&35 NEMO

Next Generation Meta OQperating S

D4.2 Advanced NEMO platfo boratory
testing results. Initi ion

Document Identification
Status i W Due Date 30/11/2024

Version ' Submission Date 18/12/2024

A\
Related WP W ‘— Document Reference D4.2
Related oD1.2, D1.3, Dissemination Level (*) PU
Deliverable(s)
Lead Participant Lead Author Dimitrios Skias (INTRA)
Contributors , , Reviewers Panagiotis Karkazis
AEGIS, SPACE, (MAG)
ATOS, MAG, ENG,
ESOFT, SU

Ignacio Prusiel (ATOS)

Integration, Validation, API, SDK, Lifecycle Management, Migration Controller, Automation

Disclaimer for Deliverables with dissemination level PUBLIC

This document is issued within the frame and for the purpose of the NEMO project. This project has received funding from the European
Union’s Horizon Europe Framework Programme under Grant Agreement No. 101070118. The opinions expressed and arguments employed
herein do not necessarily reflect the official views of the European Commission.

The dissemination of this document reflects only the author’s view, and the European Commission is not responsible for any use that may be
made of the information it contains. This deliverable is subject to final acceptance by the European Commission.

This document and its content are the property of the NEMO Consortium. The content of all or parts of this document can be used and
distributed provided that the NEMO project and the document are properly referenced.

Each NEMO Partner may use this document in conformity with the NEMO Consortium Grant Agreement provisions.

(*) Dissemination level: (PU) Public, fully open, e.g., web (Deliverables flagged as public will be automatically published in CORDIS project’s
page). (SEN) Sensitive, limited under the conditions of the Grant Agreement. (Classified EU-R) EU RESTRICTED under the Commission
Decision No2015/444. (Classified EU-C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified EU-S) EU
SECRET under the Commission Decision No2015/444.

Document Information

&8¢ NEMO

List of Contributors
Name

Partner

Enric Pere Pages Montanera ATOS
Rubén Ramiro ATOS
Ignacio Prusiel ATOS
Matija Cankar COM
Dimitrios Skias INTRA
Panagiotis Karkazis MAG
Astik Samal MAG
Nikos Drosos SPACE
Emmanouil Bakiris SPACE
Antonis Gonos ESOFT
Theodore Zahariadis SYN
Terpsi Velivassaki SYN
Spyros Vantolas

Hassane Rahich

Document History
Version ‘ Date

Change editors

Changes
ToC

Updates in ToC and initial input

Updates in section 1,2 and 4

N, ATOS, AEGIS, ESOFT

Updates in section 3 and 4

INTRA, MAG

Updates in section 1 and 2

SYN, ATOS, AEGIS, ESOFT

Updates in section 3

INTRA, ATOS, AEGIS, SYN,
COM

Updates in section 4, conclusions and
introduction of Annex A & B

6/12/2024

INTRA

Document consolidation; Peer-review ready
version

13/12/2024

INTRA, MAG, ATOS

Document consolidation: Peer-review
comments addressed

0.91 17/12/2024 |INTRA Final version ready
1.0 18/12/2024 | ATOS Format review and submission to EC
Quality Control

Role Who (Partner short name) ‘ Approval Date
Deliverable leader D. Skias (INTRA) 17/12/2024
Quality manager R. Valle Soriano (ATOS) 18/12/2024
Project Coordinator E. Pages (ATOS) 17/12/2024
Document name: :34:2 Advqnced NEMO platform & laboratory testing results. Page: 2 of 146

nitial version
Reference: D4.2 |Dissemincxtion: IPU |Version: |1 .0 Status: FINAL

\

&3 NEMO

Table of Contents

Document INFOIMAtIONooueeiiiiieieiee ettt ettt b et e et e b e bt et e sbeeaeenees 2
TaADIE OF COMEENLSeeeutieiieeeie ettt ettt e h e e h e et et et et e bt e sbeesatesabeeateenteebeesbeesneesaneeane 3
LSt OF TADLES ...ttt sttt ettt b et e bt et et e ebt e e e bt eat et eae et e e bt et e nteententen 6
LSt OF FIGUIES ...ttt ettt et et h e sh e et e bt et e bt e bt e sbeeshtesateeateenteebeesbeesneesnseeaee 9
LISt OF ACTOMYINIS .. eeuvieiieiieiiieteeieesttesteseteesteeste e taesseesseessseasseesseesseesssessseasseessaessaesseenssessseasseessesnsesssees 12
EXECULIVE SUIMIMATY ...coutiriiriiiiiiieeiinieetenie ettt sttt ettt st eat e st eatestesbeebesbeesnensesveensesuesasensesseensens o Blinene 14
I INETOAUCLION ...ttt ettt sttt eate e st et e sveeneeneesseeneesdhneeneeesdheene 5
1.1 Purpose of the dOCUMENL...........ccovieiiiiiiieieerieerieeieeie e seesereseeeseesee s s othee ool oo ssbonenes 15
1.2 Relation to other project Work.........ccocooeeiieniniiiininiineeeneeeecee e sl e el e 15
1.3 Structure of the dOCUMENLocuiiuiiiieieieiieee e ane et BBt 15

2 NEMO Integration, Validation & Verification approach and toolS........a0c....ieeenenennenenicncneenne 17
2.1 NEMO CI/CD Environment & TOOIScccerereerererees B i 17
2.1.1 OPEN SOUICE TEPOSIEOTY ...nveuvreureeeenrenissumasseseensotlonrententeententeestenseeieentesbeesestesseensenseenee 17
2.1.2 NEMO Automated Deployment and Configuration.............c.cceeeveeevveveereervenvenneenens 18

2.2 Cloud/Edge/IoT Integration and Validation InfrastruiCturecoouevveeeerinenenenieneneieeene 23
2.2.1 OneLab Clusters for NEMO ...o.....affl oot 23

2.3 Integration & V&V MethodOlogy. & Planccccoieiiiiiiiiininieeieecseseeee e 31
2.4 NEMO OneLab infrastructuréideploymentsccvevvierierieiieeiierieeseeseeseesnesressneeeeesenesenas 33
2.5 NEMO IntegratedPIatformiVer. 1)ccooieeiieieeieeteee ettt 34
2.5.1 Meta-OS functionality in NEMO V1 c...oooiiiiiiiiiiiciicieceeeeete e 36

3 NEMO Service Management Layer UPAAtEScccveeveeriecrieriierieeieenieereesreesieesseessnesssessseessessssesenes 38
3. Ldntent-based Migration COntroller..........c.cooiiiiiiiriiiiniiiieieieeteeeeteee et 38
3.1 OVEIVIEW ..ttt ettt e et e e et e e st et eseeene et e eat e eeeseentenseeneensesseenseeseeneenseeneenes 38
32 ATCRITECIUTE ...ttt ettt ettt ettt et et e s bt e satesatesnteenteesseessnesnnenns 38
3.1.3 Interaction with other NEMO COMPONENLS........ccververreeriarieniieniieieesreereesreesieesnees 40
3.14 INIHAL TESUILS ..ottt ettt st st eateesteesreesnneens 41
3.1.5 Conclusion and roadmMapccceeveerieiieiiiieireeree e ere ettt esteeseaesaeeseeseessaessnenes 42

3.2 Plugin & Applications Lifecycle Managerccccocevereriieninienineeieneeeee et 42
3.2.1 F N 11T 1 (<SSR 42
322 LIfeCyCle IMANAZETeevieeeieeieeiieiterite ettt ettt ste e be et et e sseeseaeseaeenseenseessaesnnenns 43
323 Interaction with other NEMO COMPONENLS........cceeiierieirierieniieniienieeereereesreesieesenens 45
3.24 INTEHAL TESULLS ..ttt ettt 47
3.2.5 Conclusion and roadmMapccceevveerieiieeiieerie e eee e ere ettt esteeseeesreereereesraesenenes 48

3.3 Monetization and Consensus-based AcCOUNtabIlItYccovievieiiiiiiiiieeneenie e 48

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 30f 146
Initial version

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status: FINAL

Document name:

3.3.1 OVEIVIEW ..ttt ettt ettt ettt ea et bt et e s bt et e et e s bt et e ebees e e bt e st et e sbeetesbeeseensesneenes 48
332 ATCRITECIUIE ...ttt et ettt e bt e sat e st e et e ebe e s bt e saeesaeeens 48
333 Interaction with other NEMO COMPONENLES.........cccvieecriieriieiiieeiieeeiieeeieeeeveeereeesevens 49
334 INTEHAL TESUIL. ...ttt sttt 51
3.3.5 Conclusion and r0AdMAPcccvieiiiieiiieciie ettt e e e e e sr e e e aeeesaree s 71

3.4 Intent-based SDK/APTooi ettt 72
341 OVETVIEW ...ttt ettt ettt ettt s at e et e bt e bt e s bt e sat e e be e bt e bt aabtesaeesateenteenbeesseesaeenns 72
342 ATCRITECTUTE ...ttt ettt et a et s bt et s bt e e s be et e b enes 72
343 INItial TESUILS ..ot s T %,
344 Conclusion and ROAAMADccveriiiririiiiiiieieeee ettt anne e e e eseaesn e 77

4 NEMO scenario-driven verification & 1results..........ccoeoeevieeneeniienieeieeieeseene B0 79
4.1 NEMO CIUSEr re@IStrationccvveerriereerrerresreereesseesseesseesseessesssesifieseesttessatineeseesseesseesssessnes 79
4.1.1 Verification SCENATIO.eevueererrieeieeiieerieenieeneeeeneee e ee B e e e eeteeeeeeteeeeesteesseeseeens 80
4.1.2 RESUILS ..o BB ettt 81
4.1.3 Verification summary checklist..........cooveei it e 85

4.2 NEMO workload registration, deployment & proviSioning............ccoeeveeeererenerereneneeeereeenne 85
4.2.1 Verification SCENATIO.......ee.eer it et ettt ettt et n e eeseee e stessee e beeneeeeeneenes 88
422 RESUILS ..t B ettt ettt ettt st et e st e b e saeeeaeeeas 89
4.2.3 Verification summary ChecKlist ilcocviiieciiieiece e 103

4.3 NEMO workload migration fi..... ... deeererieneneeienieetenteeit ettt ettt ettt s 104
43.1 VerifiCatiOMISEENATIO ... eeueeeeeeieeeeteeiesteeeteteeteeee et eneeeeseeeneesteeseeteeseeneenseeneeneesseeneas 104
432 RESULLS ookt ettt ettt b ettt et et te et st eeabe e beeneenes 105
4.3.3 Verification'summary ChecKlist.........cccvevvvireiieciiiiieieriece e 109

4.4 NEMO waorklead lifecycle management..........c.oouerueieiriiinineneniesieieeeieeiesee e 109
4.4.1 Process diagram............couiiiiiiiiiiieieiecece et st 109
4.4.2 VerifiCation SCEMAIIO........eevuiiriieiietietieeieete et et et testtesateeteeteesteesseesneesnseenseenseenees 110
443 RESUILS ...ttt sttt et neeneas 111
4.4.4 Verification summary checklist.........cccocoviiiiniiiininiieeeeeeen 118

5 CONCIUSIONS ..uentieutenieetiete et e ettt e e s te et e et e s et s et e e et e estenseeseeneeeseeneeseeseemseeseentanseeneenseaseeneensesneansens 119
0 RETETEIICES ...ttt ettt et et e se e et e s et et e se e st eneesseeneenseeneeneeas 120
7 Annex A — MOCA API & data MOdEIS........cceevuiiiiiiiiiiieiieeieee ettt 121
7.1 MOCA Data MOAEIS.......eeiiieieieieeiieeeiee ettt ettt et e st eesteestenseeneensesneeneenees 121
7.2 MOCA APIL @NAPOINES......oiiiieiieiieiiesieeeieete et ettt e sieestestesbeeseesseessaesseesssessseesseessaesssesssennns 123
7.2.1 GET /api/v1/acCOunting @VENLS........ccvveriereeiieereeireesteesresreereereeseesseesssesssessseensens 123
7.2.2 DELETE /cluster/delete/{id}cccerirriiriieiieieere ettt 124
7.2.3 POST /CIUSTEI/TEEISIET ... vecvreeereeieeieeeteeeireeereereeveeteesteestreebeebeesteestaesasessseensesssesnses 124

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 4 0f 146
Initial version

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status: FINAL

Document name:

7.2.4 GET /CIUSEEI/TELIIEVE ..ottt sttt sttt st e e eneas 125
7.2.5 GET /cluster/retrieve/ {id}coovieiiiieiieeciee ettt 126
7.2.6 PUT, PATCH /cluster/update/{id}ccceeeviiiiiiieiieeciie et 126
7.2.7 POST /nemo_token esStimation SETUP.........cceecveerreerieereerreesieesieesieeseessnessreesseesseenens 127
7.2.8 GET /nemo_token setup retrieve/{region}ccooceeveenienieeieeieieesceree e 127
7.2.9 GET /NeMO_USET N0 ...veeeiieiieiieiieiiesite et ee ettt sae s re e saeseaesenessseensees 128
7.2.10 GET /WOrKload/TeIIIEVE ..ottt ettt st 128
7.2.11 GET /workload/retrieve/ {id}ccoveviirierieiieeie ettt s 128
7.2.12 GET /workload computations/{id}cceceerueriieninneinieiieeeeeeeece e o 129

8 Annex B — Intent-based API & data modelsccooeeieiiiiiiiininiieeeee s b 130
8.1 NEMO Intent-based APL........ccooieiiiiiiiiiieeeeeeeeeeeeste e S e s e 130
8.2 Intent-API data MOdelscooeeiuiriiiiiieeee e e e 130
8.3 Intent-based AP endpoints.........coceevereerienenieninenreeneneeneenesifione e e ettt 138
8.3.1 POST /api/v1/auth/IO@INcccvieevieiieriieriiersnereess fhifereereeraereeseesseesseessesssessses 138
8.3.2 POST /api/v1/auth/1ogOut/cooverieniiniien e ot et 138
833 POST /api/v1/CluSter/TEZISLEI/vevoliie i ettt 138
834 GET /api/v1/CluSter/TetIIEVE/ .ol . o e eseee ettt eie ettt et e e ere e re e e aesebessseenseas 139
8.3.5 GET /api/v1/cluster/retrieve/fAd/ccoiriririiiieiiieeseseeeee s 139
8.3.6 GET, POST /api/VIANTEN/ ... ettt ve e saa e eneseneenne s 139
8.3.7 POST /api/v1/intent/template/ccooeveereneiiiininieeneeeeseeee et 140
8.3.8 GET /api/VIARLENE/LYPES/oeceveeerieerieieesite ettt ere et esteesieesve e eveesbaessaessaessnessseenseas 140
8.3.9 PUT/api/y 1/intent/ {id}/action/cccoeeieviiniriiniinieieneeiesiesiteeese et 141
8.3.10 PUT /apl/v IAntent/ {id ATt/coveveeeireeriereeieetiesieere ettt sere v esve e 141
8.3.1l GET,POST /api/v1I/Workload/cccceceeririininiiieniiiieicneeeeese e 141
8.3.12 List or Create a new workload document(s) (POST)ccceeevveriecrievienieniecreereennn 142
8.3.13 GET /api/v1/workload/INStance/ccoeveeriereirieninienineeieseeeee st 142
8.3.14 PUT /api/v1/workload/instance/{instance id}/delete/c.ccceerievrierieveenrenvneannnn 143
8.3.15 GET /api/v1/workload/instance/{instance _id}/manifests/c.cccocerveerenernuenennee. 143
8.3.16 POST /api/v1/workload/upload/ccceeeeriiiiieiniieiieciecie et 143

Document name:

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 50f 146
Initial version

Reference:

D4.2 |Disseminqtion: |PU |Version: |1.0 Status: FINAL

List of Tables

&3¢ NEMO

Table 1: NEMO dev cluster (K8S)
Table 2: Staging 1 cluster (K8S)
Table 3: Staging 2 Cluster (K3S)
Table 4: Production Cluster (k8S)

Table 5: The NemoTokenEstimation smart contract details
Table 6: The NemoFunds smart contract details

Table 7: The InfrastructureOwnerModel smart contract

Table 8: The ServiceProviderModel smart contract

Table 9: Checklist for cluster registration scenario

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:
Table 43:
Table 44:
Table 45:
Table 46:
Table 47:
Table 48:
Table 49:
Table 50:
Table 51:

Checklist for workload registration, deployment and provisioning scenario
Test 3 - NEMO workload migration

Checklist for Test3 - NEMO workload migration

Checklist for Test4

MOCA AccountingEvents Data Model

MOCA ClusterResources Data Model

MOCA ClusterState Data Model

MOCA Workload Data Model

MOCA IPFS Handler Data Model

MOCA WorkloadComputeTokensEvents Data Model

MOCA UserSmartContracts Data Model

MOCA NemoTokenSetup Data Model

GET Accounting Events responses

DELETE Cluster responses

DELETE Cluster parameters

REGISTER cluster parameters

POST Cluster responses,

GET cluster parameters

GET Clusters responses

GET Cluster with D parameters

GET Cluster with ID responses

PUT, PATCH Cluster parameters

PUT,"PATECH Cluster responses

POSTI Region Costs responses

GET Region Costs parameters

GET'Region Costs responses

GET user information responses

GET workoads' details responses

GET workoad's details parameters

GET workload’s details responses

GET workload computation details parameters

GET workload computation details responses

Data model description: AuthToken

Data model description: ClusterRegister

Data model description: Clusterlpfs

Data model description: Cluster

Data model description: Context

Data model description: ExpectationObject

Data model description: ExpectationTarget

Data model description: IntentExpectation

Data model description: Intent

Data model description: ContextInput

25

27

29

30

54

59

61/

66

85
103
105
109
118
121
122
122
122
122
123
123
123
124
124
124
125
125
125
125
126
126
126
126
127
127
127
128
128
128
128
129
129
130
130
130
130
131
131
131
131
132
132

Document name:

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version

Page:

6 of 146

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status:

FINAL

Table 52:
Table 53:
Table 54:
Table 55:
Table 56:
Table 57:
Table 58:
Table 59:
Table 60:
Table 61:
Table 62:
Table 63:
Table 64:
Table 65:
Table 66:
Table 67:
Table 68:
Table 69:
Table 70:
Table 71:
Table 72:
Table 73:
Table 74:
Table 75:
Table 76:
Table 77:
Table 78:
Table 79:
Table 80:
Table 81:
Table 82:
Table 83:
Table 84:
Table 85:
Table 86:
Table 87:
Table 88:
Table 89.
Table90:
Table' 91 .
Table 92:
Table 93:
Table 94:
Table 95:
Table 96:
Table 97:
Table 98:
Table 99:
Table 100:
Table 101:
Table 102:
Table 103:
Table 104:
Table 105:
Table 106:

Data model description:
Data model description:
Data model description:
Data model description:
Data model description:
Data model description:
Data model description:
Data model description:
Data model description:
Data model description:
Data model description:
Data model description:
Data model description:
Data model description:
Data model description:
Data model description:
Data model description:
Data model description:
Data model description:
Data model description:
Data model description:

POST authorization logout responses
POST cluster registration responses

POST cluster registration parameters
GET cluster retrieve responses
GET cluster retrieve (id) responses
GET cluster retrieve (id) parameter
GET/POST intent responses,
GET/POST intent parameters
GET/POST intent responses
POST create intent responses
POST create intent parameters
GET intent types responses
PUTintent action responses
PUT intentaction request
PUTintent's target (id) action responses
PUT intent's target (id) action parameters
GET'workload documents list responses
GET workload documents list parameters
POST workload document responses
POST workload document parameters
GET workload instances responses
GET workload instances parameters
PUT workload instance delete responses
PUT workload instance delete parameters
GET workload instance manifests responses
GET workload instance manifests parameters
POST workload upload request responses
POST workload upload request parameters
GET workload responses
GET workload parameters
PUT workload responses
PUT workload parameters
PATCH workload responses

ExpectationObjectInput

&3 NEMO

ExpectationTargetInput

IntentExpectationlnput

IntentInput

IntentInputAttribute

IntentOutput

TargetTemplate

IntentTemplate

IntentActionInput

IntentTargetUpdate

User

WorkloadDocumentChartMaintainer

WorkloadDocumentChartDependency

WorkloadDocumentChartMetadata

WorkloadDocumentChart
WorkloadDocumentList

WorkloadDocumentCreate
WorkloadDocumentLifecycleEvent
WorkloadDocumentlnstance
WorkloadDocumentUpdate
WorkloadDocumentTemplatelnput
POST authorization token parameters

132
132
133
133
133
133
133
133
134
134
134
134
135
135
136
136
137
137
137
138
138
138
138
139
139
139
139
139
140
140
140
140
140
141
141
141
141
141
142
142
142
142
142
142
143
143
143
143
144
144
144
144
144
145
145

Document name: Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 7 of 146
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: FINAL

Table 107: PATCH workload parameters

&8 NEMO

Table 108: DELETE workload responses

Table 109: DELETE workload parameters

Table 110: POST workload document instance parameters
Table 111: POST workload document instance responses

145
145
145
146
146

3 D4.2 Advanced NEMO platform & laboratory testing results. 5
Document name: Initial version Page: 8 of 146
Reference: D4.2 |Dissemination: [PU [Version: [1.0 [Status: [FINAL

List of Figures

&3¢ NEMO

Figure 1: NEMO code repository in Eclipse Research labs
Figure 2: NEMO Structure and Ownership
Figure 3: NEMO meta-OS docker registry
Figure 4: NEMO gitlab-ci.yml configuration
Figure 5: Kubernetes deployment manifest example (intent-based API)
Figure 6: Kubernetes ingress manifest example (intent-based API)
Figure 7: Image repository and policy configuration files
Figure 8: Example of the Deployment manifest
Figure 9: Example of MetalLB configuration
Figure 10: Dev cluster nodes
Figure 11: Dev cluster namespaces
Figure 12: Staging 1 cluster nodes
Figure 13: Staging 1 cluster namespaces
Figure 14: Staging 2 cluster nodes
Figure 15: Staging 2 cluster namespaces
Figure 16: Production cluster namespaces
Figure 17: NEMO project phases and main meta-OS version releases
Figure 18: Integration testing — Scenario template
Figure 19: NEMO Integration testing - Checklist template (Example)
Figure 20: Default namespace
Figure 21: Kubernetes-dashboard namespace
Figure 22: [2SM namespace
Figure 23: LinkerD namespace
Figure 24: NEMO Kernel namespace
Figure 25: NEMO-net namespace
Figure 26: NEMO-PPEF namespace
Figure 27: NEMO-sec namespace
Figure 28: NEMO-svc namespace,
Figure 29: NEMO-workloads namespace
Figure 30: The NEMO high-levelarchitecture
Figure 31: Thestintegrated version of NEMO meta-OS (high-level architecture view)
Figure 32: IBMC Simplified Architecture
Figure 33 IBMC Complete Architecture
Figure 34: Migration Sequence Diagram
Figure35: LCM Architecture
Figure 36:4Plugin Deployment
Figure 37: Onelab deployment LCM and Security Controller
Figure 38: Intent-based API workload management
Figure 39: Intent-based API intents management
Figure 40: MOCA Resource provisioning
Figure 41: Searching LCM Repository
Figure 42: LCM Dashboard Homepage
Figure 43: MOCA diagram
Figure 44: The MOCA deployment in the Onelab cluster
Figure 45: MOCA integration diagram
Figure 46: MOCA API authorization example
Figure 47: MOCA API
Figure 48: Setup region information through Event Server
Figure 49: Logs of inserting cluster information
Figure 50: Example of the transaction logs of the cluster registration
Figure 51: Example of the transaction logs of the workload registration

17
18
19
19
20
21
22
23
24
24
26
27
28
28
29
31
31
32
33
33
33
33
33
33
33
34
34
34
34
35
35
39
39
40
43
43
45
46
46
46
47
47
49
49
50
50
51
52
52
59
61

Document name:

D4.2 Advanced NEMO platform & laboratory testing results.

