh4VVd2 UWM5aWF3NHIDcwpPYnY2ZE4zUzFQcUkyZGRrcnN5cFd6Rk1BekI3bHLHTFRP
OTNrNO51YytOL3hRVEUXMEQrvVzR2a3ZwRGVYdk1BC1Jjc3pZVVdhMmVMMnpwQ2pnUnEvaHlrcOR1ZD1zZCtQeFVBUO9UCOLOMzdWTZFXa
29PMjc3YjduU1dkRFQ4REWKUGP2ZGVXNXN1K2VNOTZIVTFKR3FjZVEWY jI2RGVta1hPR1VUc014QjZXO0UFNWHRLeHISNUCXNTBQTmtUak
9hNQpyUKtKRXVPaXBNbFRzWS9KQk1Rakhna1JISuDdYa®hqaDhFd3hMTmFOZDB5YU41S1J3VOC3WEIYWXZYZkRmaDBOCkO2TOp1R11zbjN
3SmpnNE9meW9BRzd5a2FQa3ZhNXBkQmpob jhpcW80dUV3aHBQYWILcGOUbUVIQWNhOFAITUMKa3EwWPQotLSOtLUVORCBDRVIUSUZIQOFU

creationTimestamp: "2024-12-12T713:13:24Z"
labels:
12sm-cert: kind-worker-cluster-1

name: kind-worker-cluster-1-cert

namespace: nemo-net

resourceVersion: "6955"

uid: 6d63c69e-eced-4b47-a47d-9db97220b7ec
type: Opaque

Figure 22 API endpoint generation

S kubectl create token -n l2sm-system 12sm-controller-manager context kind-worker-clus 1
leyJhbGeioils UZIlNllletD[(ADIMIBYNXJan1MIktazJSdnhﬂb]gSOQVuNil(dolkLVQJLFQY“AlﬂQxUlwalfQ eyJhdWQi01s1aHROCHM6LYIrdWIlem51dGVZLMRZMF1bHQuUC3Z jLMNSAXNOZXI
UbG9 JYHWiXSWiZXhwI JoxNZMOMDEYOTgzLCIpYXQLOJE3MZQWMDKZODMSIMLzcyI6ImhOdHBZO18va3VIZXIUZXRcySkZWZhdWxOLAN2YY 5 JbHVZAGYYLmxvY2FsIiwla3ViZXIuZXRlcy5pbyIseyIuY
W1lc3BhY2U101JsMNNELXNSC3R1bSISInNNLCnZpY2VhY2NvdHSO1jp7 InShbHULOLIsMANELWNVbNRYb2xsZX 1 tbWFuYWd1cils InVpZCI6ImIiZIY1YZLLLTI3NWMENGYYYy1iN2ZILTY30DYXNTIKNGI
5Z139fSwibmImIjoxNzMOMDASMzgzLCIzdWIL01IzeXNOZWOGC2VydmL JZWF J¥291bnQ6bDIzbS12eXNOZWO6bDIZbS1Ib250cmIsbGVYLWIhbmFNZXI1FQ. JgwCI3IAOL1esUhr1ivt5QGazZYrRDYVUL
VYOWEDja__xyEvEdkD2covkFchl6B1YtwlKcqVT8rYrdAog9-7-pTBZx45iKYy-ZepXbwFqwBwikn3dsw-B6a-2kB81JEOu-w8Zylq2oPfRa2VI1jHIMKyEe50Tt0a930rdEAa_ne6Scu7K4BB_79YVsTmV
cb-BA3zLks PISPfABPuthRBhLYD¢U11 I0fsnmfqUQBURZOYKTwoeIyrjywc21B8OKPE8UCIAHCWHGHWVWNCDWQ4UNL - BARV2EQACFWVLdX TVVfPBhLZKlHlDTP4J(nSUH&TZfVEgv4Kv4CKhw0X1Ubw

S kubectl create token -n 12sm-system 12sm-controller-manager -context kind-worker-cluster-
LvJ?bCLlOlJ\U711NlI IntpZCISILZXYnd6HUFFADVBCFKOM3NZNMxqaGlyeGe5b21YeWdFTTFodHNGdWE JTUELFQ. eyIhdwWQLOls laHRﬂcHWvaQ dWIlem51dGy RlZmFleQuL’ZijNadYNOZXI
UbGYFYHWiXSWiZXhwIjoxNzMOMDEYOTgaLCIpYXQi0FE3MzQWMDkzODgs Imlzcy161nhedHBZ018va3ViZXIuZXR1cySkZWZhdHWxBLAN2Yy S jbHYZdGVyLmxvY2 wia3ViZXJuZXRlcySpbyléeyluy
W1lc3BhY2ULOLISMANELXNSC3IRIDSISInNLcnZpY2VhY2NvdW50I Jp7ImShbHULOLISMANTLHNVDbNRYb2XSZXI thW Fu1ndlc\I;In”pZCIoI]Q3ZDN(MZV>LNJ£ZDQ(NCVWZ‘thdeLNVZNZRhH]B“H]k
2M5J9FSwibmImI joxNzMOMDASMZGALCIZdWIL01IzeXNOZWOGC2VydmljZWF jY291bnQ6bDIzbS1zeXNOZWO6bDIZbS1jb250cm9sbGVyLW1hbmFnZXI1fQ. pPV_x0_GIVCtsfzORbDIgBzavZh1HSEITY
y0SIKZNARtDVXSLIL)_QPaNwqU61fTNQCOZAGKSGCQGY - aQoW1xedHHT J8qYu2HSpR7RBOFCK6CGBQZ6 - WsMe Ik IYG2fQ1bQhcdp7 JWgDGK8IBBWIKKNRtPPQX - EMAOVEDKChNmAd7U21 - eAqT JYypZtx_5
kk7f9NRjG3152qmagqPNIAFbISICZSUSESIOF925G5SGOgx16LWa3mW21YoehTKj16Yhtw8I-0VLkw6uZ4S2 SULYp_S4EVOXB5HBDrgztGFvzkok7S_8McTXCOO77sRtLp94kfLMUVBLEMGSLXFLBK-RA