Initial version

Page:

9 of 146

Reference:

D4.2 |Disseminqtion: |PU |Version: |1.0

Status:

FINAL

Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:

NEMO

&3 NEMO

Example of the transaction logs of the workload usage fee
Example of the transaction logs of the cluster reward
Example of the transaction logs of the NEMO fee paid by the cluster owner
Example of the transaction logs of the calculation of the workload usage fee
OneLab workload details

RabbitMQ logs of workload deployment
Workload registration to blockchain
User info for workload owner after registration
Accounting event for workload registration
Smart Contracts deployment though Helm chart
Logs of deployment of NemoFunds contracts
Registering NEMO OneLab Cluster regional info
Response for successful registration
MOCA logs of the DApps component calculating the resource usage of a NEMO workload

The accounting events of the workload user
Workload user information
Details of the workload computation events
Cluster owner accounting events
Cluster owner user information
Scaled up deployment
MOCA logs for scaled workload usage
Comparison of workload usage results
The final Intent-based API architecture
State transitions and reporting events for Intents delivered for fulfilment. [9], supported also in

Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:
Figure 85:
Figure 86;
Figure87:
Figure §8:
Figure'89:
Figure 90:
Figure 91:
Figure 92:
Figure 93:
Figure 94:
Figure 95:
Figure 96:
Figure 97:
Figure 98:
Figure 99:
Figure 100: Target cluster without the workload.
Figure 101: Deployment Controller log, receiving the workload petition and deploying it.
Figure 102: Workload already deployed in the cluster selected.
Figure 103: Deployment Controller (MO) final response.
Figure 104: Create workload through Intent-based API with Ingress support
Figure 105: Workload Ingress annotations for integrating with Access Control

The DeliverComputingWorkload intentdefinition in NEMO Intent-based API
Kubernetes Service Annotations
Process diagram for cluster registration
Cluster summary view on LCM GUI
Cluster registration page on LCM GUI
MOCA Cluster registration demonstration
MOCA Cluster,registration,response
MOCA sends clusteridetails to Meta Orchestrator

Meta Orchestratorireceives the cluster registration request
MOCA veceives the' Meta Orchestrator response
Register cluster to blockchain
Updated.cluster details
MOCA accounting event for cluster registration
Process diagram for workload registration
Process diagram for workload deployment (provisioning)
Access control sequence diagram - detailed view
NEMO workload registration through LCM Ul
NEMO registered workloads
NEMO workload instance creation (workload deployment process) through LCM Ul
NEMO workload instances and their respective status in LCM Ul
NEMO workload validation

Workload deployment confirmation through RabbitMQ for the newly created workload instance _
Intent-based API endpoint where the scenario starts.
JSON published in RabbitMQ to be consume by MO.

62
62
62
63
66
66
66
66
67
67
67
68
68
68
69
69
70
70
71
71
71
71
73

74
75
77
80
81
81
82
82
83
83
83
83
84
84
86
87
88
90
90
91
91
91
92
93
93
94
94
94
94
95
95

Document name:

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 10 of 146
Initial version

Reference:

D4.2 |Disseminqtion: |PU |Version: |1.0 Status: FINAL

Figure 106:
Figure 107:
Figure 108:
Figure 109:
Figure 110:
Figure 111:
Figure 112:
Figure 113:
Figure 114:
Figure 115:
Figure 116:
Figure 117:
Figure 118:
Figure 119:
Figure 120:
Figure 121:
Figure 122:
Figure 123:
Figure 124:
Figure 125:
Figure 126:
Figure 127:
Figure 128:
Figure 129:
Figure 130:
Figure 131:
Figure 132:
Figure 133:
Figure 134:
Figure 135:
Figure 136:
Figure 137:
Figure 138:
Figure 139:
Figure 140:
Figure 141;
Figures 42;
Figure 143:
Figure'144:
Figure 1485

The Onelab KongPlugin resources

&3¢ NEMO

Workload Access Control service

Workload Access Control service details

95
96
96

Workload Access Control route

Workload Access Control route details

96
97

Workload oAuth2.0 plugin

Workload oAuth2.0 plugin details

Workload oAuth2.0 plugin (cont'd)

NEMO o0Auth2.0 plugin test

o0Auth2.0plugin test - expired or false token

97
98
98
99
99

0Auth2.0 plugin test - success

Locust experiments' setup

Locust request and response statistics for standard oAuth2.0 plugin

Locust request and response statistics for simplified oAuth2.0 plugin
Locust charts for the oAuth2.0 plugin implementations

NEMO workload migration sequence diagram

Intent message reaches MO

Pods currently running in onelab

Workload ID inspection

Availability check

Migration message reaches source cluster’s IBMC instance

Backup status

Restore message reaches target cluster’s IBMC instance

k3s cluster status before migration

k3s cluster status after migration completion

Description of workload in k3s cluster

OnelLab cluster after migration

Process diagram for workload monitoring and enforcement

Three queries to obtain network traffic stats collected by CMDT through Linkerd

Expected RabbitMQ message data model

Workload — CPU usage

Workload - RAM usage

Workload - Energyconsumption rate

Workload - Energy efficiency

Waerkload - Energy consumption

Intent-APRI EnergyEfficiency metrics update

Cluster,RAM usage

Cluster CPU usage

Cluster Disk usage

cluster metrics published to RabbitMQ

100
101
102
102
103
104
105
106
106
106
107
107
107
107
107
108
108
110
112
113
114
114
114
115
115
116
117
117
117
117

Document name: Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 1 of 146
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: FINAL

List of Acronyms

&8¢ NEMO

Abbreviation / ‘ Description

acronym

AAA Authentication, Authorization, and Accounting
Al Artificial Intelligence

API Application Programming Interface

CD Continuous Delivery

CFDRL Cybersecure Federated Deep Reinforcement Learning
CLI Command Line Interface

CMDT Cybersecure Microservices’ Digital Twin

CI Continuous Integration

CLI Command-line Interface

CMDT Cybersecure Microservices’ Digital Twin
CNCF Cloud Native Computing Foundation
CPU Central Processing Unit

CRD Custom Resource Definition

DApps Distributed Applications

DLT Distributed Ledger Technology

Dx.y Deliverable number y belonging to WP x
E2E End-to-End () |
EC European Commission

FL Federated Learning,,

GDPR n Regulation
GPU it

IBMC Migration Controller

IdM y Ma

IDS ion Detection System

IPFS

Iternet—of—Things

I Information Technology
8s Kubernetes
AN Local Area Network
CM Life-Cycle Manager
meta-OS Meta-Operating System
ML Machine Learning
mNCC Meta Network Cluster Controller
MO Meta-Orchestrator
MOCA Monetization and Consensus-based Accountability
MQTT Message Queuing Telemetry Transport
NAC NEMO Access Control
oS Operating System
PPEF PRESS & Policy Enforcement Framework
Document name: Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 12 of 146
Initial version
Reference: D4.2 |Dissemincxtion: IPU |Version: |1 .0 Status: FINAL

&8 NEMO

RAM Random Access Memory
RBAC Role-Based Access Control
RL Reinforcement Learning

SDK Software Development Kit
SEE Secure Execution Environment
TRL Technology Readiness Level
V&V Validation & Verification
WAL Write-Ahead Logging

WP Work Package

YAML Yet Another Markup Language

Document name: Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 13 of 146
Initial version
Reference: D4.2 |Dissemination: [PU [Version: [1.0 [Status: [FINAL

&8¢ NEMO

Executive Summary

The document presents insights into the first integrated version of the NEMO meta-OS consisting of the
core components, the interfaces and the integration activities to this point. The work also involves the
creation of integration scenarios that guided the integration tests conducted in a laboratory setting,
utilizing the supporting CI/CD environment and tools and verified the system-level technical capacity
of the platform. Moreover, the deliverable provides a detailed presentation of the technical developments

conducted within WP4, detailing the NEMO meta-OS Service Management Layer's technical

advancements and updates, including their associated interactions within NEMO meta-OS. The fi
version of the NEMO meta-OS integrated platform is expected to be presented in D4.3 [1], "A
NEMO Platform & Laboratory Testing Results. Final Version," which will be produced ®c

quarter of 2025.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 IDisseminaiion: IPU |Version: |1 .0 Status: FINAL

Document name: Page: 14 of 146

&3 NEMO

1 Introduction

The NEMO meta-OS framework aims to support optimal operation of hyper-distributed applications
implemented as microservices in a highly distributed and diverse environment of cloud-edge and IoT
technologies. Therefore, the associated integration and subsequently the verification and validation of
such activities are not trivial and require a well-designed methodology and execution plan.

In D4.1 [2], a detailed description of the zero-ops CI/CD environment and the associated integration
guidelines were discussed. This document aims to shed light on the scenario-driven integration and
validation activities that aim to realise the first integrated version of the NEMO meta-OS as dictated by
the Validation & Verification methodology that is presented. The main objective of this approachyis on
one hand to assure that NEMO specifications on interfaces and data models are coherentand followed
by the stemming technical developments and on the on the other to facilitate and accelerated the
necessary integration activities.

1.1 Purpose of the document

The purpose of this document is twofold. First, it presents the technical advancements that fall into the
NEMO Service Management Layer and second to present ingdetail'the integration activities that are
driven by the NEMO Validation & Verification (V&V) methodelogy, and document the associated
results which led to the production of the first integrated NEMQimeta-OS framework.

1.2 Relation to other project work

The integration and testing strategy act as the driver of the development process. Thus, this document is
strongly connected with all the technical WPs (WP2, WP3 and WP4). Furthermore, the work presented
in this document strongly relates to WPR1 activities, as it considers the technical specifications arising
from the requirements’ elicitation precessiand the architectural specifications. In addition, the platform
integrated view and curtent protetype implementations will be applied and tailored to each of the NEMO
trials within WPS5, Last, but not least, the document reports technical options and prototype
functionalities, which ate meant to be used and extended by third parties joining the project through the
Open Calls.

1.3 Structiredot the document

The remainder of this report is organized as follows.

Section 2 provides information on the CI/CD environment of the NEMO meta-OS and on the OneLab
facilities that provide for the integration activities of the first integrated version of the NEMO meta-OS.
In addition, it presents the high-level architecture view of the first integrated version of the NEMO meta-
OS highlighting the key integration activities for each functional layer and describes the components
that are fully or partially integrated.

Section 3 describes the overview, the architecture, the initial results and the interactions with other
components for the modules that are comprising the Service Management Layer of the NEMO meta-
OS platform, namely the intent-based Migration Controller (IBMC), the Plugin & Application Lifecycle
Manager (LCM), the Monetization and Consensus based Accountability (MOCA) and the Intent-based
SDK/API.

Section 4 sheds light into the integration activities that are conducted and materialized the first
integrated version of the NEMO meta-OS, following the scenario-driven V&V methodology.

Section 5 provides conclusions and insights in view of the final version of the NEMO meta-OS.

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 15 of 146
Initial version

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status: FINAL

Document name:

&8 NEMO

Finally, Annex A & B provide a detailed description of the Intent-based API and MOCA interfaces and
data models.

Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 16 of 146
Initial version

Reference: D4.2 |Dissemination: [PU [Version: [1.0 [Status: [FINAL

Document name:

&3¢ NEMO

2 NEMO Integration, Validation & Verification
approach and tools

The first integrated NEMO meta-OS version that is described in this document capitalizes on the NEMO
CI/CD environment and tools. The associated CI/CD pipeline facilitates the agile integration and
validation approach that the NEMO adopts and is applied throughout the cloud and edge infrastructure
that is available and orchestrated by NEMO meta-OS. The NEMO meta-OS underlying infrastructure
resides in OneLab facilities. The following sections shed light both on the source code repository
configuration in Eclipse Gitlab and on the OneLab cloud and edge infrastructure that is provided to
NEMO meta-OS. This environment is essential for conducting and subsequently demonstrating“the
integration and validation activities that resulted in the first integrated version of NEMO meta-OS.

2.1 NEMO CI/CD Environment & Tools

2.1.1 Open Source repository

For the NEMO project, the GitLab CI/CD framework has been set up and erganized in an Eclipse
Research Labs hosted instance of GitLab. The official GitLab group of NEMO is titled “NEMO Project”
and is accessible publicly at Scsetne ¥ . The group
hosts the source code that is related to each thematie*entity-specific development as dictated by the
NEMO meta-OS architecture. Each thematic entity is organized as a subgroup of the NEMO GitLab
group, Figure 1.

B0 NEMO Prajict = o=
= o - in_.‘l
R —
= - -, F——
- 1] (1] o
S TT—
= = ¥ o Sy =
- i :
. ®
A'FF' - - - -

Figure 1: NEMO code repository in Eclipse Research labs

Within each subgroup, the development activities are organized based on the implemented outcomes of
the relevant tasks. Moreover, for each subgroup an owner is assigned as illustrated in the Figure 2 below.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |1 .0 Status: FINAL

Document name: Page: 17 of 146

o L T TR —
L] L]
Ot o gt e et tintissn
i
[e T T
A
—
AT Ry ons. [e ki ._-l-_,-..--u.-_-_...-.-uj
B P
o Fue
= e L e s Ep——
i] [P PPR— [T e — [
oL St B Gy et S i e mes] -
o
[— [— [T
Lo
e [[P P —— g i
g T S e M g T —
= - e re— . | T e o~
- S A] By |y i
[prTer—
[Tp——— e T e —
B i
[T — wrp mpE -
[ajr—= -

& Bk [FET e o e s e s s 1 g i
e [FEEpr—p—— | e e s s e,
s il il i il
rdee e A e oI e) hita
s o *mme | g e RET s
B S
P Camrraramy L e e e
ikl © ey 1 v Pt A e s =
it

il bl s L e | re—— e s

111111
:

ure 2:NEMO Structure and Ownership

2.1.2 NEMO Auto @/ment and Configuration
The NEMO CI/CD environment capitalizes on Kubernetes' manifests for the deployment of the NEMO

[O meta-OS infrastructure. The documentation that concerns the NEMO CI/CD

O components’ container images are uploaded to the docker.io instance under the account of
t is following the naming convention “nemometaos/Xcomponent nameX”. The docker?
age repository (https://hub.docker.com/u/nemometaos) is presented in Figure 3.

! https://kubernetes.io/
2 https://www.docker.com/

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 18 of 146
Initial version

Reference: D4.2 |Dissemination: [PU [Version: [1.0 [Status: [FINAL

Document name:

&8 NEMO

R MR
1 m
In] g -l] —

G i

————

Figure 3: N cta-OS docker registry

Once a valid dockerfile® exists, a “. ci.ym must be created in the project root directory. Then
once the dockerfile exists for the NEM eloped component the “.gitlab-ci.ym!” file must be created
in the project root directory. 4 below presents the relevant configuration file that the NEMO
partners must adapt to the ution according to the instructions that are provided.

sr-ignlea:

T_EFRITNS [P el by o ey rpd | ppey

mmdilE Bullamar

il “FeAileg dsl1 TEEIL Il &illl faks Sast 1B a0easm

L i Tewre panmmm passnaiuliy

Figure 4: NEMO gitlab-ci.yml configuration

3 https://docs.docker.com/reference/dockerfile/

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 19 of 146
Initial version

Reference: D4.2 |Dissemination: [PU [Version: [1.0 [Status: [FINAL

Document name:

&3 NEMO

In the above example the NEMO partners have to substitute the <component name> with the name of
their component. This configuration will do the following:

Upload the docker image nemometaos/<component_name>:latest tag every time a commit happens to
the main branch

Upload the docker image nemometaos/<component_name>:<tag name> tag every time a new tag is
created.

For example, the creation of tag v0.1.1 on the nemometaos/intent-api uploaded to the docker registry is
nemometaos/intent-api:v0.1.1 image. The version of the component (tag) must be always ascending
integers.

In order to deploy the NEMO component to Kubernetes orchestrated environment the componentiowner
must provide all the necessary kubernetes configuration files (manifests) and test that theyycansbe
deployed and work in the OneLab cluster by using the provided credentials to access the €luster.

In order to pull images from the nemometaos account, every namespace in Kubernetes has,the'nemo-
regcred secret that must be used as imagePullSecrets in the component’s Deployment, manifest as
indicated in the following example.

e i
o 7 e N
wr
Lagips P W 1
3

Figure 5: Kubernetes deployment manifest example (intent-based API)

Moreover, the NEMO meta-OS provided integration guide described the /ngress configuration file that
concerns the communication of the outside world with the deployed component.

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 20 of 146
Initial version

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status: FINAL

Document name:

&8 NEMO

ad LRl rerlmErelie W8 Dl
iBimd | Ingreaw
sSLaswin
Al | LACART @l Ingeria
TABFANCE . R
AEPEr AT L |
cart -mereger st cludter: ferwers TLetsemergpd c grztasciios ®
s38C
PO SR et T ST
ELa:
[A9 Y
LTENe L. REnE. ERa el 6
nECrFLiREE] drrent-apd-iLe
Fa g
Bl rebievhoarl . reess . orrleh . el
Eript
e et
~ gakiry |
Aty FEPLE

QQQ‘O
S C, v

A1 FCh W RN TS P B s Ce n s | MBI

diE | e

ERFT -RErSgT snfclanter: inngwr: ".l'.ln:.'!P'l arpfictias”

¢
FiiRTH

LvEwe® oL s, eeiieb

seerwiiamai §]

r i Lats Lrcrpat

mrorrascriy o

Tr—dl il . e P AN B

FIat LTSN TN OF ST CTREAL
Figure 6: Kubernetes ingress manifest example (intent-based API)

Once the steps mentioned above has been completed then the developed component is deployed
successfully in the Kubernetes orchestrated environment in OneLab. In NEMO, the Continuous
Deployment part of the pipeline is configured through the FLUX CD* which is a CNCF’ adopted open-
source tool that enables GitOps for managing the configuration of a Kubernetes cluster. In a GitOps
pipeline, the desired state of the cluster is stored in a Git repository, and FLUX CD ensures that the
actual cluster state matches the desired state defined in the repository.

4 https:/fluxcd.io/

5 https://cncf.io/

Document name: Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 21 of 146
Initial version

Reference: D4.2 |Dissemination: [PU [Version: [1.0 [Status: [FINAL

&8¢ NEMO

Once the manifests are created and the component is verified that is working, the manifests must be
transferred to the FLUX CD repository. The repository is structured in folders as follows:

<cluster name> / <kubernetes_namespace> / <component_name> / <component_subcomponents>

Each component must be deployed into the respective folder that matched their Kubernetes assigned
namespace. Sub dependencies (e.g. postgres®, redis’ etc) can be also setup as Helm charts®.

To automate the process an ImageRepository & ImagePolicy Custom Resource Definition (CRD) must

be committed alongside the component manifests as indicated by the following examples.
Frapsfisscana,
P LAErR s, Tl T Plesen, 1af s 1bamal
biinl: Desgeppeilieg :
i QQ\
ETagey Q
il paraling Lewge 1EELLLL. FLERgDd, La/ w]heTal v
B[l — . :
Fil .'r-":.'\. 38 :
it s PRI =
\igure 7: Image repository and policy configuration files
The proper na e set and must reside inside the flux-system namespace, and the appropriate
imagese ust be set too. After that, the Deployment manifest of the component must upsert the
followi otation to the line that defines the newly created docker image as indicated in the
ctangular,box in Figure 8 below.