Figure 23 K8s cluster token generation

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 44 of 60
Reference: D2.3 |Disseminqtion: IPU |Version: |1 .0 Status: Final

Once all the elements have been created to enable the management of the K8s resources in the clusters
that are going to be managed by the mNCC component, the system administrator can proceed to create
a slice (i.e., inter cluster overlay that will logically connect both clusters) between both clusters. To do
s0, it is necessary to introduce the API endpoints and the generated tokens to perform a gRPC call, as it
can be seen in Figure 24:

ot (

serverAddress

networkName

providerName

providerDomain

networkType

clusterNamel

clusterName2

clusterBearerTokenl

clusterBearerToken2

clusterApiKeyl

clusterApiKey?2 t

nodelClusterl = ~-cl -ol-plane
nodelCluster2 = ker-cluster-2-control-plan

Figure 24 Configuration file used to create a nemgslice with the L2S-M-md component

With these values, the administrator can proceed{with the creation using the available API in the
manager cluster, which will install both NEBDs and‘the owerlay network (slice) in the managed K8s
clusters as their own resources, as seen in Figure™25:

L Qo rum testfcllent.go --test-slice-create

Creating slice. ..

CreateSlice response: SLL " -5lice” created successTully.

Figure, 25 CLI used to create the slice between the clusters

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 45 of 60
Reference: D2.3 IDisseminqtion: IPU |Version: |1 .0 Status: Final

m
[im

',.-' i _(N E M O

E 3 get
NAME AVAILABILITY CONNECTED_PODS AGE
ping-network Available 23s
E $ kubectl get 12networks --context kind-worker-cluster-2
NAME AVAILABILITY CONNECTED_PODS AGE
ping-network Available 22s
- $ kubectl describe 12networks ping-network --context kind-worker-cluster-2

ping-network

default

<none>

=none=>
12sm.12sm.k8s.local/vl
L2Network

Creation Timestamp: 2024-12-12T13:32:28Z
Finalizers:
12sm.operator.io/finalizer
Generation: 1
Resource Version: 12385
UID: 3b74dfb2-d93f-42b4-9509-c033a704443b
spec:
Provider:
Domain: 172.20.0.2:8181
Name: test-slice
Type: vnet
Status:
Internal Connectivity: Available
Provider Connectivity: Available

Figure 26 L2S-M resources successfully installed ingd@th clusters

After this installation, the mNCC can interconnect NEMO workloads ifi these managed K8s clusters,
which showcases how the new L2SM-MD component can greatlygassist the procedure of setting up the
inter-cluster communication between K8s clusters belonging to a/NEMO infrastructure.

6.3.2 Intent-Based System

In order to showcase the advancements in thedntentsBasedSystem, two different cases will be described.
The purpose of the first one will be to describeshe full intent lifecycle that the IBS follows to translate
an Intent to the specific network techfidlogy. Inithis case it will be using the TFS adaptor. The second
one, will show the integration withthe L2SM component and making use of the cloud continuum intents
for intercluster connectivity.

6.3.2.1 Intent lifecyclSh TRS LZVAPN adaptor.

As explained ingftevious sections and deliverables (4.2.1, [1]), the Intent lifecycle is divided mainly in
classificationfjtranslation and execution. The next logs snippets are part of an execution of the IBS
managingthe requestof a new L2VPN creation in the intent format.

At the veryibeginning, the IBS detects all the intent libraries installed and loads all of them to later be
able te’translate to the different underlying technologies. This phase is divided in two parts: the one
impotting'libraries Figure 27, and the one importing the executioners Figure 28.

intent_engine.core.i ter: [MainThread
intent_engin i rter: [MainThread
intent_engin i ter: [MainThread
intent_engin i ter: [MainThread

Importing from: /home/ubuntu/Repos/gitlab/intent-based-system/intent_engine
module_name: intent_engin alogue.12sm
imported module: <module ‘intent_engine.catalogue.l2sm’ from ' /home/ubuntu/R
module_name: intent_engine.catalogue.nemo

intent_engin i ter: [MainThread
intent_engine.c i rter: [MainThread
intent_engin i ter: [MainThread
intent_engine.core.importer: [MainThread

module_name: intent engine.catalogue.l.

imported module: <module ‘intent engin talogue.12 ' from */home/ubuntu/
module_name: intent_engine.catalogue.tfs_controller

imported module: <module ‘intent_engine.catalogue.tfs_controller® from °/hom

]
]
]
]
intent_engin i ~ter: [MainThread] imported module: <module ‘intent_engine.catalogue.nemo’ from ' /home/ubuntu/R
]
]
]
]

Figure 27 IBS importing libraries

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 46 of 60
Reference: D2.3 |Disseminqtion: IPU |Version: |1 .0 Status: Final

m
[im

',.-' i _(N E M O

[DEBUG - ! intent_engine.core.intent_core: [MainThread] None

[DEBUG - ! intent_engine -i r [MainThread] Importing from: /home/ubuntu/Repos/gitlab/intent-based-
[DEBUG - ! intent engine. -i r [MainThread] module name: intent engine.executioners.sys out

[DEBUG - 14: intent engine.core.i r [MainThread] imported module: <module 'intent engine.executioners.sy
[DEBUG - ! intent engine.core.i r [MainThread] module name: intent engine.executioners.http handler