6 https://www.postgresql.org/
7 https://redis.io/
8 https://helm/sh/

Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 22 of 146
Initial version

Reference: D4.2 IDisseminaiion: IPU |Version: |1.0 Status: FINAL

Document name:

&8¢ NEMO

LT ri L oL
Wlimd: [yl pyyee
et il a
AERE| LEEEFE-RE0
SRR | P A

CHEE L
Wil BESHEEE
it lassrtill 1AL
L=
TR]
Lratag
frillaglisiels !

masiraiailabin: 1 #

Type: Enillemigeiome
salgclaf
BT | B

QQ‘O

imngeFUlLYscruta
Ly R - FRCTEE

whF ATy Q
masdnEAE St inEEy:
Frip fFEilbsr G rodanpinid LaglgrareaEiar | FaE s e i i | BF
Libwl S Larrlar
sxlshEspraan i
4BV @EE

aEerartar] [a
[TRIT 13
bvtert-agd
Lapelogniy . “Edareeiei infmesfiees
ety

Ll] l':l'm

I imEgE: rEsensimanfineees-ami v L

\

After that, any, a , new tag version, that is created from the component repository, will be
pushed t er’hub repository and set inside the deployment manifest (version bump) as commit
to repository by FLUX CD.

e 8: Example of the Deployment manifest

.2 Cloud/Edge/IoT Integration and Validation Infrastructure

2.2.1 OneLab Clusters for NEMO

Four distinct Kubernetes clusters have been established to fulfil specific operational requirements. These
include one primary cluster designated for development workloads, two supporting clusters including a
lightweight cluster deployed on Raspberry Pis® and finally the production cluster optimized for handling
tasks requiring Graphics Processing Unit (GPU) resources.

Each cluster consists of a series of nodes structured to ensure efficient operation. The master node is
responsible for core functionalities such as application scheduling, scaling, and overarching cluster

° https://www.raspberrypi.com/

Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 23 of 146
Initial version

Reference: D4.2 IDisseminaﬁon: IPU |Version: |1.0 Status: FINAL

Document name:

management. Worker

&3 NEMO

nodes are dedicated to executing tasks assigned by the master node, which include

deploying containers and hosting applications. In a production environment, multiple worker nodes are
typically utilized to provide redundancy and enhance service availability, thereby ensuring robust and
uninterrupted operations. Additionally, each cluster is configured with a load balancer, which distributes
incoming network traffic across the nodes to ensure optimal resource utilization, fault tolerance, and
high availability of the services.

ppiVersion;: metallb.i0

kina: IPAddressfool
fotacatal
nane dufault

narmspace: metallb-s

opiVersion;: eetallb.z0
kKing: L2Advertisorent
etac

nane: dafaudt

namespoce: metnllb-e
pec:
ipAodrossPools:

default

2.2.1.1 NEMO Dev

/vibetald

Yatoe

{vibetad

reten

Figure 9: Example of MetalLB'° configliration

cluster

The development cluster consists of one control-plane node (k8smaster.onelab.eu) and five worker
nodes (k8sworker1-5.onelab.eu), alldin a Ready status. The Kubernetes specified versions ranging from

v1.28.7 to v1.28.15.

MAME

kEsmaster.onelab.eu Ready control-plane
kEsworkerl.onelab.eu Ready worker
kisworkerd.onelab.eu Ready worker
kEsworker3.onelab.eu Ready worker
kerd.onelab.eu Ready worker

STATUS ROLES

P
(5

VERSION
vl.Z8.
v1.Z8.
vi.Z8.
v1.Z8.
vli.é

|
~] =J I
B B

] =

e B Y

.
[
=
=
5=
&
3
[4

=] =)
o

o |
=1

8.
kBsworkerS.onelab.eu Ready worker v1.Z£8.

Node name

Figure 10: Dev cluster nodes

k8smaster.onelab.eu

Specifications ‘ Public IP

CPU: 8 CPU Cores

RAM: 16GB
Master 132.227.122.23
Storage: 140GB Ephemeral

OS-Image: Ubuntu 22.04.4 LTS

10 https://metallb.universe.tf/

Document name:

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 24 of 146
Initial version

Reference:

D4.2 |Disseminqtion: |PU |Version: |1.0 Status: FINAL

&8¢ NEMO

Node name Node Specifications Public IP
Type

Kernel Version: 5.15.0-116-generic

Container-runtime: containerd://1.6.28

k8sworkerl.onelab.eu | and

Worker

CPU: 16 CPU Cores

RAM: 16GB

Storage: 120GB Ephemeral + 150GB Ceph
OS-Image: Ubuntu 22.04.4 LTS

132.227.122.66

k8sworker2.onelab.ecu | and

Storage
Kernel Version: 5.15.0-116-generic \
Container-runtime: containerd://1.6.28
CPU: 16 CPU Cores
RAM: 16GB
Worker

Storage: 120GB Ephemeral + t@
OS-Image: Ubuntu 22.04.4 ’ $

Kernel Version: 5.15.0-}l¢ ric

k8sworker3.onelab.eu | and

Storage /|

32.227.122.24

Storage
Container-runtime: con
CPU: 16 CPU/Cores
RAM: \

Worker

Storages 120GB Ephemeral + 150GB Ceph

-Imag untu 22.04.4 LTS
rnel Version: 5.15.0-116-generic

pntainer-runtime: containerd://1.6.28

132.227.122.59

| Worker
and
Storage

CPU: 16 CPU Cores

RAM: 16GB

Storage: 120GB Ephemeral + 150GB Ceph
OS-image: Ubuntu 22.04.4 LTS

Kernel Version: 5.15.0-116-generic

Container-runtime: containerd://1.6.28

132.227.122.41

k8sworker5.onelab.eu | and

Worker

Storage

CPU: 16 CPU Cores

RAM: 16GB RAM

Storage: 120GB Ephemeral + 150GB Ceph
0OS-image: Ubuntu 22.04.4 LTS

Kernel Version: 5.15.0-116-generic

Container-runtime: containerd://1.6.28

132.227.122.47

Table 1: NEMO dev cluster (K8S)

Document name: Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 25 of 146
Initial version
Reference: D4.2 |Dissemination: IPU |Version: |1 .0 Status: FINAL

MAME

argo
cert-manager
defoult
flux-system
ingress-nginx
k3s-cluster
k3is-onelab
kube-flannel
kube-node- lease
kube-public
kube-system
kubernetes-dashboard
LZsm-system
Linkerd
Linkerd-viz
metal lb-system
nemo=-ai
nemo-demo
nemo=karnel
nemo-net
nemo-ppet
Nemod-5ec
MEMD=5YC
nemo-workloads
open-cluster-management

open-cluster-management-hub

raspberrypi
rasptest
reflector
rook-ceph
test-cluster

2.2.1.2 Staging 1 cluster

STATUS
Active
Active
Active
Active
Active
Active
Active
Active
Active
Active
AcCtive
Active
Active
Active
Active
Active
Active
Active
Active
Active
Active
Active
Active
Active
Active
Active

Terminating

Active
Active
Active

Terminating

Figure 11: Dev cluster namespaces

Pl ok Tod Pl

LA ™~
B

i B !
=)

Pl

= B

ol
"yl
o

£5d
2b/d

i NEMO

The staging cluster (Staging 1) comprises one control-plane node (nemo-s1-master) and three worker
nodes (nemo-sl-workerl, nemo-sl-worker2, and nemo-sl-worker3), all reporting a Ready status,
running Kubernetes versions v1.31.3 (control-plane) and v1.30.7 (workers).

Document name: th._2 Advqnced NEMO platform & laboratory testing results. Page: 26 of 146
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: FINAL

NAME STATUS ROLES

nemo-sl-master Ready control-plane
nemo-sl-workerl Ready worker
nemo-sl-workerZ Ready worker
nemo-sl-worker3 Ready worker

RAM: 16GB

Node Name
Storage: 120GB Ephemeral + 150GB«Ceph

nemo-s1-master Master 132.227.122.104
OS Image: Ubuntu 22.04.3 LTS

Kernel Version: 5.15.0-78-generie

Figure 12: Staging 1 cluster nodes

Node Specifications Public IP
Type

CPU: 8 CPU Cores

Container-runtime: containerd://1.7.12
CPU: 16 CPU Coreés

RAM: 16GB
Worker Storage: 120GB Ephemeral + 150GB Ceph
nemo-s1-workerl and 132.227.122.105
Storage OS Image; Ubuntu 22.04.3 LTS
Kernel Version: 5.15.0-78-generic
Container-runtime: containerd://1.7.12
CPU: 16 CPU Cores
RAM: 16GB
Worker Storage: 120GB Ephemeral + 150GB Ceph
nemo-sl-worker2 and 132.227.122.106
Storage OS Image: Ubuntu 22.04.3 LTS
Kernel Version: 5.15.0-78-generic
Container-runtime: containerd://1.7.12
CPU: 16 CPU Cores
RAM: 16GB
Worker | gtorage: 120GB Ephemeral + 150GB Ceph
nemo-s1-worker3 and 132.227.122.107
Storage OS Image: Ubuntu 22.04.3 LTS

Kernel Version: 5.15.0-78-generic

Container-runtime: containerd://1.7.12

Table 2: Staging 1 cluster (K8S)

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 27 of 146
Initial version

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status: FINAL

Document name:

NAME STATUS
cert-manager Active
default Active

1ngress-nginx Active
kube-flannel Active
kube-node-lease Active
kube-public Active
kube-system Active
kubernetes-dashboard Active
metallb-system Active
rook-ceph Active

Figure 13: Staging 1 cluster namespaces

2.2.1.3 Staging 2 cluster (K3S)

The Staging 2), deployed on Raspberry Pis 4, consists of one control-plane node (nemo-k3s-master) and
two worker nodes (nemo-k3s-node-1 and nemo-k3s-node-2),qallyin a Ready state and running
Kubernetes version v1.30.6+k3s1.

MAME STATUS ROLES VERSION

nemo-kis-master Ready control-plane,master vl,30.6+k3sl
nemo-kis-node-1 Ready worker vl.30.6+k3s1
nemo-k3is-node-2 Ready worker 15 v1.30.6+k3s1

Figuse'14: Staging 2 cluster nodes

Node name Doge Specifications Public IP
Type

CPU: 4 CPU Cores

RAM: 8GB

Storage: 64GB External SSD
nemo-k3s-master Master 132.227.122.99
OS Image: Ubuntu 24.10

Kernel Version: 6.11.0-1004-raspi
Container-runtime: containerd://1.7.22-k3s1
CPU: 4 CPU Cores

RAM: 8GB

Worker | gtorage: 1TB External SSD
nemo-k3s-node-2 and 132.227.122.88
Storage OS Image: Ubuntu 24.10

Kernel Version: 6.11.0-1004-raspi

Container-runtime: containerd://1.7.22-k3s1

th._2 Advgnced NEMO platform & laboratory testing results. Page: 28 of 146
Initial version

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status: FINAL

Document name:

&3 NEMO

Node name Node Specifications Public IP
Type

CPU: 4 CPU Cores

RAM: 8GB

Worker Storage: 64GB External SSD
nemo-k3s-node-3 and 132.227.122.91
Storage OS Image: Ubuntu 24.10

Kernel Version: 6.11.0-1004-raspi

Container-runtime: containerd://1.7.22-k3s1

Table 3: Staging 2 Cluster (K3S)

MAME STATUS
1875c8d8-d599-4869-baZc-f7cdd1421833 Active
cert-manager Active
default Active
falco Active
flux-system Active
kube-node-lease Active
kube-public Active
kube-system Active
metallb-system Active

nemo-kernel Active
nemo-ppef Active
nemo-sec Active

nemo-sve Active
nemo-workloads Active
open-cluster-management Active
open-cluster-management-agent Active
open-cluster-management-agent-addon Active
reflector Active
rook-ceph Active

Figure 15: Staging 2 cluster namespaces

2.2.1.4 Production cluster (K8S)

The production cluster includes one control-plane node (nemo-prod-master), three worker nodes (nemo-
prod-workerl, nemo-prod-worker2, and nemo-prod-worker3), and one GPU-enabled worker node
(nemo-prod-gpu-worker), all in a Ready state and running Kubernetes version v1.30.7.

th._2 Advgnced NEMO platform & laboratory testing results. Page: 29 of 146
Initial version

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status: FINAL

Document name:

&8¢ NEMO

Node Name Node Specifications Public IP
Type

CPU: 4 CPU Cores
RAM: 8GB
Storage: 80GB Ephemeral

nemo-prod-master | Master 132.227.122.42
OS Image: Ubuntu 22.04.3 LTS

Kernel Version: 5.15.0-78-generic »
Container-runtime: containerd://1.7.12
CPU: 8 CPU Cores

RAM: 16GB Q\\\
132. 43

nemo-prod- aanrker Storage: 250GB Ephemeral + 150GB Ceph
workerl Storage | OS Image: Ubuntu 22.04.3 LTS
Kernel Version: 5.15.0-78-generic
Container-runtime: containe @ 1
CPU: 8 CPU Cores
RAM: 16GB
nemo-prod- Xgrker Storage: 120GB Ephemer. 132.227.122.11
worker2 Storage | OS Ima tu 22.04.4 LTS 3

Kernel on: .0-78-generic

taine time: containerd://1.7.12

CPU Cores
: 16GB

Storage: 120GB Ephemeral + 150GB Ceph | 132.227.122.11
OS Image: Ubuntu 22.04.2 LTS 4

nemo-prod- X
worker3
O Kernel Version: 5.15.0-78-generic
Container-runtime: containerd://1.7.12
CPU: 4 CPU Cores
RAM: 8GB

nemo-prod-gpu- Wgrker Storage: 120GB Ephemeral + 150GB Ceph | 132.227.122.11
an

worker Storage OS Image: Ubuntu 22.04.4 LTS 5

=
[¢]

Kernel Version: 5.15.0-78-generic

Container-runtime: containerd://1.7.12

Table 4: Production Cluster (k8S)

Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 30 of 146
Initial version

Reference: D4.2 |Dissemincxtion: IPU |Version: |1.0 Status: FINAL

Document name:

NAME STATUS
cert-manager Active
default Active
ingress-nginx Active
kube-flannel Active
kube-node-1lease Active

kube-public Active
kube-system Active
kubernetes-dashboard Active
metal lb-system Active
rook-ceph Active

Figure 16: Production cluster namespaces

2.3 Integration & V&V Methodology & Plan

NEMO will follow an agile and incremental approachwof iteration cycles, grouped in 3 Phases, as
depicted in Figure 17.

Phase 1: Baseline (M1-M18). Provides the initial NEMO Proof of Concept. Phase 1 starts with system,
specification of the meta-OS Architecture and decomposition (WP1), design analysis, prototyping
(WP2-WP4), integration, testing andwvalidationiof‘all key meta-OS components (WP4). The outcome
will be NEMO Ver. A and initial Living,Labs validation and the selection of the new consortium
members and new components from,Open/Call #1 to be implemented with Phase 2.

Phase 2: Advance (M19-M30)..,All NEMO components are further developed (WP2-WP4), while
NEMO is expandedwith new functionality added from the new consortium members accepted via Open
Call #1. Stronger integration with 5G networks and MANO systems will be realized and validated in
Living Labs)."Thejoutcome will be NEMO Ver. B and Living Labs validation, along with new AloT
applications,and services from Open Call #2.

Phase 3: Mature (M30-M36). Focus on validation and optimization, and more realistic field conditions
testing and verification, not only from NEMO consortium but also from 3™ parties selected via Open
Call #2 gincreasing system TRL and preparing NEMO Ver. 1.0, validated in Living Labs. This phase
also strengthens activities related to engagement of open-source communities and relevant initiatives,
ensuring accessibility, sustainability and availability in open-source platforms.

Wil Fuina | Haielinge MIB phase 2 Advircs l"'uf Phisie 3, Mature LE

Cneen Call

Open Cadl

Froject Shart MNE R Wy i MEBI e B MRS ver 1.0

Figure 17: NEMO project phases and main meta-OS version releases

th._2 Advgnced NEMO platform & laboratory testing results. Page: 31 of 146
Initial version

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status: FINAL

Document name:

&3¢ NEMO

It should be underlined that each phase will follow an agile and incremental Continuous Integration/
Continuous Deployment/ Continuous Piloting (CI/CD/CP) approach, as explained in the previous
subsections. The proposed approach allows responding to developments in the state of the art and
emerging technology trends, as well as to continuously improve the results based on experimentation in
the field.

2.3.1.1 NEMO Scenario-driven integration and verification

This section elaborates on the NEMO scenario-driven approach that is adopted by the project as the
foundation of the integration activities that resulted into the first' integrated NEMO platform.

The integration tests conducted are scenario-driven and each scenario covers a part of the integration
workflow that are defined and described in section 4. The specified tests might be distinguished in
bilateral, that is between component A and B, and/or system level cross-cutting ones.

The integration tests that are conducted follow the below presented structure. First, the scenario is
defined. For this, the Scenario template presented below is used to specify thesparticulatstest. More
specifically, the Scenario template incorporates details that pertain to the ebjective ofithe tests, the
participating components, the requirements that are addressed, the featuresithat are tested, the steps that
are needed to be verified and finally the test setup which provides detailsijonithe integration setting that
facilitates the test.

Then, the results are presented in detail as dictated by the steps that areidefined in the scenario. Finally,
the Checklist template is applied describing the successful or unsu€cessful are reported and fall into the
specific integration scenario. The stemming results for all the defined workflows are presented in section
5, following the abovementioned structure Scenario, Outcome/Results, Checkpoints.

Test 1:

Objective

Components

Features to be

tested

Test setup

Steps L.
2.
3.

Figure 18: Integration testing — Scenario template

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |1 .0 Status: FINAL

Document name: Page: 32 of 146

&3 NEMO

Yes | No Comments
1 Is a service created? o
2 Is the device registration completed successfully? '
3 Is the device sending its data successfully? v
4 Is the data stored in Database / Registry? v &g \

Figure 19: NEMO Integration testing - Checklist template (Example)

2.4 NEMO OneLab infrastructure deployments

The latest stable releases of the developed NEMO meta-OS components, ate‘deployed in the OneLab
cluster as indicated in the following figures that depict the NEMO deployments in each namespace.

T | T N S SRR W WM RN TN T T T

Biguge 20: Default namespace

Figure 21: Kubernetes-dashboard namespace

Figure 22: 12SM namespace

Figure 23: LinkerD namespace

Figure 24: NEMO Kernel namespace

Figure 25: NEMO-net namespace

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: FINAL

Document name: Page: 33 of 146

Tl T] T || N | 1 T 1= TR | DM I, W, W s T ' 1110 11 O WU T D " e th W T o

it l bl b Ll il bdt s L)

Figure 26: NEMO-PPEF namespace

Figure 27: NEMO-sec namespace

i
i
!
a

Figure 28: NEMO-svc namespace

The deployed workloads reside in a workloads’ specific namespace as indicated in the figure below.

ll+!l|-ll+lll-‘lll-"ll|

Figure 29: NEMO-workloads namespace

2.5 NEMO Integrated Platform (Ver. 1)

The NEMO meta-OS platform concerns a composition of a big set of technical tools residing in every
functional layer of its architecture spanning from the infrastructure layer to the service management
layer of the platform.

Figure 30 below illustrates the functional view of the NEMO meta-OS architecture which was
introduced in D1.2 [3]. The functional view is segregated in three horizontal layers namely the

th._2 Advgnced NEMO platform & laboratory testing results. Page: 34 of 146
Initial version

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status: FINAL

Document name:

&8 NEMO

Infrastructure Management layer, the NEMO Kernel and the NEMO Service Management layer,
including three NEMO cross-cutting functions (verticals) namely, the PPEF, the CFDRL and the
Cybersecurity & Federated Access Control.

Lt F rifteiessih

=

:
:
;
:
:
i

i & Pobey

=3

FHEE

Cutreesooure Fodarsend Dieeq Aen loropaman] LaEmirg

Piry bk ! P Edkpm aviem

Figure 30: The NEMO hi

The first integrated NEMO meta-OS platform materializ
activities that aimed glue together the first st re

-level architectu

t

ugh four scenario-driven integration
es of the NEMO technical ecosystem. Figure 31

—_

depicts the overview of the first integrated lat . The square rectangles denote the integrated
components.

The continuous lines indicate that the ective components are fully integrated meaning that the
exposed interfaces, the respec ta models and the provided functionality that is included in their
latest stable release has be edin EMO OneLab infrastructure and the communication between

the participating modul been successfully verified.

_.
MM M

NEMD ESNEL MAAAIT MW

Acwem (

men Losed Eacure
Mgratar y Esscutoe

Cobotie)

Daep Raniloioe ot L

Erav et

;
k
-
g
:
j
:é

3
.
¥
s
-
:
3
X

Cybarsecirs F ot st

INFRASTRLCTUNE
MAMAZLEMINT

Tos Tage T Fape Dwven

) futly imegrased

‘-_ 1 Partially integrated

e Toge | Comen Ot

Figure 31: The Ist integrated version of NEMO meta-OS (high-level architecture view)

Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 35 of 146
Initial version

Reference: D4.2 IDisseminaiion: IPU |Version: |1.0 Status: FINAL

Document name:

&3 NEMO

One the other hand the dashed-line square rectangles indicate that the integration has been partially
achieved. This means that for the particular components the integration within NEMO meta-OS has
been achieved either through integration tests that were conducted in the context of partners premises
or indicates that the integration was limited due to implementation activities that are currently ongoing.

The results of the integration tests that were executed in view of the first release of the NEMO meta-OS
are presented in detail in section 4 of the deliverable. The main goal of the current release is to
demonstrate a good level of system-level coherence, verifying its readiness for the final integration
activities that will be performed to produce the final version of the NEMO meta-OS.