[DEBUG - 14:18: intent engine.core.importer: [MainThread] imported module: <module 'intent engine.executioners.htd
[DEBUG - ! intent engine.core.importer: [MainThread] module name: intent_engine.executioners.tfs connector
[DEBUG - 14:18: intent engine.core.importer: [MainThread] imported module: <module 'intent engine.ex

[DEBUG - ! intent engine.core.importer: [MainThread] module name: intent engine.executi o
fhome/ubuntuy cal/lib/python3. 18/site-packages/google/protobuf/runtime version.py: : UserlWarning: Protobuf gencod

Figure 28 IBS importing executioners

All the executioners depicted in the previous figure are later available for the different libraries in case
they are required. There is a specific executioner created for debugging purposes called “sys_out”, usgd
to show the output of the intent translation. Any of them can be used at the same time, so at the gnd, the
one handling TFS and the one handling the system out print will be activated. The fact_that this is
possible is showcasing also the flexibility of the architecture and the easy integration gwith different
executioners and libraries depending on the needs of the user.

The next screenshot shows the intent incoming and having a first format elieck./In Figure 29, an arrow
is showing the objectType of the intent, in this case “L2VPN”. It is impottantté remark this because the
intent will be understood as a layer two VPN but not yet as a TFS E2VPN.

24] intent_engine.core.ib model: [MainThread] Schema Type Expectation: <class ‘intent_engine.core.Intenthrm.Newl2VPNIntentExpectation®>

Figure 29 IBS input intent

In the Figure 30, itissshowed how the comparison between the different libraries is traversed, and at the
end, how the IBS is able“to classify the intent as “L2VPN”. This is due to the fact that, in the
classification ttee used, when the system reaches a leave, it means it fully matches all the keywords for
the librafy?

--——-—— Inten
[DEEUG - 1. [MainThread] Keywords: ['cloud continuum’, 'DELIVER®, ‘L2
[INFO - 14] intent_engine.c i o i : [MainThread] cloud_continuum : {"DELIVER": {'L2SM NETWOR
[INFO - 14:18:24] intent _engine. cor : [MainThread] DELIVER : {"L2SM NETWORK': "12 :
[INFO - 14] intent_engine i -« i : [MainThread] L25M NETW
[INFO - 14:] intent_engine.c i ifier: [MainThread]
[DEBUG - 14: ?4] intent_engine.core.i ifier: [MainThread]
[INFO - 14 intent_engine. i o ifier: [MainThread] cloud
[INFO - 14:18:24] intent_engine [MainThread] DELIVER : {"K85 L2 |
[INFO - 14 intent_engine i o ifier: [MainThread] , L2 NETWORK : nemo
[INFO - 14 intent_engine.core.i o ifier: [MainThread] NETWORK_SLICE : nemo
[INFO - 14:18:24] intent_engine e, i o ifier: [MainThread] , CLUSTER_CONFIG : nemo
[INFO - 14 intent_engine. c i ifier: [MainThread] L2_VPN : 1
[DEBUG - 14: . C ifier: [MainThread] g C continuum’, ‘DELIVER'
[INFO - 14 24] intent_engine i o ifier: [MainThread] cloud conmtinuum : {'DELIVER": {'L2VPN':
[INFO - 14] intent_engir : [MainThread] DELIVER 2VPN': "12

[MainThread] L2VPN :

Figure 30 IBS first classification

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 47 of 60
Reference: D2.3 |Disseminqtion: IPU |Version: |1 .0 Status: Final

',.-' i _(N E MO

The shows the IBS passing the intent to the L2ZVPN library. As this library doesn’t generate ILUs (Intent
Logic Units), the library reclassifies the intent (now called sub-intent), into a less abstracted library the
TFS controller one. This step is important to abstract less abstracted libraries from higher ones, this
means that the TFS controller library has no need to be aware of more abstracted L2VPN request, and
the L2VPN must be aware of the specific technology library but not of the full translation to the
technology. The step of reclassifying the intent is done until a library capable of generating an ILU is
executed.

[DEBUG - 14:18
[DEBUG - 14:18
[DEBUG - 14:18:

Figure 31: IBS subintent genegation.

Also, in the reclassification step, the library can make adjustmentsito the intent so that the following
library is able to detect the intent as own. As shownsimpFigure 31 the “objectType” of the intent has
changed. Now the sub-intent is passed through the classification"again and detected as “#fs_controller”
intent.

[MainThread] cloud conmtinuum : {'DELIVER': {'L2VPN_TFS': 'tfs_controller’}}
: [MainThread] DELIVER : {'L2VPN_TFS': 'tfs_controller'}
H [MainThread] L2VPN_TFS : tfs_controller
is leaf : tfs_controller
[DEBUG - 1. intent_engine.core.intent classifier: [MainThread] Keywords: ['cloud continuum', 'DELIVER', "L2VPN_TFS']

[INFO - 14 6] intent_engin e.intent_classif : [MainThread] cloud continuum : REATE": {'5G SLICE FLOW': 'slice 5g'}}
[INFO - 14 56] intent_engine.core.intent classifier: [MainThread] CREATE : {'5G SLI L
6] intent_engine.core.intent_classifier: [MainThread] unique list: ["tfs_contioller']
intent_engine e.intent_classifier: [MainThread] new iter subintept-module: tfs_controller
intent_engine.core.intent_classifier: [MainThread] Module is ilu: <intent_engine.catalogue.tfs_controller.tfs_contn
[DEBUG - 14:36:56] intent_engine.core.intent_classifier: [MainThread] translators iteration ILU: ['tfs_controller']