2.5.1 Meta-OS functionality in NEMO v1

This section aims to provide an overview of the conducted integration activities and provided
functionality of the current development state of the NEMO meta-OS components for each functional
layer of the NEMO meta-OS architecture.

2.5.1.1 NEMO Infrastructure Management

The mNCC is the NEMO components that provides an abstraction layer ofithe underlying infrastructure
network level. The mNCC delivers network orchestration overseeing network.connectivity management
guaranteeing multi-cluster and multi-domain connectivity. The incorporated connectivity adaptors that
provide for data translation between different network protocols. More specifically, the L2S-M enables
dynamic creation and management of isolated virtual networks within'meta-OS operator clusters, the
5G adaptor, supports deterministic communications.through TSN bridges with 5G LAN solutions and
the SDN-based connectivity adaptor, supports network_management. Finally, mNCC component
facilitates the monitoring of the communications between pods deployed in each cluster’s nodes. The
collected data are communicated through RabbitMQ.

Regarding integration activities, mNCEC offered functionality is currently being finalized and initial
integration activities with on premise déployments have been achieved and documented. The latest
development updates of the component aré presented in D2.3 [4] that will be submitted on M28.

2.5.1.2 NEMO Kernel

The NEMO components associated with the Kernel layer are the MO, the CMDT, the IBMC and the
SEE as illusttated,in the NEMO meta-OS architecture view figures above. The core functionalities
offered from the:NEMO Kernel components have been presented, demonstrated and documented in the
present doeument through scenario driven integration activities (section 4). More specifically, the MO
facilitates the, workload deployment and migration processes. For the latter the IBMC supports the
workload amigration process ensuring efficient resource use, improved scalability, and continuous
service'availability during migrations. The CMDT provides enhanced workload monitoring related
measurements to the platform, which are being consumed through the RabbitMQ, by the NEMO meta-
OS components. Finally, the SEE (Kubernetes cluster) which is a solution for creating secure execution
environments for critical and dynamic services, ensuring robust, secure, and efficient operations, is
available and integrated within NEMO meta-OS ecosystem. The NEMO user (workload provider) can
formulate a request through the Service Management layer asking for their services to be deployed in
SEE. This is indicated by the proper configuration of workloads’ intents.

2.5.1.3 NEMO Service Management

The NEMO Service Management layer components’ functional updates are presented in detail in section
3 of the present document. More specifically, section 3 provides insights on components’ architecture,
provided functionality offered by the respective modules, their communication interfaces and associated
data models, initial results and plans in view of the final version of the platform.

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 36 of 146
Initial version

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status: FINAL

Document name:

&3 NEMO

The provided functionality from the NEMO Service Management layer components’ namely, IBMC,
MOCA, LCM and Intent-based API can be considered almost completed. The final releases of these
components will be documented in D4.3 [1], due on M33, which will also describe the final integrated
version of the NEMO meta-OS.

2.5.1.4 NEMO Cross-cutting Functions

With reference to the crosscutting functions, Al is vertically present in the metaOS architecture. The
CFDRL component provides capacity of learning decision-making models capitalizing on the data
collected by the NEMO meta-OS monitoring tool procedures offered by PPEF, CMDT and mNCC. The
integration between the monitoring tools and CFDRL has been achieved allowing NEMO workload and
cluster-level measurements to be digested by the CFDRL through RabbitMQ. The Al-assisted decision
making that concern the workload optimal deployment and migration processes will be conducted, in
view of the final version of the NEMO meta-OS, as it requires the verified integration of the participating
components for these workflows which has been achieved in the framework of this yetsiony(first)and is
documented in section 4. The learning procedure in CFDRL combines two complementary*learning
paradigms: Federated Learning (FL) and Reinforcement Learning (RL). In addition; CFDRL to address
privacy preservation challenges introduced FREDY (Federated Resilience:Enhancediwith Differential
Privacy) [5] which integrates Flower with Private Aggregation of Feacher Ensembles (PATE) [6] to
bolster privacy features. For the first release of the NEMO meta-OS the"CFDRL component is
considered as partially integrated.

Regarding Security in the NEMO meta-OS is built on the concept of ZeroTrust. NEMO Access Control
(NAC) allows the implementation of a comprehensive approach to applying flexible, easily
configurable, granular privileged access to NEMO resources by either internal components or, beyond
the perimeter, to external entities. NAC provides aicommon secure API gateway for all the requests that
are targeting NEMO meta-OS and offers access control based on a set of modular criteria, which may
include identity management, catering for, Authentication, Authorization, and Accounting (AAA). The
NAC integration results in the context of the first release of the NEMO meta-OS are presented in section
4.

The NEMO meta-OS “eommunieation layer is based on RabbitMQ, a message broker enabling
communication amd“synchronization among distributed systems and applications. It acts as an
intermediary, facilitating secure message exchange while offering essential capabilities like message
routing, queuing, and transformation.

Finally, the,PPEE component facilitates service and resource monitoring for the NEMO meta-OS at both
workload and cluster level. The PPEF concerns the metrics collection from the deployed monitoring
tools; the evaluation between the collected measurements and the intents’ expectation targets and the
communication of this information within NEMO meta-OS (through RabbitMQ). The integration of the
PPEF within NEMO meta-OS has been achieved and presented in section 4.4.

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 37 of 146
Initial version

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status: FINAL

Document name:

&3 NEMO

3 NEMO Service Management Layer updates

This section reports the latest specifications and design options for the NEMO components of the
Service Management layer in the NEMO architecture. These components provide a middleware between
core NEMO functionality and workloads, but also end users. They support ZeroOps principles and
expose interfaces to external entities (services or users). Moreover, the supported services include
Lifecycle Management and DLT-based accountability of workload or infrastructure usage and
collectively contribute to NEMO openness and adoption by third parties, referring to application or
infrastructure owners, as well as developing entities.

3.1 Intent-based Migration Controller

3.1.1 Overview

The Intent-based Migration Controller (IBMC) serves as a key component within the NEM@ . ecosystem,
it is designed to facilitate the migration of workloads across the IoT, Edge, and Cloud Continuum. By
employing intent-based networking concepts, the IBMC ensures _efficient resource use, improved
scalability, and continuous service availability during migrations. This approach enables the IBMC to
interpret and execute high-level migration intents, which suppouts the flexibility needed to manage the
complexities of the meta-OS environment effectively.

3.1.2 Architecture

Figure 32 illustrates a simplified high-level arehitecture of the components underneath the Development
View of the IBMC.

ibmc-controller: Is in charge of*handling “the communications with other components. This
communication is performed by managing different RabbitMQ'' queues and reading/delivering the
correct messages needed for each migration step.

Velero'?: Each Velero eperatiomis defined as a custom resource using a Kubernetes Custom Resource
Definition (CRD) andiis stered.in efcd. Velero also includes controllers responsible for processing these
custom resources.to handle backups, restores, and related tasks. This allows to backup or restore every
resource in a cluster, with the capacity of selectively filter by resource type, namespace and/or label.

S3 Sterage®mDedicated to store the backups created by Velero, it’s a key element for the migration
process.sT'he,S3 bucket is located in the main NEMO cluster and every other cluster has access to it to
allow'the pessibility of retrieving backups from one cluster to another.

! http://www.rabbitmgq.com/
12 https://velero.io/
13 https://aws.amazon.com/s3/

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 38 of 146
Initial version

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status: FINAL

Document name:

&8 NEMO

Ibme-contralier
|
backup / restore
. Backup | | ..
Velero Controller

I ’ E
= O
S3 Bucket
ety Kés apl
Figure 32: IBMC Simplified Architecture Q

Figure 33 shows a more complete architecture of the IBMC. is re, the migration process of a
workload between two different clusters is represented, displa mmunication sequence since
the migration is triggered.

Restore Baca
Iessige (2] Completed (4) Cluster 2

(o]

resiore

4

e]

Controier Velero

] !
-0 0-©
= 8 |yl bl

Figure 33: IBMC Complete Architecture

Y

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: [PU [Version: [1.0 [Status: [FINAL

Document name: Page: 39 of 146

3.1.3 Interaction with other NEMO components

Sand mierd contaming T workicsd. O
mrel avebabekly recanement [Shen 1]

Warklond Migralion Sequence Diagram

et wimkdomd nkrmoinn | Shend |

.. ________________ Updte w0 T v
[[
! I
Figure 34: rati

load i with an availability requirement.

om the Intent-API (deployed or not deployed).
in any cluster, then a migration action is triggered.

bl el N

9]

cluster

Chasgichs oni daphiyrrasnl oo migralaen pobin [Sligp 3

C tlmler vl (i 4]

S mgration message bo iAC (S 51

Diagram

tance located in the OneLab main cluster.

&8¢ NEMO

e vy Iﬂhlnl%uﬁ

D e e e

MC downloads the resources and restores them in the target cluster. After this, the

load is removed from the source cluster.
he IBMC sends a message to the Intent-API updating the workload status, specifying the

where it has been deployed.

14 https://min.io/
Document name: :'Dqﬁiéllé\\/c;\r/s?g:ed NEMO platform & laboratory testing results. Page: 40 of 146
Reference: D4.2 IDisseminaﬁon: IPU |Version: |1 .0 Status: FINAL

&3 NEMO

3.1.3.1 Meta-Orchestrator (MO)

The meta-Orchestrator (MO) plays a central role in the IBMC's workflow. When the MO receives a
migration intent, it makes a placement decision based on cluster availability. This decision is sent to the
IBMC and contains the target cluster for the migration.

3.1.3.2 Intent-Based API

The Intent-Based API stores all the information related to the workloads deployed. It is responsible of
creating and sending the intents that trigger the migration of a workload.

When a migration is successfully completed, a message from the IBMC is sent to the Intent-Based API
to update the workload status, including the new cluster where it has been deployed.

3.1.4 Initial results
The sections below provide a summary of the results generated through the utilization of the/component.

3.1.4.1 Standalone results

An initial test of the standalone IBMC component was conducted in the Onellab_environment. The
experiment's setup included both OneLab clusters (the main cluster and the K3s cluster) with Velero
pre-installed and configured. Both clusters had access to the MinlO 2sinstanee deployed in the main
cluster. Additionally, a workload was already deployed in the main«€luster as'part of the preconditions.

To simulate a migration scenario, a migration trigger was manually sent. This triggered the migration
process, moving the workload from the main cluster to the K3s'¢cluster, Upon completion, the migration
was successful, with the workload fully deployed in the'K3s cluster and removed from the main cluster.

3.1.4.2 Integration results

An end-to-end test was conducted involving the/Intent-Based API, the Meta-Orchestrator and IBMC.
The initial conditions were the same ofithe previousfexperiment, with the same objective of migrating a
workload from the main cluster to the K3s,cluster.

In this experiment, the process starts, with/the Intent-Based API posting an intent to RabbitMQ, which
is read by the Meta-Orchestrator. The Meta-Orchestrator interprets the intent and verifies whether the
workload ID specified injthesintent'is already deployed in any cluster. To obtain this information, the
Meta-Orchestrator sends airequest back to the Intent-Based API in order to retrieve the workload's
deployment status:

If the worklead is alteady deployed in a cluster, the Meta-Orchestrator compares the availability value
of that cluster to the one specified in the intent. If the availability value of the current cluster is lower,
the Meta-Orchestrator initiates a migration by posting a message to the RabbitMQ queue corresponding
totheicluster where the workload is currently deployed. This message contains the information detailing
the workload to be migrated (workload ID), the cluster where it is deployed and a new target cluster
meeting the availability requirements.

When the IBMC controller receives this message, the migration process proceeds as in the initial
experiment, resulting in the workload being successfully deployed in the K3s cluster and removed from
the main cluster.

15 https://min.io/

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 41 of 146

&3 NEMO

3.1.5 Conclusion and roadmap

The Intent-Based Migration Controller (IBMC) within the meta-OS framework represents a major leap
forward for the NEMO platform, enabling smooth workload migration across the loT-to-Edge-to-Cloud
continuum while sustaining a dynamic balance within the meta-OS environment.

Looking forward, the IBMC roadmap emphasizes ongoing refinement and adaptation to meet emerging
needs and technological advancements within the meta-OS landscape. Planned enhancements and future
directions are outlined to ensure the IBMC continues to lead in migration capabilities as the meta-
Operating System ecosystem evolves.

3.2 Plugin & Applications Lifecycle Manager

Overview The Plugin & Applications Lifecycle Manager (LCM) is a versatile mechanism designed for
unified, just-in-time management of plugins and applications throughout the NEMO ecosystemsServing
as the bridge between NEMO users and the ecosystem, the LCM enables seamless deployment of
workloads, such as services, applications, and plugins, within the NEMO environmenty It'also supports
over-the-air updates and bug fixes, ensuring the system remains up to date.

While workloads are running on the NEMO meta-OS, an event-driven mechanism monitors critical
performance-related events. Additionally, a security controller overseesysecurity events, notifies users
of detected anomalies, and implements mitigation measures againstidentified eyber threats. The LCM’s
user interface will integrate with other NEMO components,gncluding the Intent-based API, PPEF,
MOCA and CMDT, to provide a comprehensive and cohesive usenexperience. The interfaces offered
include user profiles, workload management and menitoring, security monitoring, and historical
analysis tailored to the user's role.

3.2.1 Architecture
The LCM comprises of a set of subcomponents mamely the LCM CD, LCM Controller, Security
Controller, Event-based Response, .CM Repository and LCM Dashboard.

The LCM high-level architecture of NEMO meta-OS is depicted in the development view diagram in
Figure 35.

LCM CD is based on ARGO'CD framework to manage NEMO workloads provided by NEMO partners
or NEMO Openg€all participants and deploys workloads in S3 bucket container.

LCM Controller 1s a control mechanism that facilitates communication between LCM submodules and
the NEMO'eeosystem, offering endpoints for sending and receiving information.

Security, Controller handles runtime security monitoring of NEMO workloads, notifying both users
and relevant NEMO components of detected events.

Event-based Response module is designed to implement automated actions in response to events
initiated by user input or detected by other NEMO components.

LCM Repository is used to store data related to workload lifecycle, security incidents, detected events
and other workload related information to provide historical analysis and runtime statuses.

LCM Dashboard serves as the gateway between end-users and the NEMO meta-OS ecosystem,
granting privileged users access to manage their workloads and monitor both performance and security.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 42 of 146

&3 NEMO

| I I

Me1a-0S Provder Meta-OS Consumer Meta-QS Partner
]
Lfooycie Manager Dashboard g - Qe
s Lidncycin Manager Securty Colroser
3 f—d PPLF
g - . LCM CD bd g
0
z ‘ o §
% .. Lo Fvant Suned Rasprones -] 4
- xr - NOCA

LOM Controber ‘ .
— ;\‘
LOM Repowtory q
J e
Figure 35: LCM Architecture
3.2.2 Lifecycle Manager

322.1 LCMCD

LCM CD, which corresponds to LCM Continuous Deployment, automates workloads deployment by
ensuring that the state of applications in a Kubemetes cluster matches the configurations stored in Git
repositories. Its key strength lies in the declarative approach to application definition, enabling users to
define Kubernetes manifests in a version-controlled format.

Figure 36 provides a descriptiomyofithe payload transmitted while a plugin is being deployed.

Figure 36: Plugin Deployment

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 43 of 146

&3 NEMO

LCM CD is based on ArgoCD tool and provides features like automated synchronization, rollback
options, and support for multi-environment deployments. With its user-friendly web interface and
seamless Kubernetes integration, LCM CD simplifies the deployment lifecycle, enhancing
collaboration, traceability, and overall efficiency.

3.2.2.2 LCM Controller

The LCM Controller contains the logic of the LCM component and interacts with the internal
subcomponents as well as the other NEMO components to retrieve information in real-time and feed the
user interface while stores meaningful information in the LCM storage for keeping the historical status
and performance for further analysis. The LCM controller includes functions to subscribe and consume
data from relevant RabbitMQ channels, API endpoints to communicate with other components and
functions to store and retrieve data from the storage repository. As the LCM Controller intesacts with
the other NEMO components more details on functions and APIs used will be reported inSection4.2.3:

3.2.2.3 LCM Repository

LCM Repository uses Elasticsearch!® for storing, searching, and analysings@ata pfovided by various
NEMO components like Intent-based API, PPEF, MOCA and CMDT. Elasticsearch provides fast search
responses and comes with extensive REST APIs for storing and searching the data. Stored data include
the status and lifecycle of the workloads, security events detected, workload performance and resource
usage.

3.2.2.4 Security Controller

The Security Controller caters for security monitering at runtime regarding NEMO workloads and alerts
both the user and relevant NEMO components for deteeted€vents. This component aims to complement
the security validation checks made before deployment of workloads into NEMO clusters, such as
scanning processes in the Continuous» Integration workflow or in the images registries, as these
validation checks take place prior to the,containers’ deployment and even block some deployments as a
result of failing the security assessment./The Security Controller aims to identify security incidents
which take place at containers’ runtime and may refer either to events at the system call level or to
vulnerabilities arising from “software dependencies, known vulnerabilities and insufficient security
configurations.

Falco'” frameworkywas Selected as the foundation for the development of the plugin that is available
through ‘Seeurity, Controller. Falco is an open-source, CNCF adopted, runtime security platform that
allows youito detect and respond to suspicious behavior within containers and applications. Falco is
deployed in OneLab premises, as illustrated in section 2.4.

Falcoicontinuously monitors the deployed containers and generates security auditing events that are
digested by the Security Controller and are handled by the LCM. The Security Controller is responsible
for the filtration of security events and subsequently their mapping with deployed workloads that
correspond to a NEMO user.

3.2.2.5 LCM Visualization

LCM visualization is the main interface of NEMO project providing the necessary interfaces for each
NEMO user role to manage workloads and resources in NEMO meta-OS. The LCM visualizations aim
to provide interfaces for seamless user experience with NEMO ecosystem available to experts and less
experienced users. The target is to provide the relevant information for workloads and resources
lifecycle, usage, and security in a compact format at different levels of detail (workload, resources, user,

16 https://elastic.co/
17 https://www.falcoframework.com/

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 44 of 146

&3 NEMO

system). Indicative screenshots are presented in section 3.2.4 containing the initial results of the LCM
component based on the implementation and integration progress at the current phase.

3.2.3 Interaction with other NEMO components
The LCM component is deployed in the NEMO Onelab infrastructure, as sho

wn in Figure 37.

MEmo- mm I

Figure 37: Onelab deployment LCM and Security Controllér

The LCM interacts with Intent-based API and MOCA components through relevant API endpoints and
consumes data from PPEF, CMDT and Security Controller through 'RabbitMQiexchanges. This section
describes in more detail the functions and data models used to interact with other NEMO components.
Figure 38 depicts the data model of the Intent-based API endpoints which are used for the management
of the workloads.

GET /workload/
{
name: string,
version: string,

}

POST /workload/
{
name i stringy
version:istring,
schema{},
typefstring (chart),
intents: Array [],

}

POST /workload/upload/
{
file: file (tgz helm chart),
name: string,
version: string
}
POST /workload/{id}/template/
{
release name: string,
namespace: string,
values override:({},
include crds:boolean,
is_upgrade:boolean,
no_hooks:boolean,
ingress_enabled:boolean,
intents: [
{
intent type,
service_start_time,
service_end_time,
targets: [
{

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 45 of 146
Initial version

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status: final

Document name:

&8 NEMO

target name,
target condition,
target value range

}

GET /workload/instance/
{

instance id: string

}

Figure 38: Intent-based API workload management

Figure 39 presents the data model of the Intent-based API endpoints which are used for the man e
of the intents.

GET /intent/ O
{
intent id:string
}
POST /intent/template/
{
instance id: string,
intent type: string,
service start time: string,
service end time: string,
targets: [

¢ 39: Intent-based API intents management

el of the MOCA API for the resources provisioning.

Figure 40 presentssthéidat:
GET /moca/clus i
{
P /moca uster/register

cluster name:
cpus: number,
memory: number,

storage: number,
availability: string,
green_energy: string,
cost: string,

cpu_base rate: number,
memory base rate: number

string,

Figure 40: MOCA Resource provisioning

Additionally, the LCM subscribes to RabbitMQ exchanges to retrieve real-time data from PPEF,
Security Controller and CMDT.

In summary, the retrieved information includes cluster usage metrics from PPEF (CPU, RAM, and
storage, etc.), security events identified by the Security Controller (both system-wide and per workload),
and data from CMDT, which currently encompasses the number of workload replicas and network

Document name: Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 46 of 146
Initial version
Reference: D4.2 IDisseminaiion: IPU |Version: |1 .0 Status: final

&8¢ NEMO

related information including workload’s response times. Finally, data consumed from RabbitMQ or
API endpoints are stored in LCM internal repository for historical overview and detailed analysis.

Figure 41 depicts functions to retrieve data to/from LCM Repository.

GET /cluster/{id}/data/
{
timestamp from: string,
timestamp to: string,
cluster id: string
}
GET /workload instance/{id}/data
{
timestamp from: string,
timestamp to: string,
workload id: string
}
GET /workload security events/{id}/data
{

timestamp from: string,
timestamp to: string,
workload id: string
}
GET /workload CMDT/{id}/data
{
timestamp from: string,
timestamp to: string,
workload id: string
}

Figure 41: Searchin<::CM ReposiEry

3.2.4 Initial results

The LCM provides interfaces for different services such as Plugin Monitoring, Workload Monitoring,
Intent Management and Resource Provisioning. Figure 42 illustrates the homepage of LCM dashboard.

THEE Y b Chimih Vigs R e

Defzult - Delaull 5 D faalt

Manage Waorkloads m Mamage Hesournes

ad Manitoring Intent Management Resource Provisioning

Figure 42: LCM Dashboard Homepage

Plugin Monitoring offers a CI/CD process and lifecycle monitoring for NEMO plugins and applications.
Currently, the user is able to deploy a plugin and manage already deployed plugins while monitoring
basic lifecycle parameters like versioning and activity are also available.

The Workload Monitoring section includes functionality to manage workloads in their whole lifecycle,
from registering to Intent-based API to deployment and running several instances according to the user
role and credentials. More details on the LCM UI available views are presented in Section 4 which
concerns the NEMO scenario-driven integration and verification results.

Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 47 of 146
Initial version

Reference: D4.2 IDisseminaiion: IPU |Version: |1.0 Status: final

Document name:

&3 NEMO

3.2.5 Conclusion and roadmap

The achievements of LCM component, considering developments that are deployed in OneLab
environment, fully integrated in NEMO meta-OS include:

e Workload management and monitoring

e Resources provisioning and monitoring

e Plugin deployment and lifecycle management
e Security/vulnerability scanning and monitoring

Towards the NEMO final version release, our goal is to deliver a comprehensive tool for managing and
monitoring workload and resource lifecycle. This tool will consolidate information from various NEMO
components into a streamlined format, ensuring a seamless experience for both expert and nonsexpert
users within the NEMO ecosystem.

3.3 Monetization and Consensus-based Accountability

3.3.1 Overview

The Monetization and Consensus-based Accountability (MOCA) component enables the fair and secure
monetization of the NEMO platform among the different users partigipating (¢onsumers or providers).
MOCA creates a distributed, tamper-resistant blockchain based ledger between different operators and
verticals to track provenance and enforce secure negotiation and transaetion of resources such as through
smart contracts. The MOCA system provides the users with “credits” - the accountability unit of the
platform. Their purpose is to reward the users,who contribute to the platform by either providing
infrastructure or deploying their services and*allow them£o accelerate precommercial exploitation of
multi-tenant AloT-Edge-Cloud continuum. Thesisage of DLT-based smart contracts for computing the
accounting tasks allows for transpareney and immutability in the transactions.

In retrospect, MOCA encompasses the following features:

o It uses blockchaingtechnologiess(more specifically Quorum) to perform the accounting actions
and to transmit the results:This allows for immutability and traceability for all actions.

e It is integrated, with NEMO’s Authentication platform; therefore, the users have role-based
capabilities.

e It givesyperiodic but also real-time reports of the users’ information, like their bill details and
the state.of their resources (clusters, workloads).

e _Theaccounting process takes into consideration the amount of the offered resources, the region
demands and the infrastructure type to properly calculate the costs and rewards of each user.

3.3.2 Architecture
MOCA comprises of the following components:

e An Event Server that allows other components and users to retrieve information on the details
of the registered resources (clusters and workloads) and the accounting events.

e The Decentralized Applications (DApps), which contain the accounting logic and store
information like the IPFS links to the cluster configuration files and the NEMO resources’
information.

e The Smart Contracts component (private Quorum blockchain), where DApps are deployed,
and the transactions and calculations take place.

e An IPFS network, where the cluster configuration files are stored. Like Quorum, IPFS offers
immutability to the data and detection of malicious attacks.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 48 of 146

&3 NEMO

Since the full description of the sub-components' functionality is provided in deliverable D4.1, the basic
workflow will be presented, briefly. Figure 43 shows the sub-components that are part of the MOCA
component. The Event Server is the main communication interface with the rest of the MOCA
components which is responsible for handling (a) the requests for the cluster registration, (b) the
communication with the /PFS for storing the cluster configuration files and (c) the exposure of the
functionality of the DApps through REST API endpoints. The MOCA in periodic basis computes the
resource usage of the deployed workloads and the usability status of the registered clusters. These
periodic tasks communicate with the DApps and update appropriately the users’ information held by the
Event Server. A closer inspection on the calculation details is delivered in Section 3.3.4 and a full
example of the workflow in Section 4.

WA

Evem Sy 1 et aets
|

= Lo Tl] ™ * ™

Figure 43; MQCA diagram

3.3.3 Interaction with otheg NEM@® c@mponents
The MOCA component isdeployed nsthe NEMO OneLab premises, as shown in Figure 44.

Figure 44: The MOCA deployment in the Onelab cluster

Figure 45 demonstrates the interactions of MOCA with the rest of the NEMO components. More
specifically, MOCA integrates directly with the NEMO Intent API and NEMO RabbitMQ. Other
NEMO components (LCM, PPEF, CMDT) can go through the Intent API, to access the MOCA Event
Server endpoints. The RabbitMQ integration establishes the connection between MOCA and the NEMO
Meta-Orchestrator. During the cluster registration, the two components exchange though the RabbitMQ
the appropriate information to complete the action.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 49 of 146

R fn ~

1
r-'l T [ree.
! =

] E § §.!
1) [}
-]

] \

Figure 45: MOCA integration diagram

The following sections give a more thorough look on the MOCA API and the capabilities it offers.

Note: All the endpoints require to be authorized with the use of an authorization header, which sends a
token provided from the NEMO Access Control plugin, as shown in the demonstration ofiFigure46.

Bimmliie e iral s

Figure 46: MOCA API authorization example

3.3.3.1 MOCA,APIL

This sectionypresents the MOCA API that is exposed and is available in openAPI format (

&0 a0 onck). Figure 47, illustrates the relevant contents. The complete
functienality offered by the MOCA API (endpoints and data models) is described in detail in ANNEX
A.

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 50 of 146
Initial version

Reference: D4.2 |Disseminction: |PU |Version: |1.0 Status: final

Document name:

&3¢ NEMO

HEMO MOCA AP|™

s Eee e = — .

r—i e cmeey
— s g Eg,
=

{ir s

seeny

B amerrriio ot —]
R
B vvivomuiniis e w
BB ~imin i w e
=l e e Sp— -
= oo o R
B vvma mmannjin [P —
[T TR i TV
apwni fhan ealerabon aslap
ETF = o miimlcm nim -]
e A sabep redimen

f i . -

i rrmren i

o [meEve—"

R .
mrhiml corperaipes
B i oy i . W

O
%

igure 47: MOCA API

3.3.4 Initial result
MOCA uses various s to perform the accounting of the NEMO platform. In first version

four contracts namely the (a) NemoTokenEstimation, (b) NemoFunds, (c)

InfrastructureOwn odel ‘and (d) ServiceProviderModel. In the following sections, a more thorough
analysis of the nctionality will be presented to better understand the calculation mechanism.

ntact, NemoTokenEstimation is responsible for supplying the costs for all the registered clusters

N . A cluster can be categorized by whether it is in high/low demand, and its usability status in

erms of available resources (CPU, RAM, Network bandwidth, etc.). The contract stores that

formation and allows for the retrieval of the details via the MOCA Event Server with the use of the
/nemo_token_estimation_setup endpoint (Figure 48).

Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 51 of 146
Initial version

Reference: D4.2 IDisseminaiion: IPU |Version: |1.0 Status: final

Document name:

&3 NEMO
S YR

plaster epderw, {1d] GUTET_AEIE_sElair
Flpafer vpdatar|idi i ke paehiad wpdiin o B

namo_token astimation setup

wemy Bokes ey leed e Gl e wiad ewl el lee setes simaie A i

FE EREIE

[=T TS . L

Figure 48: Setup region informatién through Event Server

An example of a successful cluster registering information is shown in Figure 49.

Figure 49: Logs of inserting cluster information

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 52 of 146

Table 5 shows the details of the contract.

&8 NEMO

NemoTokenEstimationSetupContract.sol

pragma solidity 70.8.0;

contract NemoTokenEstimationSetupContract {

address private owner;

struct RegionInfo {
bool isSet;
bool highDemand;
uint256 highDemandCost;
uint256 regionalCpuCosts;

uint256 regionalMemoryCosts;

uint256 highDemandCost,
uint256 _regionalCpuCostsLength,

uint256 _regionalMemoryCo Lengt

require (

andLength &&
_highDemandCost &&
_regionalCpuCostsLength &&
_regionalMemoryCostsLength,

must match"

structor () {

_owner = msq.sender;

}

function initializeNemoTokenEstimationInfo (

string[] memory _region,

bool[] memory _highDemand,
uint256[] memory highDemandCost,
uint256[] memory regionalCpuCosts,

uint256[] memory regionalMemoryCosts

public
onlyOwner

validateRegionInfo (

mapping (string => RegionInfo) public regionalInfoMapping; O
modifier onlyOwner () {
require (msg.sender == _owner, "Caller is not owner!");
} ;
modifier validateRegionInfo (
uint256 _regionLength,
uint256 _highDemandLength, ‘

Document name: Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 53 of 146
Initial version
Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

&8¢ NEMO

_region.length,
_highDemand.length,
_highDemandCost.length,
~regionalCpuCosts.length,

for (uint256 1 = 0; i < regio
regionalInfoMapping[regio
isSet: true,
highDemand: _highDeman
highDemandCost: _highD
regionalCpuCosts: reg

regionalMemoryCosts:

function isRegionSet (string memory

RegionInfo memory info

return info.isSet;

_regionalMemoryCosts|

regionalInfoMapping[

_regionalMemoryCosts.length

n.length; i++)

i]]

{
RegionInfo ({

nf
dflil,
emandCost[i],
ionalCpuCosts[i],

i]

_region) public view returns? E

_region

}

function getRegionInfo (v

256)

string memory region

) public view returns (bool, uint256,

ui
Inf&éMa

RegionInfo storage info

(

info.

regio _region]
return
highDemand,
info.highDemand@os
info.regionalCpu

info. osts

regi

n

Table 5: The NemoTokenEstimation smart contract details

ndling transactions of clusters and workflows
e

oFunds contract is responsible for keeping track of registered clusters and workflows, storing

and emitting the transactions taking place and tracking the tokens available for every entity. When the
sage of a workload is computed, the NemoFunds contract makes sure to appropriately change the
balance of the actors involved (clusters, workloads, NEMO platform). Then, the changes become known

to the Event Server though the use of events. Table 6 shows the details of the contract.

NemoFunds.sol

pragma solidity 70.8.0;

contract NemoFunds {
address public owner;
uint256 public nemoTotalBalance;

uint256 public nemoActionsCounter;

Document name: Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 54 of 146
Initial version
Reference: D4.2 IDisseminaﬁon: IPU |Version: |1 .0 Status: final

&8 NEMO

uint256 public nemoRate;

enum TransactionType {
deposit,
withdrawal

}

struct NemoBalanceInfo {
string customerId;
uint256 customerTokens;

TransactionType transactionType;

mapping (uint256 => NemoBalanceInfo) public nemoBalanceActions;

mapping (string => uint256) public customersBalance;

mapping (string => bool) public registeredCustomers; O
event CustomerRegistered (
string customerId,

string customerType,

uint256 balance,
uint256 nemoBalanceActionId v
)i

event DepositTokens (
string customerId,
uint256 tokens,
uint256 balance,

uint256 nemoBalanceActi d

)i

event WithdrawTokens (
string customer
uint256 &

lanceActionId

difie¥r onlyOwner () {
equire (msg.sender == owner, "Caller is not the owner");

’

constructor () {
nemoTotalBalance = 10000000000;
nemoActionsCounter = 0;

nemoRate = 20000;

function isCustomerRegistered (
string memory customerId
) public view returns (bool) {

return registeredCustomers|[customerId];

D4.2 Advanced NEMO platform & laboratory testing results.

Document name: e - Page: 55 of 146
Initial version

Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

&8 NEMO

function registerCustomer (
string memory customerlId,
string memory identifier
) public {
require (
!isCustomerRegistered (customerId),
"The customer is already registered!"
)i

if (
keccak256 (abi.encode (identifier)) ==

keccak256 (abi.encode ("ServiceProvider"))

) A

registerServiceProvider (customerId) ; O

} else if (

keccak256 (abi.encode (identifier)) ==
keccak256 (abi.encode ("InfrastructureOwner"))

registerInfrastructureOwner (customerId) ; VE

function registerServiceProvider (st
registeredCustomers|[customerId]
customersBalance[custo
nemoBalanceActions|
customerId:
customer@ek

tra i O

1)
t rRegistered (
customerId,
"service",

customersBalance [customerId],
nemoActionsCounter

)i

nemoActionsCounter++;

function registerInfrastructureOwner (string memory customerId) private {

registeredCustomers[customerId] = true;
customersBalance[customerId] = 1000000000;
nemoBalanceActions[nemoActionsCounter] = NemoBalanceInfo ({

customerId: customerId,
customerTokens: customersBalance[customerId],

transactionType: TransactionType.deposit

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 56 of 146
Initial version

Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

Document name:

&8 NEMO

}) i

emit CustomerRegistered (
customerId,
"infrastructure",

customersBalance[customerId],

nemoActionsCounter

nemoActionsCounter++;
function depositTokens (string memory customerId, uint256 tokens) public {
require (nemoTotalBalance > tokens, "NEMO is out of funds!!!"); O
nemoTotalBalance -= tokens;
customersBalance[customerId] += tokens; Q
nemoBalanceActions [nemoActionsCounter] = NemoBalancel
customerId: customerId,
customerTokens: customersBalance[customerId],
transactionType: TransactionType.deposit
b):

emit DepositTokens (
customerIld,

tokens,

~

customersBalance [leu d
s

nemoActi\
)i
nemoAct ter++;
@OE withdrawTokens (string memory customerId, uint256 tokens) public {

equire (
customersBalance[customerId] > tokens,

"Customer is out of funds!!!"™

)i
customersBalance [customerId] -= tokens;
nemoTotalBalance += tokens;

nemoBalanceActions [nemoActionsCounter] = NemoBalanceInfo ({
customerId: customerId,
customerTokens: customersBalance[customerId],
transactionType: TransactionType.deposit

});

D4.2 Advanced NEMO platform & laboratory testing results. Page: 57 of 146

Document name: o -
Initial version

Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

&8 NEMO

emit WithdrawTokens (
customerId,
tokens,
customersBalance [customerId],
nemoActionsCounter

)i

nemoActionsCounter++;

function nemoPayment (string memory customerId) public {
require (
customersBalance[customerId] > nemoRate,

"Customer is out of funds!!!"

)i

uint256 nemoPaymentFee = (customersBalance[customerId]

10 ** 8;

customersBalance[customerId] -=

nemoTotalBalance += nemoPaymentFee;

nemoPaymentFee;

K

nemoBalanceActions [nemoActionsCéunte = alanceInfo ({
customerId: customerld,
customerTokens: customersBalanc ustomerId],
transactionTypeg Trans ionType.withdrawal

b):

sBalance|[customerId],

nemoActionsCounter

nemoActionsCounter++;

function getNemoBalance () public view returns (uint256) {

return nemoTotalBalance;

function makeTransaction (
string memory serviceld,
string memory clusterId,
uint256 tokens

) public {

withdrawTokens (serviceld, tokens);

3 D4.2 Advanced NEMO platform & laboratory testing results. 5
Document name: Initial version Page: 58 of 146
Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

&3 NEMO

depositTokens (clusterId, _tokens);

nemoPayment (clusterId);

Table 6: The NemoFunds smart contract details

3.3.4.3 Cluster provision

The contract InfrastructureOwnerModel is responsible for registering the clusters joining NEMO. It
communicates with the NemoFunds contract to complete the registration. The process provides the
cluster with 10 tokens as an initialization sum. An example of the result of the registration of the cluster
from the blockchain’s side can be seen in Figure 50, where the transaction logs show the successful
registration of the cluster. The logs show that an event was emitted (the CustomerRegistered event), to
inform the Event Server of the action. It should be noted here that all the arithmetic values presentediare
normalized (multiplied with a constant variable 10®), since Solidity'8, the programming lafiguage for the
smart contacts, cannot handle float values. Therefore, all the values are multipliedsWith‘a big enough
constant to avoid issues with any float numbers.

Bigure,50: Example of the transaction logs of the cluster registration

A more thorough'example of how the cluster registration is performed will be presented in Section 4 of
the deliverable, Table 7 shows the details of the contract.

InfrastruGkureOwnerModel . sol

pragma sodidity ~0.8.0;

Importf” . /NemoFunds.sol";

contract InfrastructureOwnerModel {

NemoFunds public nemoFunds;

struct InfrastructurelInfo {
string cluster name;
uint256 totalCpu;
uint256 totalMemory;
uint256 totalDisk;

string ipfsLink;

18 https://soliditylang.org/

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 59 of 146
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name:

&8 NEMO

string availability;
string green energy;
string cost;

uint256 cpu base rate;

uint256 memory base rate;
mapping (string => InfrastructurelInfo) infrastructurelnfo;
constructor (address nemoFundsAddress) {

nemoFunds = NemoFunds (nemoFundsAddress) ;

function register(

string memory clusterId, O
InfrastructureInfo memory info

) public {
require (Q

!'nemoFunds.isCustomerRegistered (clusterId),

"The customer is already registered!"

)i E
string memory identifier = "InfrastructureOwner'
nemoFunds.registerCustomer (clusterId, <denti fier)
infrastructureInfo[clusterId] =%"Infrastr Info ({

cluster name: info.cluster name,

totalCpu: info.totadlpu,

totalMemory:
totalDisk: i

ipfsLink

memory base rate: info.memory base rate

function getInfrastructurelnfo (

string memory clusterId

public

view

returns (
string memory,
uint256,
uint256,
uint256,
string memory,

string memory,

D4.2 Advanced NEMO platform & laboratory testing results.

Initial version Page: 60 of 146

Document name:

Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

&3 NEMO

require (

)i

return (

info.
info.
info.
info.
info.
info.
info.
info.
info.

info.

string memory,
string memory,
uint256,
uint256

nemoFunds.isCustomerRegistered (clusterId),

"The customer is not registered!"

InfrastructureInfo storage info

cluster name,
totalCpu,
totalMemory,
totalDisk,
ipfsLink,
availability,
green_energy,
cost,

cpu_base rate,

memory base rate

infrastructureInfo[clusterId];

3.3.4.4 Workload provision an@usage calculation

L able 7: The'InfrastructureOwnerModel smart contract

The ServiceProviderModeli.contract is responsible for registering the NEMO workloads joining NEMO
and calculating their impact'on the cluster resources. It communicates with the NemoFunds contract to
complete the registration and the NemoTokenEstimation to retrieve the costs associated with the regions.
The registrationsprocess provides the workload with 5 tokens as an initialization sum.

An exampleitransaction is available in Figure 51, where its logs show the emitted event with the

registration’s info.

Figure 51: Example of the transaction logs of the workload registration

Document name: Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 61 of 146
Initial version
Reference: D4.2 |Disseminqtion: |Version: |1 .0 Status: final

&3 NEMO

The main function of the contract is to calculate the tokens that will be charged to the workload for the
usage it made in a period, for example, 5 minutes. The next figures show the logs for the usage
calculation, and it will be explained how these reflect on the involved actors (clusters, running
workloads). Figure 52 shows how the balance of the workload was affected. In this simple example, for
its usage of the cluster resources, it was charged 0,00001 tokens.

Figure 52: Example of the transaction logs of the workload usage fee

These tokens are credited to the cluster, as shown in Figure 53¢

Figure 53: Example of the transaction logs of the cluster reward

Figure54 shows that a 0.02% rate is rewarded to the NEMO account from the cluster’s balance to reward
NEMO with a small payment for the services provided.

Figure 54: Example of the transaction logs of the NEMO fee paid by the cluster owner

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 62 of 146

&3 NEMO

Finally, Figure 55 gives a detailed account on the computation details (how many resources were used
to justify the cost). In this example, the workload was charged 0,00001 tokens for utilizing 5,6
milliecycles of CPU and 0,235 MB RAM for a 5-minute time window that the metrics were collected.

The token calculations are examining the usage of the workload in question against the total resource
usage of the deployment cluster, in order to reflect the real-time pressure on the cluster. Additionally, if
the workload has exceeded the base resource limitations of the region it is assigned to, then that will be
added to the total cost.

A more thorough example of how the workload usage calculation is performed end-to-end through
MOCA will be presented in the next section.

Figure 55: Example of the transaction logs of the calgulation of the workload usage fee

Table 8 shows the details of the contract.

ServiceProviderModel.sol

pragma solidity ~0.8.0;
import "./NemoTokenEstimatignSetupCénthact.sol";

import "./NemoFunds.sol";

contract ServicePRmoviderModel {
NemoTokenEstimationSetupContract public nemoTokenEstimationSetup;
NemoFunds, public siemoFunds;

addressgppubliciowner;

struct ServiceMetrics {
String serviceld;
string clusterId;
string region;
uint256 cpuUsage;
uint256 memoryUsage;
uint256 clusterCpuUsage;

uint256 clusterMemoryUsage;

event ServiceComputeTokens (
string serviceld,
string clusterId,
uint256 cpu,

uint256 ram,

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 63 of 146

&8 NEMO

uint256 tokens
)i

mapping (string => string[]) public ServiceProviderWorkflows;
constructor (
address nemoTokenEstimationSetupContractAddress,
address nemoFundsAddress
nemoTokenEstimationSetup = NemoTokenEstimationSetupContract (
_nemoTokenEstimationSetupContractAddress

)i

nemoFunds = NemoFunds (nemoFundsAddress) ;

"The customer is already registered!"