Figure 32 IBS second classification

Inhe Figure 32, 1t is also shown how now the intent is classified as ILU. From this point, it starts the
tranglation phase. In the Figure 33, it is shown the parsing of the intent, and how it traverses all the
contextsgtargets and expectations.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 48 of 60
Reference: D2.3 |Disseminqtion: IPU |Version: |1 .0 Status: Final

m
[im

',.-' i _(N E M O

Intent translator
[INFO - 1. 24] intent engine.catalogue.tfs controller: [MainThread] Translating TFS connector...
[DEBUG - 14] intent_engine.catalogue.tfs_controller: [MainThread] debug TFS connector...
[DEBUG - 14:18:24] intent_engine.catalogue.tfs_contreller: [MainThread] expectation case DELIVER
[DEBUG - 14::] intent_engine.catalogue.tfs_controller: [MainThread] regquest case obj: objectType="L2VPN_TFS'

contextValueRange), NodeDstContext(contextAttribute="nodeDst", contextCondition="IS EQU contexty

ge="GigabitEthernete/e/8/1'), EndpointDstContext(contextAttribute="endpointDst’, contextCondition="IS EQUAL TO',
ntextValueRang)}, NiNameContext(contextAttribute="niName', contextCondition='IS FQUAL TO', contextValueRang
[DEBUG - 14:1 intent_engine.catalogue.tfs controller: [MainThread] objectctx c contextAttribute="nodeSrc’
[DEBUG - 14:18 intent_engine.catalogue.tfs controller: [MainThread] node_src case

[DEBUG - 14:1 intent_engine.catalogue.tfs controller: [MainThread] params after - wuid': ‘admin’, "s
! ‘GigabitEthernet@/@/6/1", 'bandwidth': "18.8°, 'latency’: : vlan id': 999, ‘circuit_id’

[DEBUG - 14 intent_engine.catalogue.tfs_controller: [MainThread] objectc contextAttribute="nodeDst’
[DEBUG - 14:18 intent_engine.catalogue.tfs_contreller: [MainThread] node dst case
[DEBUG - 14 intent engine.catalogue.tfs contreller: [MainThread
[DEBUG - 14: intent engine.catalopue.tfs controller: [MainThread
[DEBUG - 14 intent engine.catalogue.tfs controller: [MainThread

]

] contextAttribute="endpoint
]

]

[DEBUG - 14:1 intent_engine.catalogue.tfs controller: [MainThread] v

]

]

]

]

contextAttribute="endpoint
contextAttribute= nld*

[DEBUG - 14:1 intent_engine.catalogue.tfs controller: [MainThread contextAttribute="niName"
[DEBUG - 14:1 intent_engine.catalogue.tfs controller: [MainThread
[DEBUG - 14:: intent_engine.catalogue.tfs_contreller: [MainThread
[DEBUG - 14:: intent_engine.catalogue.tfs_contreller: [MainThread

bandwidth case
latency case
url case

Figure 33 IBS tfs_12vpn translation

Finally, when the intent is translated, the library in charge of the translation calls'the executioners needed
to execute the intent. As explained earlier this case shows a first'ene calling “sys_our” () and a second
one to the real “t#fs _connector” ().

[INFO - 14:18:24] intent engine.core.intent core: [MainThread] Ru ng tfs_ connector

Figure 35 IBS "tfs_connector" executioner

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 49 of 60
Reference: D2.3 |Disseminqtion: IPU |Version: |1.0 Status: Final

b
oft

&% NEMO

2l

Now, the executioner starts the proper protocol to create a connection to TFS north bound interface and
makes a request for a new L2VPN connection.

14:]
14:18: 113 onnectionpool: [MainThread] http /
14 intent engine.executioners.tfs_connector: [MainThr eari] = 5|+ tol'en IjIPNTI‘.IPI*.ImI;,fODPaJ'1TI'4HDI
14: i - engi xecuti rs.tf ctor: [MainThread] Data to send: { ["5er.
ce i e status': 1}, "ser endpo_mt ids"

1-GigabitEthernetg; _1'}]—], '5e

‘i [{"action’: 1, ‘custom’: |
ur r._e_-.-'a_'l.ue' face i : ‘ni_name’: |
]/settings’, ' resourre alue': {'sub_interface_index': "nd_| i n:l.namet‘r555555 s
[DEBUG - 14:18:54] urlli onnectionpool: [MainThread] hitp: >.18:80 "POST .
[DEBUG - 14:18:54] urllib3.connectionpool: [MainThread] htt : .165.18:88 "GET ,mebui,.«" HTTP/1.1" 268 18111
[INFO - 14:18:54] intent_engine.executioners.tfs connector: [MainThread] Http response: <!--

Figure 36 IBS http request to TFS

As a result of the process, a VPN service in TFS controller is created. In Figure 37, nOtice how the
service is active on the nodes requested, and in Figure 38, are shown all the details granslated from the
intentContext and the intentTargets specified in the input intent.

Services
1 services found in context adm i
uuiD Name Type End points l/ Status

e35ab28c-5474-5adb-aaf0-7f426ff5d5b6 |12-acl-svc-intent LZNM * 0/0/1-GigabitEfherneiB/0/0/ N\@Pevice: 3.3.3.3 @ ACTIVE

/ * 0/0/1-GigabitEtRemat@/OMBL / Pevice: 5.5.

Figure 37 TFS webui L2VPN Service status

Context: 43813baf-195e-5da6-af20-b3d0922e71a7

Endpoint UUID Name Device Endpoint Type
UUID: £35ab28¢-5474-5adb-aaf0-7f426ff5d5b6
Name: [2-acl-svc-intent 90ee9eb3-0c93-5d9b-BP26-5628cf441517 0/0/1-GigabitEthernet0/0/0/1 jdd3®@
Type: L2NM N 9V
Status: ACTIVE 057h26e8-536f-50c9-9169-cf229812781e 0/0/1-GigabitEthernet0/0/0/1 5555 @
Constraints:
Kind Key/Type Value

Custom bandwidth[gbps] ’) 10
Custom latency[ms]) 15

Configurdtions:

Key Value

Uscttngs e mtu: 1450

/device[3.3.3.3]/endpoint[0/0/1-GigabitEthernet0/0/0/1]/settings e circuit_id: 999
® ni_name: ninametfssssss
2 * remote_router: 5.5.5.5
e sub_interface_index: 0
e vlan_id: 999
/device[5.5.5.5]/endpoint[0/0/1-GigabitEthernet0/0/0/1]/settings e circuit_id: 999
* ni_name: ninametfssssss
* remote_router: 3.3.33
e sub_interface_index: 0
« vlan_id: 999
Connection Id Sub-Service Path
58bfee2b-6b07-49c0-b9b6-16f5ad721b1f 3.3.3.3 @ 0/0/1-GigabitEthernet0/0/0/1 5.5.5.5 @_/ 0/0/1-GigabitEthernet0/0/0/1
Figure 38 TFS webui L2VPN service details
Document name: D2.3 Enhancing NEMO Underlying Technology Page: 50 of 60

Reference: D2.3 |Disseminqtion: IPU |Version: |1.0 Status: Final

m
[im

',.-' i _(N E M O

6.3.2.2 Cloud continuum Intent. L2SM MD connectivity

This section will show how an L2SM network is deployed through an intent coming to the IBS (full
intent on annex 9.2). In the Figure 39, it is shown how the classification step detects the L2SM intent
and calls the L2SM library.

intent_engine.core.intent_classifier: [MainThread] DELIVER : {‘L2WPN TFS': 'tfs_controller'}
[INFO - 1! intent_engine.core.i i [MainThread] L2VPN TFS
[DEBUG - 15:] intent_engimn .1 i MainThread] ['c | NETWORK®, "DELIVER®, °L2SM NEW
[INFO - 1! intent_engine .1 i [MainThread] d i ATE" o *slic 1t
[INFO - 1 intent_engine e.intent i [MainThread] CRI 56 - FLOW®: *

[DEBUG H intent_engin . inten ifi [MainThread] unique list: ['l2sm']

[DEBUG 3 intent engim e, inten i MainThread] new iter subintent module: 12sm

[DEBUG 3 intent_engin . inten i MainThread] Module is ilu: <intent_engine.catalogue. ject at ex7f!
[DEBUG H intent_engine.catalogue. 1 [Mai ad] Generate subintent model type: <class 'intent_gng -ib_model.IntentModel
[DEBUG H intent_engine.core.intent_classifier: [MainThread] translators iteration ILU: ['12sm']

Figure 39: Intent classification. L2SM case.

From this point, the L2SM library is in charge of translating the intent to the corresponding interface
that L2SM expects. The translation is depicted in next Figure 40.

[INFO - 15 intent_engine.core.intent_core: [MainThread] Runnning sys out
-» -» Executing:

[

I
L

"network” :

name" :
'domain’

‘rest_config’: {
‘bearer_token®: (
" eyJhbGciCiJSUzIINITsImtpZC RkSROUSIWUEFRJBTX2 2 WWRSREUIf"
IhdWQi0] 51aHRG d 1 LmNsdX] TubG

IhWE2YeG oj
' DnbdPi0TW7dDAIDY_Sr
)s
‘api_key": ‘https:

': ‘create network’,
*1 "12smmd”,

Figure 40: Final L2SM translation.

Finally, once the translated intent is executed in L2SM, it creates a new Kubernetes intercluster network
as shown in Figure 41, where a Kubernetes command is executed to verify that everything works as
expected.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 51 of 60
Reference: D2.3 |Disseminqtion: IPU |Version: |1 .0 Status: Final

B
JOHHHh

&< NEMO

=

ma-test-1: % kubectl get 12networks --context kind-worker-cluster-1 -A
NAMESPACE NAME AVAILABILITY CONMNECTED PODS AGE

default spain-network Available 2mlgs

Figure 41: L2SM intercluster network active.

6.3.3 Multi-Cluster monitoring and exposure

In order to perform the PoC of the multi-cluster monitoring and exposure, the mNCC components in
charge of monitoring and exposure of the mNCC have been deployed in a scenario with 3 nodes. The
mNCC monitoring and exposure process is explained in section 4, so we will not extend with this
explanation, but it is worth remembering that the monitoring is based on the communication between
pods deployed in each node and then shared with the exposure module through a local Prometheus.
Once the exposure module has those metrics, it formats them and indicates to which cluster they belong
and at what time they have been generated.

For these tests, we have reduced the monitoring and exposure time to 2 minutes (120 secgnds) to show
how the RabbitMQ queue is being updated, although in the joint environment these measuréments would
be hourly (3600s) to avoid saturation in the network and in the metrics queues.

In the process of evaluating the mNCC metrics exposure we must start with the'deploymentef the probes
and the exposure module (Nemex for short) in each cluster, counting on‘a pod of probes per worker
node and a Nemex per cluster. For this proof of concept, we will pecformthe'@valuation on 2 clusters in
parallel.