"Data for region mu b

egistration (serviceId) {
ing memory _identifier = "ServiceProvider";

unds.registerCustomer (serviceld, identifier);

function computeCredits (
ServiceMetrics memory metrics
) public checkRegionData(metrics.region) {
require (
nemoFunds.isCustomerRegistered(metrics.clusterId),
"The cluster is not registered!"™
)
require (
nemoFunds .isCustomerRegistered(metrics.servicelId),

"The service is not registered!"

modifier checkRegistration (string memory serviceId) { O
require (
!'nemoFunds.isCustomerRegistered (serviceld),

Document name: Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 64 Of 146
Initial version
Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

&8 NEMO

bool highDemand,

uint256 _highDemandCost,
uint256 regionalCpuCosts,
uint256 _regionalMemoryCosts

) = nemoTokenEstimationSetup.getRegionInfo(metrics.region);

string memory serviceld = metrics.serviceld;
string memory _clusterId = metrics.clusterId;

uint256 _tokens = 0;

// CPU
uint256 cpuTokens;
uint256 cpuUsage = metrics.cpuUsage * 10 ** 3;
uint256 maxCpuUsage = metrics.clusterCpuUsage;
//RAM @
uint256 _ramTokens;
uint256 ramUsage = metrics.memoryUsage * 10 ** 3;
uint256 _maxRamUsage = metrics.clusterMemoryUsage;
if (cpuUsage > regionalCpuCosts) {
_cpuTokens = (_cpuUsage / maxCpuUs@ge) * 10 8;

} else {

_cpuTokens = 0;

if (_ramUsage > regionalM osts) {

_ramTokens = ~maxRamUsage) * 10 ** 8;
} else {
ra s

="'cpuTokens + _ramTokens;

~_highDemand) {

_tokens += _highDemandCost;

_tokens = _tokens / 1000;

nemoFunds.makeTransaction(serviceld, clusterId, _tokens);

emit ServiceComputeTokens (
_serviceld,
_clusteriId,
_cpuUsage,
_ramUsage,
_tokens

)i

D4.2 Advanced NEMO platform & laboratory testing results.

Initial version Page: 650f 146

Document name:

Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

&3 NEMO

Table 8: The ServiceProviderModel smart contract

3.3.4.5 Accountability Service

In this section we present an example of how MOCA computes the tokens that will be charged for the
resource usage of the deployment cluster end-to-end. For this example, we will use a workload deployed
in the NEMO OneLab cluster (Figure 56).

Figure 56: OneLab workload details

This workload is first registered though the Intent-Based API andiis deployed to the cluster through the
Meta Orchestrator. After the successful deployment an event isfpublished in the NEMO RabbitMQ
which is consumed by MOCA. (Figure 57 shows' for the workload of Figure 56 that the Meta
Orchestrator has sent the payload which informssof the successful deployment.) Then, MOCA registers
in the appropriate smart contract for the specific,workload (for more details refer to section 3.3.4.4
workload provision and usage calculation) ‘(Figure,58) and give the owner of the workload five
initialization tokens (Figure 59)#*The registration event can also be viewed though the
/moca/api/vl/accounting events endpoint (Figure 60).

Figure 57: RabbitMQ logs of workload deployment

Figure 58: Workload registration to blockchain

R . =

Figure 59: User info for workload owner after registration

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 66 of 146

Tl i e Lars_ el
ey

)=

Figure 60: Accounting event for workload registration

At this point, it should be noted that the smart contracts are already deployed in the blockchain andieady
to be executed when the right conditions are triggered (for example the registration of a workload that
was examined before). The deployment of the contracts, at this point of the development, is performed
with the help of the MOCA Helm chart available here'’. Figure 61 shows the Kubérnetes jobs. that are
created to perform the deployment of the contracts and Figure 62 gives an example.ofithe logs for the
successful deployment of one of the contracts (in this case NemoFunds).

Figure 61: Smart Contract§idéployment though Helm chart

Figure 62: Logs of deployment of NemoFunds contracts

19 https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-service-management/monetization-and-

consensus-based-accountability/moca/-/tree/main/bc-network?ref _type=heads

th._2 Advgnced NEMO platform & laboratory testing results. Page: 67 of 146
Initial version

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status: final

Document name:

&3¢ NEMO

In this example we are using the region “eu-west-1" of the Onelab cluster, in which we are going to
register the region as high demand and charge a fee of 0.01 tokens and set the base utilization limit as
0.05417 milliseconds for the CPU and 0.2345 MBs for the memory. If these limits are exceeded, the
workload will be charged accordingly (more details on the costing mechanism can be found in section
3.3.4.4 workload provision and usage calculation). Figure 63 and Figure 64 show the successful
registration of the region to the blockchain though MOCA.

nemo_token estimation_sefup

Riiily /e _icken_wrilsalion rerien e jpiap whkinwijpse arivg memis s @

i b L Ty &

1
PR E e 5 \A

Figure 64: Response for successful registration

MOCA has in place automatic mechanisms that communicate with the PPEF component to acquire the
resource usage of all the deployed workloads in periodic intervals (e.g. 5 minutes). Figure 65 shows the
logs of MOCA, which has received from the appropriate smart contract the event with the calculation
details.

Figure 65: MOCA logs of the DApps component calculating the resource usage of a NEMO workload

Querying the endpoint for the accounting events activity (Figure 66), as the workload owner, we notice
that the events hold information like the type of the transaction (deposit or withdraw), the workload ID

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 68 of 146
Initial version

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status: final

Document name:

&3¢ NEMO

(customer_id), the tokens the workload was charged depending on its usage (tokens), the state of the
balance for the workload (balance), the ID of the accounting event as it is registered in the smart contract
(balance_action_id) and the timestamp of the registration of the accounting event.

P wl

Figure 66: The accountifig events of thaworkload user

Querying the endpoint available for the user’s information, we can see that the balance has been updated
accordingly for the previous transactions Figure 67.

rem—r— S 3 V

Figure 67: Workload user information

The details of the amount of resources used and the tokens charged, are also available through the
/moca/api/vi/workload computations endpoint (Figure 68).

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |1 .0 Status: final

Document name: Page: 69 of 146

&3¢ NEMO

L T Y - | WD T - e

e s

Figure 68: Details of the workload computation events

If we also query the accounting events as the cluster owner, we can see that events,of depositing the
payment to the owner are registered (Figure 69).

Smrpmrn by

Figure 69: Cluster owner accounting events

Through the endpoint for the user’s information, we can also check that the balance has been updated
appropriately (Figure 70).

syl L

e re- resp——r

Twdw mEma

N iy

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 70 of 146
Initial version

Reference: D4.2 |Disseminction: |PU |Version: |1.0 Status: final

Document name:

&3¢ NEMO

Figure 70: Cluster owner user information

Now, we will examine the case of scaling up an already deployed workload from one to three pods
(Figure 71).

Figure 71: Scaled up deployment

Since the deployment has been scaled up, its usage has increased, as well as the tokens it will be charged.
Figure 72 shows the logs of MOCA when receiving the token computation for the workload resources.

Figure 72: MOCA logs for scaled workload usage

The last two entries in the /moca/api/vi/workload computations endpoint show'the eomputations before
and after the workload scale, respectively. Both the memory and the CPU haye increased and, as a result,
the usage cost has a slight increase, as well (Figure 73).

Figure 73: Comparison of workload usage results

373.5 ¥ Conclusion and roadmap

The conducted developments that materialized the first release of MOCA as part of the 1* integrated
version of the NEMO meta-OS are summarized below.

o The development of smart contracts that facilitate the accounting process supporting several
business models.

e The integration with the Service Management Layer components as part of the 1% integrated
version of the NEMO meta-OS, namely the Intent-Based API and PPEF

e The development of MOCA to handle the different types of users and the calculations and
updates made in a private blockchain network.

The associated results were presented in this section verified the functional competence of the
component. Although majority of the required functionality and the corresponding integration with the
meta-OS platform has already been achieved, the final release of the MOCA component in view of the
final version of the NEMO meta-OS, concern the following activities:

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 71 of 146

&3 NEMO

e Finalization of the accounting approach used in the smart contracts, by enriching the
calculations.

e Provision of a management mechanism for adding, updating and deleting smart contracts via
APL

e Enhancements on the provided functionalities to further enrich the information available for the
NEMO users and their resources.

o Integration with the final version of the NEMO meta-OS.

3.4 Intent-based SDK/API

3.4.1 Overview

The NEMO Intent-based Application Programming Interface (IB-API) and Software Development Kit
(SDK) act as the programmatic interface of NEMO to external users and/or services. It exposesiNEMO
functionality, as delivered by NEMO components, through RESTful calls to the API. Itialso supports
configuration and for clusters and workloads in a declarative manner, realizéd" as intent-based
orchestration of network and computing loads. The Intent-based API stores NEMQ, werkloads and their
instances as API objects, which can be queried and managed via HTTP APL€alls; The Intent-based API
can be accessed programmatically by NEMO users, as well as graphically viathe LCM UL

3.4.2 Architecture
The Intent-based API follows a modular architecture for deliveringits main capabilities:

¢ Intent-based management that is consistent for both network and computing tasks
e Workload management and discovery
e NEMO functionalities exposure
The final version of the architecture features aisimplified design and is depicted in Figure 74.

The IB-API services delivering intent-based orchestration include:

e NEMO Intent Manager:
e NEMO Intent Validator
e NEMO Intent Collector
The IB-API serviees responsible for workload management and delivery include:

NEMO Workload Manager
NEMO Wotkload Validator
NEMO Workload Registry, including the workload documents
NEMO Intent Validator
o NEMO Intent Collector
In addition, the NEMO functionality exposure is directly offered through the Intent-based API Server,
which provides RESTful endpoints for the supported operations.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 72 of 146

&8¢ NEMO

(R NEND Ragishy (#— oo

wall
frlar ragpt
MERID Infent e MEMD Warklond
Wakdatar poy * Validalor

HEHUI : ':.I'Imukkmdm dupicpiTigrale
T cherzamard l' laeminale vaork

3% i = [Applicaiont | |
A A it Sarvice.f Lemul
1 1 1
MEMO MEMO MEMD I s .
= |,:|'|_:|.'Cu;|-E| m||'|?|,|r"q.|' _|||-||‘1:'|u!' ! |
[l l | Intent-based API | |
| L L
i | craabe get | MOCA
| Inbenl-based AP Saror dakite Gl
|
Ny — = ol
| Vi gl regictar, cepiory,
| dalele intery nolily user ity workload, "oUn user
: i |
e e e e,
: MEMO Intent Marager regisher, get interis NEMD Warkload Manager
| - L
: | | roaiser mﬂJ
]
]
|
|
|}
|
|
i

interd futfiiment data

PPEF Orche -

Figure 74: The fi ntent<based API architecture

3.4.2.1 NEMO Intent Manager

Intent-driven Management has been introduced originally for automating and adding intelligence into
network systems. Network agement, in 5G systems is becoming too complex to deal with,
considering increased hu i ention or policy-based network management, present in 3G and 4G
ent (IDM) has, then, arisen to simplify network management and

architectures. Intent-Dr
mteractlon of i involved, t eholders, with operators having been alleviated from the burden of having
etwork infrastructure, their pohcles etc. [7] 3GPP [8] defines an intent as an

undertakes the intents’ -both for network and computing- lifecycle management within the NEMO
cosystem. This subcomponent provides backend logic for the management of the NEMO intents,
following 3GPP TS 28.312 V18.3.0 (2024-03) [9]. Based on this technical specification, an intent has
the following properties:

e tis typically understandable by humans and also needs to be interpreted by the machine
without any ambiguity.

e Jtexpresses in a declarative manner on the desired result (“what”) and not the way it will be
achieved (“how”). So, the intent includes metrics and target values, allowing alternative
options to achieve them.

e The expectations expressed by an intent is agnostic to the underlying system implementation,
technology and infrastructure.

Following TS 28.312, the NEMO Intent Manager subcomponent supports state management of the
intents as per their lifecycle, as defined in Figure 75, borrowed from [9].

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemincxtion: IPU |Version: |1 .0 Status: final

Document name: Page: 73 of 146

&8 NEMO

1. intent creation

e .-."_“FE__“ 7 .._m_ 3, Feasibility check
3. Chook feasibility outcomes
5 . Intent updated
Fulfitment
intent suspended or event

accurs during fulfiimen

1
B i | i |
4) 4 4 4 State transitions
|

}
E |lJl:I
) will
\ -
[T R R AT

10 10 110 10 w/i 2
-1 10,
Figure 75: State transitions and reporting events for Intents delivered for fu 91, Eported also in NEMO
So far, five intents have been defined and integrated into the I -based API, namely:

Cloud continuum (network-oriented intent)
Deliver computing workload (computing-orniented inten

e o o o
w2
[¢]
£
[¢)]
[¢]
>
[¢]
[¢]
g
Qo
=}
~
o
g
=]
g
=
g
Qo
=.
[¢]
E»
(€]

Federated learning (computing-orie
e Energy carbon efficiency (co i

- id: 1

tion verb: ENSURE

expectation object:
id: 1
object type: NEMO WORKLOAD
object instance: b6a77b%a-4cb2-41e9-953b-0a0b569c8cdb
context selectivity: null
object contexts: []

expectation_ targets:

- id: 1
target_name: cpuUsage
target_condition: IS_LESS_THAN
target value range: '20'
target contexts: []

- id: 2

Document name: Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 74 of 146
Initial version
Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

&8¢ NEMO

target _name: ramUsage
target condition: IS _LESS_THAN
target value range: '200'
target contexts: []
expectation contexts: []
intent report reference:
id: 1
intent fulfilment report:
id: 1
intent fulfilment info:
fulfilment status: FULFILLED
not fulfilled state: COMPLIANT
not fulfilled reasons: []

expectation_fulfilment results:

- expectation fulfilment info: O
fulfilment status: FULFILLED
not fulfilled state: COMPLIANT
not fulfilled reasons: [] Q

expectation id: 1

target fulfilment results:

- target: 1 E
target achieved value: '0.307'
target fulfilment info: (

fulfilment status: FULFILLED
not fulfilled state: COMPLIA
not fulfilled reasons: []

- target: 2

target_achieved va
target fulfilment i
fulfilmen@lst FILLED
te: COMPLIANT
easons: []

heck_report:

nfeasfbility reason: null
T@sgftpdated time: '2024-11-05T15:10:07.9493612Z"'

intent contexts: []

Figure 76: The DeliverComputingWorkload intent definition in NEMO Intent-based API

3.4.2.2 NEMO Intent Validator

The NEMO Intent Validator is performing a set of validation checks on intents that are newly defined
or desired to be updated. It interacts with the Intent Manager enhancing its provided functionality
offering validation checks which include:

o Schema validation: This process ensures that data conforms to a defined structure or format,
typically described in a schema. A schema acts as a blueprint, specifying the expected data
types, required fields, and constraints for a dataset. The schema used for intents follows 3GPP
TS 28.312 V18.3.0 specification, so the component ensures that the required fields are provided,
within the acceptable value range, as well as in acceptable combinations (e.g. compatible target
names, intent types and expectation verbs). Schema validation is crucial for maintaining data

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 IDisseminaﬁon: IPU |Version: |1 .0 Status: final

Document name: Page: 75 of 146

&3 NEMO

integrity, preventing malformed or unexpected data from causing errors or security
vulnerabilities in applications. By enforcing these rules at an early stage, schema validation
helps streamline data processing and reduces the likelihood of runtime issues.

e [ntent definition updates: There are fields in the defined intents that are allowed to be updated,
such as the period during which the intent will be active or the expectation target value range.
However, such updates are allowed before the intent is activated, i.e. for intent states
“FULFILMENTFAILED”, “TERMINATED” and “ACKNOWLEDGED .

e [ntent operations: Operations on intents can be performed, depending on both the desired intent
action and the “NotFulfilledState” value. Intent operations include “RESUME”, “SUSPEND”,
“TERMINATE”, etc. The “Not_Fulfilled State” field represents the state of the intent, while it
is not fulfilled. The attempted action must comply with the state transition schema in Figure 75.

o [Intent expectation updates: Are allowed only for expectations defined for each_intent.
Depending on the selected “userLabel” (intent type), the corresponding allowed expectation
targets are check for validity. For example, “DeliverComputingWorkload” support targets of
type ram usage and/or cpu usage.

o Additional Feasibility checks: After intent validation, an asynchroneus validatienstep is
performed in order to test the feasibility of the intent in question. Reasons for failure in this step
include “serviceStartTimes” & “serviceEndTimes” out of order and/or collisions with an already
existing Intent for the given workload.

3.4.2.3 NEMO Intent Collector

The NEMO Intent Collector is a significant modality of the Intentsbased API which facilitates the
collection of the intent associated measurements governed by the PPEF component. More specifically,
the NEMO Intent Collector receives as an input.thelintent related measurements that correspond to the
expectation targets that have set by the NEMO, user, as they are reported from the PPEF. The
communication with the PPEF is achieved via‘a RabbitMQ listener service that is provided by the
NEMO Intent Collector. Then the consumed information is processed and structured as intent fulfillment
data which correspond to intents/expeetation targets’ achieved values. Finally, the intent report is
consumed by the NEMO IntentiManager which updates the corresponding information in the NEMO
Registry.

3.42.4 NEMO Wotkload Manager

The NEMO Workload Manager modality is the heart of the Intent-based API component. Its
functionality concernsthe management and the governance of the NEMO workloads as it is dictated by
the NEMO “user. Specifically, the NEMO Workload Manager manages the processes for
registration/deregistration, deployment and migration of workloads, including NEMO annotations,
workflow_execution, provisioning, logging and notification of external entities. As it is illustrated in
Figurey74, the NEMO Workload Manager handles the workload requests that are dispatched by the
Intent-based API. The requests can be triggered either from the LCM UI or directly from the Intent-
based API Server. The workload Manager validates the workload registration and/or deployment
configuration files that are issued through the NEMO Workload Validator (its respective activities are
detailed in section 3.4.2.5). At the same time, the NEMO Workload Manager facilitates the update of
the workload state in the NEMO registry and responds to workload queries. Once the workload request
is pre-processed the workload’s status changes to “onboarding” and subsequently it’s communicated
through the RabbitMQ message queue to the Meta-Orchestrator (MO). In case the workload validation
process fails, the workload status is changing to rejected and the request is terminated. The MO executes
the requested action and dispatches back the result of the requested activity (acknowledgement
message). The NEMO Workload Manager updates the NEMO Registry accordingly.

Finally, the NEMO workload Manager supports automated provisioning, triggering authorization
requests (RBAC access) for the workload to Access Control component.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 76 of 146

&3 NEMO

3.4.2.5 NEMO Workload Validator

The NEMO Workload Validator’s offered functionality, in the context of the NEMO Workload
Manager, is described above. This section sheds light into the specific validation tests that are performed
by the module. The validation tests are listed below.

1. Helm chart structural validation. The uploaded .zgz helm chart that corresponds to the
workload upload request triggered by the NEMO user through LCM UI or directly through
the Intent-based API (invokes the /workload/upload/ endpoint; described in Annex B) is
validated by checking the existence of Chart.yaml, values.yaml, templates folder (with
appropriate .¢p!/ .yaml template files) alongside with the contents of Chart.yaml (matching
version and naming scheme during the invocation of the /workload/ POST endpoint). In
addition, all the .yam! files pass a syntax check.

2. Helm chart template validation. The uploaded .7gz helm chart is extracted and undergoes'a
rendering phase of the templates with the default provided values.yaml. (by usingthesstandard
helm template sub-command)

3. Docker image access validation. For every generated manifest (Deployment,, Statefulset,
DaemonSet) the container image of every mentioned image is tested for access. Provided
imagePullSecrets are taken into consideration with additional™ secrets of type
kubernetes.io/dockerconfigjson or against well-known dockerirepositories (e.g. NEMO
repository)

4. Ingress support validation. If the uploaded NEMO workload‘supports ingress via the Access
Control component, the validator checks for the existenee ofia Kubernetes Service with the
annotations described in the figure below.

Aferairatinn Tyn& D laiim pradivg [ELE]
FeliTa] s e o i ML FARME 1h BFVOR B3 aaposable
Fipam wia MEWK! ingrase
TREATH] (R4 Ina] s W;.-_;.‘ i reseEt i detaudis in the port o T2 The pysosisied Serve por
e T SEvice mwked phoes
nemo singresgsait 11 pineai -] lrgress podh o mEpose
TR TS B | oy T - - m.'h':l Tmplemenishontpecric” Irgress: path Sype
Ty

Figure 77: Kubernetes Service Annotations

3.48¢ Initial results

The Intent-based API associated results stemming from the integration tests that are conducted in view
of the 1* integrated version of the NEMO framework are documented in section 4.

3.4.4 Conclusion and Roadmap

The implementation of the core functionality that is offered by the Intent-based API in the context of
the 1% integrated NEMO framework is considered completed. The component was integrated with the
rest of the NEMO Service Management Layer components namely, the MOCA, PPEF, LCM and the
Access Control. Moreover, the Intent-based API demonstrated its integration with the NEMO Kernel
and the MO supporting the workload deployment and migration process.

With respect to the next steps, the Intent-based API as part of the 1* integrated version of the NEMO
framework, will be deployed in NEMO pilots’ infrastructures and will be further validated through the

20 https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-service-management/intent-based-

sdk_api/intent-api#exposing-a-workload-document-instance-via-nemo

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 77 of 146

&8 NEMO

NEMO npilots’ specific use cases and also via the integration with the NEMO OC1 offered meta-OS
extensions and OC2 provided NEMO services.

In view of the final version of the NEMO meta-OS framework, the Intent-based API aims to further

enhance its provided functionality where necessary (according also the feedback that will be gained
through the abovementioned activities) improving the quality of its provided services.