In Figure 42 and Figure 43 we can see a test run of the monitoringypodsyin which the logs of one of the
probes of each cluster are obtained. These logs show the measufements taken periodically and shared
with the Nemex through an internal Prometheus (Figure 44 shows the format of these logs).

ubuntu@alto-server:~$ kubectl logs -n nemo-net network-probe-daemonset-5grrd

* Serving Flask app 'network_probe

* Debug mode: off
2024-12-12 :18:20,420 Pushing rics to Prometheus on port 5001
2024-12-12 H :
2024-12-12 :18: - rk measurements ...
2024-12-12 72.18
2024-12-12
2024-12-12
2024-12-12 1 2 asured Throughput: 12809.54 Mbps
2024-12-12 :18:22,47 zasured Ene 1691.07 W
2024-12-12 E 47 Time taken for Throughput measurement: 2.0016 seconds
2024-12-12

2024-12-1 : Measured Packet Loss Rate: 0.00%

024-12-1 i1 Time taken for Packet Loss measurement: 2.0378 seconds

Measured Latency: ©.28 ms
Time taken for Latency measurement: 0.0004 seconds

Total time taken for all measurements: 4.0412 seconds

Performing network measurements ...

Target host:
2024-12-12 16:
2024-12-12
2024-12-12

2024-12-12 16:1 6 Measured Packet Loss Rate: 0.00%
2024-12-12 1 ,56 Time taken for Packet Loss measurement: 2.0538 seconds
074-13- 1E.18-21 CEQ . £

Figure 42 Logs from the network probes in the first cluster.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 52 of 60
Reference: D2.3 |Disseminqtion: IPU |Version: |1 .0 Status: Final

ubuntu@nemo-codeco: kubectl logs -n nemo-net network-probe-daemonset-z45xs
ng Flask app 'network_pro

INFO Push rics to Pr s on port 5001.
INFO = = = = = =
INFO forming network measur
INFO Target host:
INFO Target port:
- 11 INFO - =
2024-12 4 4 INFO - sured Throughput 891.87 Mbps
2024-12 :14:04 INFO - Measured Energy: 1965.62 W
2024-12 4 INFO - Time taken for Throughput measurement: 2.0011 seconds
& INFO - -
2024-12 4 INFO E te: 0.00
2024-12 :14:0 INFO Time taken for Packet Loss measurement: 2.0270 seconds
2024-12 6 INF(mme=- L L
2024-12 4 INFO Measured Latency: 0.11 ms
2024-12 4 INFC Time taken for Latency measurement: 0.0002 seconds
24-12-12 - INFO - = =
-12-12 5 2 INFO - 4.0295 seconds
24-12 4 INFO
-12
-12 ,983 Performing network measurements
24-12 :14:09,983) Target host: 2.1
-12 99, FC Target port: 86
-12 H 3
24-12-12 L . F(Measured Throughput: 18461.14 Mbps
-12-12 :14:11, Measured Energy: 2437.24 W
-12-12 ' F Time taken for Throughput measurement: 2.0013 seconds
-12)
Measured Packet Loss Rate: 0.00
Time taken for Packet Loss measurement: 2.8543 seconc

Measured Latency: 0.14 ms
Time taken for Latency measurement: 0.0002 seconds

Total time taken for all measurements: 4.0575 seconds
Waiting 120 seconds for next measur

Performing network measurements
Target host: 2

202 7,194 C Target port: B0
2024-12-12

ubuntu@alto-server :5001/metrics
HELP python_gc s_collected_total Objects collected during gec
TYPE python_gc_objects_collected_total counter
python_gc_objects_collected_total{generation
python_gec_objects_collected_total{
python_gc_objects_collected_total{generation .
HELP python_gc_objects_uncollectable_total Uncollectable objects found during GC
TYPE python_gc_objects_uncollectable_total counter
python_gc_objects_uncollectable_total{g
python_gc_objects_uncollectable total{genera
python_gc_objects_uncollectable_total{genera =
HELP python_gc_collections_total Numb eneration was collected
TYPE python_gc_collectior
total{
ons_total{c
tions_total{g i
HELP python_info Python platform
#T /thon_info gauge
ython_info{ implementat ion="CPython",maj *,mino
HELP process ual_memory_bytes Virtual memory size in bytes.
TYPE process_virtual_memory bytes gauge
ocess_virtual_memory_bytes 4.87686144e+08
HELP process_resident_memory bytes Resident memory size in bytes.
TYPE process_resident_memory_bytes gauge
process_resident_memory_bytes 8.7719936e+07
4 HELP process_start_time_seconds Start time of the process since unix epoch in seconds.
TYPE process_start_time_seconds gauge
process_start_time_seconds 1.734 e+09
HELP process_cpu_seconds_total Total user and system CPU time spent in seconds.
TYPE process_cpu_seconds_total counter
process_cpu_seconds_total 40.01
HELP process_open_fds Number of open file descriptors.
TYPE process_open_fds gauge
process_open_fds 7.9
HELP process_max_fds Maximum number of open file descriptors.
TYPE process_max_fds gauge
process_max_fds 1.048576e+06
HELP network_metric_throughput Network Metric for throughput (Mbps)
TYPE network_metric_throughput gauge
network_metric_throughput{current_node="kind-worker",remote_i ,remote_node:
network_metric_throughput X kind-worker",remote_i 2 0.4",remote_node:
HELP network_metric_Llink_energy Energy consumption (W
ind-worker", remote_1ip: 8 remote_node=
i _Link_energy{current_node="kind-worker",remote_ip 8 ,remote_nod
HELP network_metric_packet_loss Network Metric for packet loss (percentage)
TYPE network_metric_packet_loss gauge
network_metric_packet_los r ind-worker",remote_ip=" remote_nod ind-control-plane”} 0.0
rk_metric_packet_loss{current_node: ind-worker",remote_ip=" remote_nod ind-worker2"} 0.0
HELP networ ric_latency Network Metric for latency (ms)
TYPE networ
networ _latency{curr < c X 7 ", remote_node="kind-control-plane"} 0.58
network_metric_latency{current_t ", remote_node: ind-worker2"} 0.38
HELP network_metric_Llink_failure Link
TYPE network_metric_link_failure gauge

Figure 44 Metrics saved in the internal Prometheus in the first cluster.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 53 of 60

Reference: D2.3 |Disseminqtion: IPU |Version: |1.0 Status: Final

L oy
T i

éls NEMO

In order to show this last capture, we have performed a port-forwarding to the host system, since this
service is only exposed within the nemo-net network, so that other systems or users cannot access them
autonomously.