Document name: Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 78 of 146
Initial version
Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

&3 NEMO

4 NEMO scenario-driven verification & results

The purpose of this section is to provide insights on the integration tests conducted in the framework of
the integration activities that materialized the 1% integrated version of the NEMO platform. NEMO
integration verification approach that is defined and adopted, as described in section 2.3, establishes the
foundation upon which the integration activities are conducted and documented. Emphasizing on cross-
cutting functions of the NEMO meta-OS, NEMO defined four (4) system-level integration scenarios
that aim to illustrate the technical readiness of the NEMO developed components. These scenarios, as
detailed below, define the context of the integration activities conducted for the realization of the 1%
integrated version of the NEMO meta-OS. The four (4) scenarios are the following:

* NEMO cluster registration

* NEMO workload registration and provisioning
* NEMO workload scheduling and orchestration
* NEMO workload lifecycle management

For each of the abovementioned test cases, the respective scenario thatds followed is described. Based
on that, the resulting process diagram highlights the steps that materialize the integration objective in
each case. The scenario-driven process diagrams reflect the lateststeration/evolution of the process that
was described in D1.3 [10]. Finally, the results that are collected for each of the steps are detailed and
subsequently the summary checklist, presents the outcome of the conducted tests.

4.1 NEMO Cluster registration

This section describes the NEMQ Cluster registration integration scenario. The Cluster registration
workflow aims to provide technicalidetails of the process that is followed allowing the NEMO partner
(infrastructure owner/provides) to‘access the NEMO meta-OS service management layer through either
via Intent-API or LCM UI and register a new resource (infrastructure) to be utilized and governed by
the NEMO meta-OS. The associated sequence diagram is presented in Figure 78.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 79 of 146

&8¢ NEMO

? Vil
A\

Pl AT e

[
r o -_| ' .
—

l—u-.l—n.—hl- ~ Pl g — I "

-1 o g
| 1 g,
o e L
I g = e e

Figure 78: Process diagram for clustergegistra

4.1.1 Verification scenario

Test 1: NEMO Cluster registration

R

Objective To verify the ter registration process in NEMO that facilitates the resource

provisioning triggered by the EMO partner (resource owner)
Components e L
sed API
MOCA
e RabbitMQ

eaturesgto be | The feature that this scenario aims to test are the cluster registration process which is
este initiated by the NEMO partner (cluster provider) through the LCM UI & Intent-based API.

Then, the newly registered cluster is added into the NEMO meta-OS ecosystem by the
MO. The results (status) of this process are then visualized to the user.

Test setup All the participating components were deployed in the NEMO meta-OS cloud/edge

infrastructure at OneLab (dev cluster 1).

Steps 1. Cluster registration through the LCM Ul
2. Cluster registration through the Intent-based API (realized in MOCA)
3. Cluster registration message communication to MO
4. Cluster addition process by MO
5. Cluster status provisioning to RabbitMQ
6. Cluster status update visualization in LCM UI
Document name: :'Dqﬁiéllé\\/c;\r/s?g:ed NEMO platform & laboratory testing results. Page: 80 of 146
Reference: D4.2 IDisseminaﬁon: IPU |Version: |1 .0 Status: final

4.1.2 Results

&8 NEMO

This section documents the process that is described in the scenario above step by step.

4.1.2.1 Cluster registration through the LCM UI

The following figure (Figure 79) depicts the cluster table summary that the NEMO meta-OS governs.
Through this interface the user is able to overview some high-level information that describes each of
the provided infrastructures.

Semrch

L

[k o S
#M Bl
B AR
BT Thok
! Al
ST BT

Figure 80, illustrates the form that correspon:
this form the NEMO user is able to.add the description and subsequently initiate the cluster

& Chusters Table

Figure 79: Cluste viewion LCM GUI

& Register Cluster

Figure 80: Cluster registration page on LCM GUI

Document name: Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 81 of 146
Initial version
Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

&3¢ NEMO

4.1.2.2 MOCA operations for cluster registration

When a new cluster comes for registration, the /moca/api/vi/cluster/register endpoint can be used
through the LCM UI. Alternatively, as indicated in the process diagram above, the user can trigger the
associated endpoint directly from the Intent-based API (Figure 81). For both of these cases, the cluster
registration request is executed via the MOCA API provided endpoint that is mentioned above.
The cluster provider needs to provide the specifications of the cluster that is to be added, like its name,
the resources it provides (CPUs, memory, disk), the availability percentage, the green energy percentage
that reflects the amount of energy that used to power the cluster and comes from renewable energy
sources, its cost category and the associated costs for its available resources. Figure 81 shows the
registration payload of a cluster named “k3s-onelab”. Figure 82 shows the response of the successful
registration to MOCA. The response is the cluster’s id.

b

"___'___'-: “lusimrs reaiine P W.n wmmim o il
P '
N
’4'. ‘%(f
A= Emnnrplin n ' "\\.
datn 7 »%—f_,“
Lt [T g-b, %
. N
s =

+ % —a

Figurélg@MOCA Cluster registration demonstration

Figure 82: MOCA Cluster registration response

4.1.2.3 MO cluster registration operation

When MOCA receives a new request performs the necessary validation checks and sends the request to
the NEMO Meta Orchestrator, through the NEMO RabbitMQ, in order to join the cluster with the
NEMO platform. Figure 83 shows this step of the cluster registration workflow.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |1 .0 Status: final

Document name: Page: 82 of 146

Figure 83: MOCA sends cluster details to Meta Orchestrator

Figure 84 shows that the Meta Orchestrator has successfully received the cluster’s details.

Figure 84: Meta Orchestrator receives the cluster registration request

After the request is processed successfully by the Meta Orchestrator, it informs MOCA again though
the RabbitMQ. Figure 85 shows that MOCA received the Meta Orchéstrator validation message for the
successful registration. We can, additionally, see that the cluster was'also registered in the blockchain.

Figure 85: MOCA receives the Megta Orchestratofiresponse

4.1.2.4 MOCA cluster registration to the bldéckchain

To register the cluster in the blockchain, MOCA communicates with the DApps deployed, specifically
the one responsible for handling the'cluster registration (see section 3.3.4.3). Figure 86 shows MOCA
calling the contract and successfully registering the cluster, receiving back the appropriate response (the
cluster registration initial tokens);

Figure 86: Register cluster to blockchain

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 83 of 146

&3¢ NEMO

MOCA, then, appropriately, updates the details of the cluster and the user. Figure 87 shows that the
status of the cluster has been updated, as well as the tokens provided to the cluster.

Figure 87: Updated cluster details

Finally, Figure 88 shows that the cluster provider can view through.the /moca/api/vi/acounting events
endpoint the event of the registration, and more specifically the depeositsof theten initialization tokens.
It should be noted that the balance field is the total amount of tokens‘ewned by a user. Here, the user
owns a number of resources. Every time a user registers a new resouree, the registration reward tokens
will be added to his/her total balance. ' '

Figure 88: MOCA accounting event for cluster registration

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |1 .0 Status: final

Document name: Page: 84 of 146

&8¢ NEMO

4.1.3 Verification summary checklist

Checklist for Cluster registration scenario

Yes | No Comments
1 Is the cluster registered by the user through the LCM UI w Success
2 Is the cluster registered through the Intent-based API (realized in | Success
MOCA)
3 Is the registration process communicated to the MOCA a Success V
4 Is the MOCA validation check successfully executed? v Success V
5 Is MOCA communicating successfully the request to MO? g Success
6 Is the MO provided functionality successfully executed? v Succ
7 Is the cluster successfully added to the NEMO meta-OS? at S S
8 Is the updated status communicated successfully to MOCA through | s ccess
RabbitMQ?
9 Is the new cluster registered to the MOCA operated BC Success
10 | Are the new cluster details available through the MOCA API? Success
11 | Are the information visible to the LCM UI s | The provisioning of the
accounting events to the
LCM UL Feature to be
available in the final

version.
12 | Is the updated status visible to @] user? W Success
$ klist for cluster registration scenario

ing sequence diagrams dictating the integration scenario that is followed are presented in

and Figure 90, respectively. The former describes the steps necessary for the workload

registration process while the latter the workload deployment and provisioning steps. The workload
rovisioning step that is facilitated by the Access Control is illustrated in Figure 91.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemincxtion: IPU |Version: |1 .0 Status: final

Document name: Page: 85 of 146

Ankdihd

Figure!89: Proeess diagram for workload registration

&8 NEMO

Document name: Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 86 of 146
Initial version
Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

g

mlﬁi

TS w e Lo L] RS P

Figure 90: Process diagram for workload deployment (provisioning)

Document name:

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 87 of 146
Initial version

Reference:

D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

&3¢ NEMO

Ferriinad ooviden
I_ e et s g
o Apyakaak S o el e o vl
1)
T i
V
& |
'Ihul'l"
bl
Io Camprme g sl om0

S ?g

Figure 91: Access contr ce diagram - detailed view

4.2.1 Verification scenario

Test 2: NEMO workload registration and provisioning

O workload registration, deployment and provisioning process

Objective

Components O Workload Registration

o LCM
o Intent-based API
o RabbitMQ
e NEMO Workload deployment
o LCM
o Intent-based API
o CMDT
o RabbitMQ

o Meta-Orchestrator

o CFDRL

o NEMO Access Control
e NEMO Workload provisioning

o Intent-based API

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 IDisseminaiion: IPU |Version: |1 .0 Status: final

Document name: Page: 88 of 146

Features to be
tested

Test setup

Steps

4.2.2 Results

&3 NEMO

o Access Control

To verify the workload registration, deployment and provisioning process in NEMO, the following
features will be tested:

e Workload Registration
e Workload Deployment
e Workload Provisioning

The feature that this scenario aims to test are the workload registration process which i§
initiated by the NEMO consumer (workload provider) through the LCM UI & Intent-based
API. Then, the newly registered workload is requested to be deployed into the NEMO
meta-OS ecosystem by the MO. Finaly the workload provisioning process is triggered
which is facilitated by the Intent-based API and the Access Control components. The
results including the workload status are visualized to the user.

The associated components are deployed in OneLab facilities"(dev eluster'1 & staging
cluster 2)

The steps identified in the associated sequence diagrams are listed below:

1. NEMO workload registration
a. Workload registration by the NEMQ user through the LCM Ul
b. Execution of workload validation process in Intent-based API
c. Notification of the LCM UI about the status of the workload registration
2. NEMO workload deploymént
Workload deployment by the NEMO user through the LCM GUI
Execution of worklead validation in Intent-based API
Communieation of the deployment request to the LCM UI
@ommunication'of the deployment request to the MO
Deployment operation process triggered by MO
Request scheduling by the CFDRL component
Deployment operation process executed by MO
Communication and update of the deployment operation status to the Intent-API
1. Visualization of the updated status to the LCM UI
3. NEMO workload provisioning
NEMO workload provisioning is triggered by the Intent-based API
NEMO Access Control workload setup
NEMO Access Control Keycloak plugin functionality
Performance resilience of Kong Plugin

‘Bt oo o

poowp

This section documents the process that is described in the scenario above step by step.

4.2.2.1 Workload registration through LCM GUI

The workload registration process is facilitated by the LCM component and its Ul as it’s described in
section 3.2.4. The LCM component utilizes the Intent-based API provided functionality in order to
realize the NEMO user triggered operations for the workload registration process. Figure 92, presents
the form that corresponds to the workload registration and Figure 93 presents the list of the registered

workloads.

Document name:

D4.2 Advanced NEMO platform & laboratory testing results.

Initial version Page: 89 of 146

Reference:

D4.2 |Disseminqtion: |PU |Version: |1.0 Status: final

Intent Management provides the privileged user with the interfaces to create and manage intents. Figure

Figure 92: NEMO workload registration throug @

B Fegraime

-t — new
et o -
e s [—— 1 R
- ——

v P

G —

- W R -

A o —
- e
- G —

o~ W .

— | W

Figure 93: NEMO registered workloads

94 shows the create workload instance form.

o
s o 0.
< - I R
B LI
- LI -
By E
LU W
m o .
m @
® LI
CBE - B B

i
R
L

Document name:

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version

Page:

90 of 146

Reference:

D4.2 |Dissemination: [PU [Version: [1.0

Status:

final

&8¢ NEMO

= Create Workload Instace

P P

o P e PO L AT

v Tppr
[T frem Czeeaa biragies kioa] _

e (e = Cim v

DA, 17 DO 1] 101 LRI, .00 06 1]

S e o S i e

[FETT P] [R i |

rare L 15 AR THAM « 5

Adid Targwi

Wi

Figure 94: NEMO workload instance creation (workload depl ess) through LCM Ul

The newly created NEMO workload instance is visible in the'workload instances table in LCM Ul

(Figure 95).

" —n = smmm_zaw e [= =

=
" " @ B @ B W OB ® @

Figure 95: NEMO workload instances and their respective status in LCM UI

he workload is getting validated by the NEMO Workload Validator. Its functionality is described in
section 3.4.2.5 which presents the validation checks that are performed by the validator. Once the tests
have been successfully passed (Figure 96)then the workload upload request is dispatched.

Figure 96: NEMO workload validation

Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 91 of 146
Initial version

Reference: D4.2 IDissemincxiion: IPU |Version: |1.0 Status: final

Document name:

&3 NEMO

Finally, the NEMO workload instance is deployed in the NEMO meta-OS platform as confirmed by the

acknowledgment message received by the MO. The workload 1D matches with the one that is visible in
the LCM UI (Figure 97).

e onw | ke g e re
wewink- dd e
il b e Tl

Earoleg Smmary el

v T R T T P Rl LT e o

Figure 97: Workload deployment confirmation through RabbitMQ for the aéwlyacreated workload instance

4.2.2.2 Meta-Orchestrator & Deployment Controller

The Meta-Orchestrator (MO) within its architecfure has several subcomponents, including the
Deployment Controller (DC). This component handles communication, processes workload deployment
configuration files, turns them into workloads” instancesgand finally deploys those workloads’ instances
in a selected cluster. The Intent-based API sends the.message with the workload to be deployed by the
MO through RabbitMQ in JSON format, (Figure98), and the message body created in the RabbitMQ
queue, (Figure 99). The MO then processes that message, decoding it to adapt the JSON into a data
structure within the programming language. It checks for metadata like labels and namespaces in the
manifests and assigns defaultsuif they are missing.

th._2 Advgnced NEMO platform & laboratory testing results. Page: 92 of 146
Initial version

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status: final

Document name:

https: fiintnod-apbramo cralaboon'zpliv 1 wondlea

By

Figure 98: Intentsbased APhendpoint where the scenario starts.

Moreover from Figure 98 is important‘remark that the future workload has the name “echo-server-
integration24” and it has a workload,id with the value: “bf4c24eb-c263-4854-b886-51b915d79264 .

Figure 99: JSON published in RabbitMQ to be consume by MO.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |1 .0 Status: final

Document name: Page: 93 of 146

Figure 100: Target cluster without the workload.

In Figure 100, before the workload deployment we can check that any workload is already deployed.
Once the MO triggers the workload deployment, we can see in Figure 101 the pods of the workload
“echo-server-integration24” deployed in the k3s-onelab as the target cluster chosen.

Figure 101: Deployment Controller log, receiving the workload petition and deploying it.

In parallel, the MO asks the CFDRL which cluster is best for deploying a workload; the CDFRE
recommends a specific cluster in direct communication with the MO. The recommendation of the
CFDRL which is the product of the inference that stems from Al model that CFBRL incorporates, was
simulated as the development of the component is in progress. Once the MO"has the workload ready
and the CFDRL recommendation, the MO deploys the workload in the chesen/cluster using the OCM
libraries and the NEMO cluster network. The results are showed in Figure 102 up and running as pods.

Figure 102: Werkload alréady.deployed in the cluster selected.

Finally, in Figure 103, the DC publishes‘the previous message into RabbitMQ to update the workload
status. The Intent-Base API and'ether components will read this status.

Figure 103: Deployment Controller (MO) final response.

4.2.2.3 Access control provisioning

In deliverable D4.1 [2], the deployment and integration of the NEMO Access Control with the Intent-
based API were presented. For the integration part, we had developed an API that would receive a
payload with the necessary information to properly set the workload in the Access Control (set the Kong
services, routes and plugins). In this section, we will present the improvements made to the Access
Control workload provisioning to better automate and simplify the workflow.

During the initial creation of a workload, the Intent-based API offers the ability to choose whether to
deploy the workload with an Ingress or not. For this scenario, we will create a workload for a simple
NGINX?! server (Figure 104).

2! https://nginx.org/

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 94 of 146

el Lo et ey . R

Wi e

o — Smnrwe

Tl
z il famr

Figure 104: Create workload through Intent-based API with Ingress support

When the workload is successfully created, the Intent-based API produces an Ingress thatholds specific
annotations to integrate with the NEMO Access Control and enable the oAuth 2.0°pluginyfor limiting
access to unauthorized users. Figure 105 shows the annotations added to the Ingressto,specify details
for the services and routes that will be created in the Access Control (konghq.com/protocols,
konghq.com/http-forwarded etc), as well as the plugins that will be applied to the deployment workload
(konghg.com/plugins).

Figure 105: Workload Ingress annotations for integrating with Access Control

The.eAuth2.0 configuration (named keycloak-plugin) is deployed in the OneLab cluster as a Kongplugin
[61] resourcey, This allows for the plugin to already be configured and ready to apply to new Ingresses.
Figure 106'shows the Kong plugins resources available in the OneLab cluster.

Lab-ednin-
1ab-sdmin-2

Figure 106: The Onelab KongPlugin resources

th._2 Advgnced NEMO platform & laboratory testing results. Page: 95 of 146
Initial version

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status: final

Document name:

&3 NEMO

When the Ingress is successfully deployed to the cluster, the Access Control is automatically updated
with the specifications in the Ingress annotations. Figure 107 and Figure 108 show the Access Control
service that was created and its details, respectively.

Galinaily e iwiciss

SN] e

Figure 107: Workload Access Control service

_

Aty Sarycs Narms-eac. neinae, B0 B ﬂ
Vo
L T [iE
o
[]
[&
' ™
v
®
u 1
v
g v
- I N . . N—

Figure 108: Workload Access Control service details

Figure'109 and Figure 110 show the Access Control route that was created and its details, respectively.
In both the service and the route details, we can see that the name of the workload, its path and its Ingress
host name have all been registered successfully.

Figure 109: Workload Access Control route

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 96 of 146

&3 NEMO

Pl Padevig-Sass Deesr-ngin-ingrass rg o el workdodds named analal s 80 Biad m
[———
Coafimrrin [
'
— SEE s
ritsaraa W
var
aas "
" - — . - —
w8 g
[
_—
e @

Figure 110: Workload Access Contrglroute détails

Finally, Figure 111, Figure 112 and Figure 113 present the oAuth2.0 plugin and its details.

Figure 111: Workload oAuth2.0 plugin

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 97 of 146

kaycloak-plugr el - |

Fon Fiatal i

Figure 112: Workload oAuth2.0 plugin details

Fage Py bn Condgrabm
DAE BR oNT ——— - in
s 8 T

w08 Ve

SLYSLINE AR LN = wysa wgffeus
MEYSIORE WAL A

e e - %

A8 CLEW L ¥
sl vsinme srewas seevoen rodllDn resens e -

TilAs sEDas Lo
SEVERY rum c

T e e

Ve, rd s W s aneces

Figure 113: Workload oAuth2.0 plugin (cont'd)

Now that the NEMO Access Control has been configured properly, we can test how the access to the
workload works. In order to access the protected resource, all the requests should provide an
authorization header with a Bearer token from the NEMO Identity Management component. The
0Auth2.0 plugin is configured to test the provided token and, depending on its validity, deny or grant
access. In Figure 114, the request provides no authorization header, therefore the user is denied access.

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 98 of 146
Initial version

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status: final

Document name:

&8 NEMO

T P Kl e pm i e s wi
v i ab i .3 i = Thsl [
fimrms eapdir
arr WA L
[S R E R] Sl
Framp S pew il (%] }

biamn skl ivalioe fudled (8T
Figure 114: NEMO oAuth2.0 plugin test

o

In Figure 115, even if the token is provided, it could have expired, been ta with.or come from an

unknown source. The plugin, again, denies access to the NGINX s

T TR, T e e el R
Bawd ad i R EEN a4 impail 0§ i
ETEET | s
Y
B srsszasn S Sy eI L e e IR T i e e S T

T s Tua

i JELlEdE (dEE

Figure 115: oAuth2.0plugin test - expired or false token

inally, if the token is valid, the user can view the resource, in this case the welcome page of the NGINX
rver (Figure 116).

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 99 of 146
Initial version

Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

Document name:

&3 NEMO

Figure®6: oAuth2i0plugin test - success

4.2.2.4 NEMO Access Control plugin response performance

The plugin, in order to reducethe time needed to validate the provided token, instead of using an HTTP
request to connect to the WNEMO Identity Management component, it connects directly to its database to
perform the user token'yalidation.

This decision"has‘eome from studying the code of the Identity Management component for the token
introspection”’. The eutcome of this study indicated that the Identity Management component performs
several cheecks which are not necessary for the project use cases. These can add significantly to the
pluginresponse time, particularly under load-testing scenarios. Therefore, the oAuth2.0 implementation
with'the direct database connection performs only the necessary checks to verify the foken, user, realm
and client id validity.

Notably, in order to increase the overall system performance and redundancy and avoid security risks
that stem from directly connecting to the Identity Management database, the latter has been configured
with streaming replication (WAL). Under this framework, the plugin does not directly connect to the
master instantiation of the database itself but, instead, it connects to a ready-only live replica.
Additionally, the database user used by the plugin has been configured with restricted access to the
tables that are strictly necessary for the token introspection.