In parallel, the Nemex component performs periodic queries to this Prometheus, and integrates the
metrics together with the information of the cluster and the time when the exposure is performed. In this
way, the components that require this information will be able to access it.

In Figure 45 we can see how from RabbitMQ we can see the pushes to the mncc_cmv queue (mNCC
Cost Map Vectorial), where at the beginning we have a series of short peaks and after a while more
elongated peaks appear. This is due to the fact that, at the beginning, only one cluster was launched, but
when testing with several clusters, they started to send the metrics slightly out of sync. Also, in the upper
part of the figure, the logs are shown from the two Nemex pods. Reading the first lines it is possible'to
check that the upper-left window shows the “kind-kind” cluster and the upper-right the “kind<kind-2¥
cluster. These clusters were launched in two different devices in the same lab, in order 40"¢heck*the
correct behavior of the multi-cluster monitoring and exposure functionality.

2'}
Link

UNREGISTERED VERSION

Refreshed 2024-12-12 18:31:42 | Refresh every 5 seconds v

H: Ra b b ”\ RabbitMQ 3.12.13 Erag@6.2. 88 Virtual host | All v
Cluster nemo-rabbitmq
L] Overview Connections Channels (BXehanges Admin User nemo-user

dai N ' Total | W 1,407

1 1 jA8:30
M age rat: last hour 2
) | v Publish 0.00/s
17. 17:50 800 18 8

Figure 4% Onighe top, the logs of two Nemex components deployed in two clusters. In the bottom, the RabbitMQ
updates.

These metrics in turn are accessible by the Meta Orchestrator and CF-DRL components to make
decisions having knowledge of the state of the monitored network.

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 54 of 60
Reference: D2.3 IDisseminqtion: IPU |Version: |1 .0 Status: Final

/ Conclusions

&8s NEMO

This document reports the final outcomes of the components developed in Work Package 2, namely the
CMDT, the CF-DRL and the mNCC. It also includes details on the TSN capabilities integrated on the

NEMO edge-cloud continuum for satisfying specific use cases requiring time-sensitive behavior.

This deliverable summarizes the progress of the developments, the integration aspects with respect other
components of the NEMO stack, as well as provides exemplary details of the functional behavior of the

components.

Final integration efforts will be reported in deliverables from other work packages when requirede

Document name: D2.3 Enhancing NEMO Underlying Technology

Page:

55 of 60

Reference: D2.3 |Dissemination: [PU [Version: [1.0

Status:

Final

&3¢ NEMO

References

[2]

[3]

X2

N. w. partners, "NEMO_D2.2-Enhancing-NEMO-Underlying-Technology v1.1.pdf," [Online].
Available: https://meta-os.eu/wp-content/uploads/2024/09/NEMO_D2.2-Enhancing-NEMO-
Underlying-Technology v1.1.pdf. [Accessed 15 10 2024].

"ETSI TeraFlowSDN Alignment With TIP OOPT MUST Requirements | TeraFlow," [Online].
Available: https://www.teraflow-h2020.eu/publications/etsi-teraflowsdn-alignment-tip-oopt-
must-requirements. [Accessed 1 12 2024].

R. V. (. R. M. (. Pol Alemany (CTTC), "D4.1_Preliminary evaluation of TeraFlow secufity, an
B5G network integration," [Online]. Available: https://
h2020.eu/sites/teraflow/files/public/content-

files/deliverables/D4.1 Preliminary%?20evaluation%200f%20TeraFlow%20. y %20

B5G%20network%?20integration.pdf. [Accessed 5 11 2024].

B.W.a.D.D.a.R. R.a. T. S. a. J. Mullooly, "A YANG Data Model e 9543 Network
Slice Service," IETF, no. draft-ietf-teas-ietf-network-slice-nbi-ya 2024.

J. Ramseyer, "Peering APL," IETF drafi, no. draft-ramse row-peering-api-00, 2024.

T. L. S. H. Y. Rekhter, "A Border Gateway Protocol 4 -B," Draft standard, no. rfc4271,
2006.

G.D.a.C.F.a.K. T.aaM.C.a.D.B . , "Border Gateway Protocol - Link State
(BGP-LS) Extensions for Segment Rou er (SRv6)," RFC editor, no. RFC 9514, 2023.
"ETSI Software Developm roup lowSDN - SDG TFS," [Online]. Available:

https://tfs.etsi.org/news/2§3 20¢teraflowsdn release 21/. [Accessed 1 12 2024].

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 56 of 60

Reference: D2.3 |Dissemination: [PU [Version: [1.0 Status: Final

&8s NEMO

92 Annexes

9.1 TFS interface and example intent

TeraFlowSDN controller input (python function) for descriptor file. L2ZVPN creation request.
vpn_descriptor={

"services": [
{"service id": {
"context_id": {"context uuid": {"uuid": self. params['context uuid']}},
"service_uuid": {"uuid": self. params['service uuid']} },
"service type'": 2,

"service_status'": {"service status": 1},

"service_endpoint_ids": [

{"device id": {"device uuid": {"uuid": self. params['node src'l}}, "endpoi
"+self. params['endpoint_src']}},

{"device id": {"device uuid": {"uuid": self. params['node dst'] e 01

'0/0/1-

"uuid": "0/0/1-
"+self. params['endpoint_dst']}}

I8

"service_constraints': [

{"custom": {"constraint_type": "bandwidth[gbps]", "constrain arams['bandwidth']} },

{"custom": {"constraint_type": "latency[ms]", "constraint_valu arams|'latency']} }

I8

"service_config": {"config_rules": [

{"action": 1, "custom": {"resource | urce value": {

s
{"action"s#"1, "custom": ource_key": "/device["+self. params['node_src'T+"])/endpoint[0/0/1-
"+self. params['endpoint_src'+"]/settings", "resouree value": {
"ni_n; s['ni_name'],

dpoint_dst']+"]/settings", "resource_value": {

i elf. params['circuit_id'],
¢ router":self. params['node dst']
3
{"action": 1, "custom": {"resource key": "/device["+self. params['node dst']+"])/endpoint[0/0/1-
"+self. am

"sub_interface index": 0,
"ni_name":self.__params['ni_name'],
"vlan_id": int(self.__params['vlan_id']),
"circuit_id": self.__params['circuit_id'],
"remote_router":self. _params['node_src']

1)

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 57 of 60
Reference: D2.3 |Dissemination: [PU [Version: [1.0 Status: Final

&8s NEMO

mNCC Intent: L2VPN request.

Intent:

id: 'new_intent_2'
userLabel: 'cloud_continuum'
intentExpectations:

- expectationld: 'l
expectationVerb: 'DELIVER'
expectationObject:

objectType: 'L2VPN'
objectlnstance: 12vpn_tfs_1'

objectContexts:

- contextAttribute: 'nodeSrc'
contextCondition: 'IS_EQUAL_TO'
contextValueRange: '3.3.3.3" O

- contextAttribute: 'nodeDst'

contextCondition: 'IS_EQUAL_TO'
contextValueRange: '5.5.5.5"
- contextAttribute: 'endpointSrc'
contextCondition: 'IS_EQUAL_TO'
contextValueRange: 'GigabitEthernet0/0/0/1'
- contextAttribute: 'endpointDst'
contextCondition: 'IS_ EQUAL_TO'
contextValueRange: 'GigabitEthernet0/0/0/1'
- contextAttribute: 'vlanld'
contextCondition: 'IS_EQUAL_TO'
contextValueRange: '999'

- contextAttribute: 'niName'

contextCondition: 'IS_EQUAL_TO'

contextValueRange: 'ninametfs'
expectationTargets:
- targetName: 'bandwidth'
targetCondition: 'IS_ EQUALETO _THAN'
targetValueRange: 10.0 \

- targetName: 'late

N'

intentContexts:
- contextAttribute:' NEMO_WORKLOAD'
contextCondition: 'I[S_ EQUAL_TO'
contextValueRange: 'cbcb208a-d535-434b-bb35-217a64bd516b'
intentPriority: 1
observationPeriod: 60

intentAdminState: '"ACTIVATED'

Document name: D2.3 Enhancing NEMO Underlying Technology Page: 58 of 60

Reference: D2.3 |Dissemination: [PU [Version: [1.0 Status: Final

9.2 L2SM example intent

&8s NEMO

mNCC Intent: L2SM network request.

Intent:
id: 'mncc_12sm_1'
userLabel: 'cloud_continuum'
intentExpectations:
- expectationld: 'l"
expectationVerb: 'DELIVER'
expectationObject:
objectType: 'K8S_L2 NETWORK'
objectInstance: 'spain_network'
objectContexts:

- contextAttribute: 'name’'
contextCondition: 'IS_EQUAL_TO'
contextValueRange: 'spain_network'

- contextAttribute: 'providerName'
contextCondition: 'IS_EQUAL_TO'
contextValueRange: 'uc3m'

- contextAttribute: 'domain’

contextCondition: 'IS_ EQUAL_TO'

contextCondition: 'IS_EQUAL_TO'
contextValueRange: 'http://192.168.165.168:8080'
- expectationld: 2'
expectationVerb: 'DELIVER'
expectationObject:
objectType: 'K8S_CLUSTER_CONFIG'
objectlnstance: 'spain-network' $

objectContexts:
- contextAttribute: 'nan
contextConditio AL T
cf

orker-cluster-1'

» EQUAL_TO'
ange: 'eyJhbGceiOiJSUzIINilsImtpZCl6Iktrd1hiRkORWGZBVKFVWUS82RKS ...
extCondition: 'IS_EQUAL_TO'
contextValueRange: 'https://172.18.0.3:6443'
expectationContexts:
- contextAttribute: 'k8s 12 network'
contextCondition: 'IS_ EQUAL_TO'
contextValueRange: 'spain-network'
- contextAttribute: 'url'
contextCondition: 'IS_ EQUAL_TO'
contextValueRange: 'http://192.168.165.168:8080'
intentContexts:
- contextAttribute: NEMO_WORKLOAD'
contextCondition: 'IS_EQUAL_TO'
contextValueRange: 'cbcb208a-d535-434b-bb35-217a64bd516b'

contextValueRange: '172.18.0.2' ;
expectationContexts:
- contextAttribute: 'url' Q

Document name: D2.3 Enhancing NEMO Underlying Technology

Page:

59 of 60

Reference: D2.3 |Dissemination: [PU [Version:

[1.0

Status:

Final

&8s NEMO

intentPriority: 1

observationPeriod: 60

intentAdminState: 'ACTIVATED'

Document name:

D2.3 Enhancing NEMO Underlying Technology

Page:

60 of 60

Reference:

D2.3 |Dissemination: |PU [version: [1.0

Status:

Final