We will now present the performance of the plugin when it directly connects to the database, versus
when it uses requests to perform the token validation. To conduct the performance tests, we are using

22

https://github.com/keycloak/keycloak/blob/8318622d15d9a3559ee6d99a4c57033190a5392d/services/src/main/java/org/keycl
oak/protocol/oidc/endpoints/TokenIntrospectionEndpoint.java#L72

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 100 of 146

&3 NEMO

Locust®, an open-source tool, which gives information on metrics, like the percentiles of the response
times, the number of requests, minimum, max and average request times. For both experiments we will
use the same setup parameters (Figure 117): (a) the max number of users will reach 20, the users will
increase every one second and (b) each experiment will last 5 minutes. Each request will be executed
randomly between the span of 1 and 5 seconds. The first run will use the implementation of the oAuth2.0
plugin that make a direct connection to the database (standard oAuth2.0 plugin), while in the second
one we will apply to the same Ingress the version of the plugin which makes requests to the Identity
Management API (simplified oAuth2.0 plugin).

Advanced oplions

Figure 117: Locust experiments' setup

Figure 118wand Figure'1 19 present the request and response statistics of Locust for the standard plugin.
In the request statistics table, we can see the total number of requests, the average, minimum and max
times of the requests. If we compare the two averages, we can see that the average request time of the
simplified’plugin is approximately four times larger than the standard implementation. The percentiles,
also, in the response statistics table, show that the simplified version has greater response times in
comparison.

23

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 101 of 146

Locust Test Report

Figure 118: Locust request and response statistics for standard oAu#h2.0 plugin

Locust Test Report

Dwing) Ga AWV - IR ma
Targed Moat: i
o

Request Statistics

Response Time Slatistics

Figure 119: Locust request and response statistics for simplified o4uth2.0 plugin

Figure 120 compares side by side the two runs. If we compare the response times, we can see that in the
first run, the plugin requires less time to stabilize the response times when the number of users have
peaked for the experiment. During the first execution the response times were almost half of the second
one. Finally, the deviation of the 50th and 95th percentiles in the first run has a smaller deviation,

meaning that the majority of the users will experience a stable experience.

D4.2 Advanced NEMO platform & laboratory testing results.

Document name: o -
Initial version

Page:

102 of 146

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0

Status:

final

Figure 120: Locust charts for the o4uth2.0 plugin implementations

4.2.3 Verification summary checklist

Checklist for Test2: NEMO workload registration, deployment and provisioning

Yes No Comments
1 | NEMO workload registration by the NEMQ user througil s Success
LCM UI
2 | NEMO workload registration through_the—lntent-based APT + Success
3 Notification of the LCM UI aboutthe status of the workload A Success
registration
Execution of workload validation in Intent-based API A Success
5 NEMO werkload dgployr;lgnt by the NEMO user through = Success
LCM Ul
6 Communication of the deployment acknowledgement to = Success
“LeM, UL
;z | Cémmunication of the deployment request to the MO s Success
8 : CFDRL deployment recommendation to MO %" Simulated step
9 Deployment operation process executed by the MO v Success
10 Communication and update of the deployment operation =+ Success
status to the Intent-based API
11 | Visualization of the updated status to the LCM UI " Success
12 NEMO workload provisioning triggered by the Intent-based = Success
API
13 | NEMO Access Control workload setup process " Success
14 NEMO Access Control Keycloak plugin functionality =+ Success
executed
15 | Performance resilience of the Kong Plugin s Success
Table 10: Checklist for workload registration, deployment and provisioning scenario
Document name: :34:2 Advgnced NEMO platform & laboratory testing results. Page: 103 of 146
nitial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

&8¢ NEMO

4.3 NEMO workload migration

This integration scenario aims to illustrate the workload migration process. The process is facilitated by
the Intent-based API, the MO and the Intent-based Migration Controller (IBMC). Figure 121, depicts
the steps executed to complete the task.

Workload Migration Segueanca Diagram

|
| |
Db o b Sy) 0 il anciian | St 3}
] 1
|
I
Ciorraiw chonler romlaty by sabsr | S 4] |
|
|
|

reri el rTTRAEng M'l'!-ch-g;llr‘:
il Sy PR [SREp 1)

Lz diit Lt

Sard sam nwcs i IHWL (S)

ol wivkdagd Baomsp [Si=n sy

v

i D o L el | S T

Figure 121: NEMO workload miigration sequence diagram

IBMC
Intent-API
MO
MinlO

Features to be | The NEMO workload migration process is triggered by the CFDRL component once its
tested inference states that it is preferable for the workload’s optimal operation to be moved from
cluster A to cluster B. Once the request is communicated to the Meta-Orchestrator
component then the workload migration is executed.

Test setup All the participating components were deployed in the NEMO meta-OS cloud/edge
infrastructure at OneLab (dev cluster 1 and staging cluster 1).

Steps 1. Intent-API publishes a workload intent with an availability requirement.
2. MO retrieves workload status from the Intent-API.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 IDisseminaiion: IPU |Version: |1 .0 Status: final

Document name: Page: 104 of 146

&3¢ NEMO

3. If the workload is already deployed in any cluster, then a migration action is
triggered.

4. Check cluster availability.

5. MO sends a message to the IBMC containing the workload ID and the target
cluster.

6. IBMC backs up the workload resources and uploads them MinlO.

7. IBMC restores the resources in the target cluster. After the resources get restored,
the workload is removed from the source cluster.

8. The IBMC sends a message to the Intent-API updating the workload status,
specifying the cluster where it has been deployed.

Table 11: Test 3 - NEMO workload migration

4.3.2 Results

The section below presents the steps that concern the execution of the workload migrationt integration
workflow. ‘

43.2.1 Stepl
An intent is published by the Intent-Based API in RabbitMQ and reaches the Meta-Orchestrator:

Awalting message...
Recelved message:
intent_type: Availability

target_condition: IS_EQUAL_TO
target_wvalue_range:
instance_id: 51BbaBca=3RGa=-UBcl=-935b=1%e03030TTdbE

Figure 122 Intenf message reaches MO

4322 Step2&3

The Meta-Orchestrator sendssa,query back to the Intent-Based API to retrieve a json with the workload
status. As shown in the following code snippet, the workload appears to be already deployed in oneLab
cluster, hence a migration action will take place:

{

"id"s 6,

Ydnstance, id": "a3177d01-863d-415b-a998-180c87113z50",
"workload "document id": 9,

"releaSe name": "migration-workload",

"status": "deployed",

"manifests": [],

"cluster name": onelab

}

This can be verified in the oneLab cluster by executing kubectl get pods --context onelab.
The list of pods shows the workload running:

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |1 .0 Status: final

Document name: Page: 105 of 146

valaro
Figure 123: Pods currently running in onelab

When kubectl describe pod migration-workload is executed, the workload ID can be found in the
“labels” metadata:

Mamc ! migration-workload
Namcspace ! neao-kernel

P rity L]
.) default

Start Time |
Labels TRl -863d4-4]15h—a990-180c8T11 31258
Annotatlons d e 5 iCT ., twork-status

*imtorface®: “oth#®
*ipats |

“1@, UM, 5, 13"
1,

* i Maa TR dBe6: BT 3R
"detault®: true

Runnlng

Figure 1243 Weorkload ID inspection

4323 Step4

The MO proceeds to check its‘intetnal database, which contains the availability information of every
cluster. The availability value specified*in the intent is compared with the one from the cluster where
the workload is currently deployed: As seen in the Figure 125, the availability of the OneLab cluster
(90%) is lower than the,one required (99.9%). This will trigger the migration of the workload to a more
suitable cluster. In this case, this is the k3s one.

Figure 125: Availability check

4324 Step5&6

The MO sends a message via RabbitMQ to the IBMC containing the source and target clusters for the
migration and the workload to be migrated. When the message reaches the IBMC, the migration process
begins with the backup of the workload’s resources, which is stored in the OneLab’ MinlO instance.

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 106 of 146
Initial version

Reference: D4.2 |Disseminction: |PU |Version: |1.0 Status: final

Document name:

&3¢ NEMO

Awaiting message. ..
Received a message;
sourceCluster: onelab
targetCluster: onelab-k3s
migrationfAction; backup
workload: a3l77dBl-B63d-Ul5b-a398-188cBT113250

Backup is still in progress. Waiting...
Backup completed succesfully

Await in-:,| RESsaAgE

Figure 126: Migration message reaches source cluster’s IBMC instance

The backup status can be checked at any moment by executing velero get backup -n nemo-kernel.

Figure 127: Backup status 7) :
Once the backup is completed, a message is sent to the target cluster in ofder to continue with the
migration process. '

4325 Step7

The IBMC instance running in the target cluster receives thé\messége from the source cluster and
proceeds to restore the workload resources. :

migraticnfc
workload: al

in progress. Walting

Bigure, 128: Restore message reaches target cluster’s IBMC instance

If kg el ‘g-‘ét Pods -context onelab-k3s iS executed before the migration, it can be observed that the
workload doesn’t exist in the cluster:

Figure 129: k3s cluster status before migration

Once the restore is completed, the workload is correctly deployed:
: ETATUS RESTARTS

Run
Hunnin

Figure 130: k3s cluster status after migration completion

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |1 .0 Status: final

Document name: Page: 107 of 146

&3¢ NEMO

Eigral oot oas

Annotations Ao netw

Erame®: Fehpdd
Bntarface®: SskhB®

ol R e

Figure 131: Description of workload in k3s cluster

The source cluster can be checked to verify that the workload has been deleted from it;

Figure 132: Onelsab cluster aftér migration

432.6 Step8 ‘
When the migration is successfully eompleted,
workload status:

amessage is sent to the Intent-Based API updating the

SourceClustek: onelab

Target@luster:honelab-k3s
WorkloadID: @3177d01-863d-415b-a998-180c871132z50

Statusy migrated

Document name: Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 108 of 146
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |1 .0 Status: final

&3 NEMO

4.3.3 Verification summary checklist

Checklist for Test3: NEMO workload migration

Yes | No Comments
1 The CFDRL issues the workload migration request to the MO 0t Success
2 Intent-API publishes a workload intent with an availability | Success
requirement.
3 MO retrieves workload status from the Intent-APIL v Success
4 If the workload is already deployed in any cluster, then a migration | s Success
action is triggered.
5 Check cluster availability. st Suceess
6 MO sends a message to the IBMC containing the workload ID and | \ Success
the target cluster.
7 IBMC backs up the workload resources and uploads them MinlO. 7|, «# Success
8 | IBMC restores the resources in the target cluster. After the -...I Success
resources get resotred, the workload is removed from the source
cluster.)
9 The IBMC sends a message to the Intent-APL updating the | Success
workload status, specifying the cluster where ithas been deployed.

Table 12: @hecklist for Testd"- NEMO workload migration

4.4 NEMO workload lifecyicle mtanagement

NEMO incorporates the'eoneept of intents for the declarative description of requirements for workload
execution and operation within.the meta-OS. Intent management processes are integrated by design in
NEMO operations. Once the NEMO workload is registered by the NEMO user through the LCM Ul
and the NEMOworkload instance specified the intents that define the required operation for the NEMO
worklead the®monitoring process starts. The monitoring process concerns both the cluster and the
NEMO workloads’ dynamic resource consumption properties that adhere to the defined expectation
targets. The.abovementioned measurements are collected by the PPEF component. The PPEF’s specific
functionality is described in detail in D3.2 [11]. In addition, complementary metrics about the network
and health (among others) characteristics of a workload are also collected via the CMDT component.
The latter will be documented in D2.3 [4] in full detail. The collected information is visualized through
the LCM Ul and is available to the NEMO user (workload provider). This particular scenario concerns
also the policy enforcement and notification of the NEMO user in case of a policy breach (for an intent).
As indicated in the process diagram below, this information is captured by the Intent-based API (which
is notified by the PPEF in advance) and is communicated to the LCM component.

4.4.1 Process diagram

The process diagram presented below summarizes the NEMO workload lifecycle management that
concerns the workload monitoring and management of the asset by the NEMO user. The NEMO
components that provide cluster level and workload level measurements are included in the relevant
scenario. The collected information is communicated through the RabbitMQ and the Intent-based API
to the LCM UI where they are visualized to the NEMO user.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |1 .0 Status: final

Document name: Page: 109 of 146

&8 NEMO

PRESE B Pebey

AsbHisin
TS AP AsbEric) el sl

Metn-Orwnestrrior

Gt brtanim dov st kb it

Fiovide keS| g

B L T LT

To verify the workload lifecycle management process in NEMO covering all the steps
identified.

Components e LCM

e Intent-API
e PPEF

e CMDT

e RabbitMQ

Features to be | This integration scenario aims to validate the workload lifecycle management. The NEMO
tested workload intents and complementary measurements that concern the resources’ consumption and
the resulting performance and liveness of a workload are collected by the PPEF and the CMDT

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 IDisseminaﬁon: IPU |Version: |1 .0 Status: final

Document name: Page: 110 of 146

Test setup

Steps

443 Results

&3 NEMO

components. From there they are communicated through the RabbitMQ to the LCM UI where there
are visualized to the NEMO user.

The associated components are deployed in OneLab facilities at NEMO dev cluster 1

The CFDRL component which is undergoes its final stages of development.

1.

B

A e R

The NEMO user accesses the LCM Ul

NEMO workload monitoring collects metrics that correspond to the NEMO workload
(PPEF)

The collected workload metrics are communicated to the Intent-API

The NEMO Cluster monitoring collects measurements that concern the NEMO meta-OS
operated clusters (PPEF)

The collected cluster metrics are communicated to the RabbitMQ

NEMO workload complementary monitoring (CMDT)

The collected metrics are communicated to the Rabbit MQ

The LCM aggregates the collected metrics and visualize them to the NEMO user

The PPEF report intent violations to the Intent-based API

This section documents the process that is described in the scenario above step by step.

4.43.1 NEMO workload monitoring — CMDT

The CMDT collects network traffic characteristics and observes Kubernetes pod history. This is done
through querying Kubernetes API, and Thanos/Prometheus. More detailed description of CMDT
functionalities is available in D2.3 [4].

The Figure 134 illustrates how part of mformation is obtained through Prometheus to gain insight into
network traffic characteristics, whichwere'collected by Linkerd?* service. The first query concerns pod’s
response rate per minute sortedsby HTTP status code (5xx server side error, 2xx success), the second
query provides thegsummary of maximum response latency for 99%, 95%, 75%, and 50% of
connections, and'the third the incoming request rate per minute.

24 https://linkerd.io/

Document name:

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version

Page: 111 of 146

Reference:

D4.2 |Disseminqtion: |PU |Version: |1.0 Status: final

0 Froraiteun

Figure 134: Three queries to obtain network traffic statsi€ollected by CMDT through Linkerd

The CMDT instances then fuse data'from different parts of monitoring infrastructure and produce per-
pod summary message sent through RabbitMQ to other services (Figure 135) that contains pod’s history,

pod labels and traffic measurementsii.c. request/response rate per minute, and latency.

D4.2 Advanced NEMO platform & laboratory testing results.

Document name: o -
Initial version

Page:

112 of 146

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0

Status:

final

Figure 135: Expected RabbitMQ message data model

4432 NEMO workload monitoring — PPEF

In the following paragraphs the workload monitoring associated results are presented.

Computing workload intent

The PPEF collects the computing workload intent measurements (CPU and RAM) by querying the
deployed monitoring tool (Thanos®). The detailed description of the PPEF architecture and provided
functionality is included in D3.2 [11]. The Figure 136 below illustrates CPU measurement collection

and Figure 137 the RAM measurement collection.

25 https://thanos.io/

Document name:

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version

Page:

113 of 146

Reference:

D4.2 |Disseminqtion: |PU |Version: |1.0

Status:

final

Figure 136: Workload — CPU usage

Figure 137: Workload - RAM usage

EnergyEfficiency intent

The Figure 138 below depicts the Green Energy Consumption Rate (the containers of the deployment
“demo-nginx” are consuming approximately 1,23 joules per second averaged over the last 5 minutes).

Thanas - Querny

-

Figure 138: Workload - Energy consumption rate

NEMO workload Energy Efficiency shows that the service consumes 40k Joules for every second of
CPU time as illustrated in the collected query below (Figure 139).

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 114 of 146
Initial version

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status: final

Document name:

Thanos - Query

.) »

Figure 139: Workload - Energy efficiency
Energy consumption

The Energy consumption of a particular workflow is depicted in Figure 140 _below.

Figure 140: Wogkdoad - Energy consumption

The Energy Efficiency intents proyiSioning in Iafent-based API is presented below. Here the NEMO
user can assign expectation targets for the Energy Efficiency related expectations.

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 115 of 146
Initial version

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status: final

Document name:

&8 NEMO

BET brilpa eyl emn ieeleh aw'apd's Uindeod 7 od_fufiled_slalerCOWFLIANT kool fuffiled visle DU CRALEE
faryaa s A irAriaaire =i ki B} By iwmEel Srimi TeEsis Laiiiems
By Chemeth St (18] Fend Hesiis
Praciy (BT Wi Ta@m = =
- Fems 510k _ciwcs tipe: FEANTELE
i | i Pmmn il Dk 1. mald
ful] laEt_sislniol_Ciests =200 00 AATLE 33 0 4 b0
115 sl _coetswius []
il = 2]
1T umwr_lshul: ErmtgplarborEfficiamy
1 firiwrt _pressptitn_copsbilityd “FALED"
L L Hitgivillen BEflod: of
i | AN T SR Tl T e
] = iy
| | mnmekwkion_ L= TLT
L | dapurinflon, yerb: ENSLUEE
135] IR e _gw et I
H M) 4
L5k misch_type- WS _SOSEL A0
LY meiwct_inwiance: 2lcHEE-ITIb-dlwl-FEFL-ocE38Ez 1361
iy | ontded sl f i iip s AN
o] oy et _perteeing [
Il sarEn T Tan TATEETET
1%k - = -
=3 farfet seee: compfowrgptificimsy
1 LEE - tinnr 09 CEEETER Tk
239 THIEEE_wnlus_Tingrl “asHsd®
s targsk_comteata) []
e - ddr-o
LT fmrgwt _=mwee: compfnwrgyCane
113 LaipeE wislitiont 5 LEN]
] Talgel_walie_fAnger <
wdn Tarper coantewtei [T
Bk - Ay T
e e | Anrjel -
= LF RS
4 TR &
e f
Ll sapnghat

ure 141: Intent-API EnergyEfficiency metrics update

er monitoring

2, Figure 143 and Figure 144 below summarize the cluster level metrics that are collected
component for CPU, RAM and Disk storage respectively and communicated to the

Document name:

Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 116 of 146
Initial version

Reference:

D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

Figure 142: Cluster RAM usage

Tharos - Chiery

Figure 143¢*Cluster CPU usage

Figure 144: Cluster Disk usage

4.4.3.4 Cluster metrics to RabbitMQ

Figure 145 below presents the cluster level metrics communication to the RabbitMQ from the PPEF
component.

LaaeE] ra] ey el roreent yariahlas

Figure 145: cluster metrics published to RabbitMQ

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 117 of 146

4.4.4 Verification summary checklist

Checklist for Test4: NEMO workload lifecycle management

&8¢ NEMO

Yes | No Comments
2 | NEMO workload monitoring collects metrics that | 5 Success
correspond to the NEMO workload (PPEF)
3 | The collected workload metrics are communicated to the | s+ Success
Intent-API
4 | The NEMO Cluster monitoring collects measurements that | s Success
concern the NEMO meta-OS operated clusters (PPEF)
5 | The collected cluster metrics are communicated to the | s Succe
RabbitMQ
6 | NEMO workload complementary monitoring (CMDT) W Sugcess
7 | The collected metrics are communicated to the Rabbit MQ | =+ ccess
8 | The LCM aggregates the collected metrics and visualize The LCM Ul view that
them to the NEMO user corresponds to this aspect
is under development
Table 13: Chec r Test4
Document name: Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 118 of 146
Initial version
Reference: D4.2 IDisseminaﬁon: IPU |Version: |1 .0 Status: final

&3 NEMO

5 Conclusions

This deliverable provided insights on the scenario-driven integration activities that produced the first
integrated NEMO meta-OS. In addition, the NEMO meta-OS cloud/edge infrastructure established in
Onelab facilities that supported the integration activities along with the CI/CD environment and
configuration was presented in detail.

Moreover, the NEMO meta-OS components that belong into the NEMO Service Management Layer
namely, the Intent-based API, the IBMC, the LCM and the MOCA were described presenting their
provided functionalities, the updated architectures, the interfaces and data models and initial results.

Finally, the document provided a comprehensive description of the integration steps that were followed
as part of end-to-end scenarios that reflected the technical capacity of the first integration versionwef the
NEMO meta-OS.

The verification results will feed enhancements in the development of the NEMO meta-OS components
for the next integration cycle that will produce the final version of the NEMO mieta-OS platform and
will be documented in D4.3 “Advanced NEMO platform & laboratory testingsresults. Final-version”.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminqtion: |PU |Version: |1 .0 Status: final

Document name: Page: 119 of 146

&3 NEMO

References

[9]

NEMO, "D4.3 - Advanced NEMO platform & laboratory testing results. Final version,"
HORIZON - 101070118 - NEMO Deliverable Report, 2025.

NEMO, "D4.1 - Integration guidelines & initial NEMO WP4 integration,” HORIZON -
101070118 - NEMO Deliverable Report, 2023.

NEMO, "D1.2 - NEMO meta-architecture, components and benchmarking. Initial version,"
HORIZON - 101070118 - NEMO Deliverable Report, 2023.

NEMO, "D2.3 - Enhancing NEMO Underlying Technology. Final version,"” HORIZON, -
101070118 - NEMO Deliverable Report, 2024.

Z. Anastasakis, T.-H. Velivassaki, A. Voulkidis, S. Bourou, K. Psychogyios, D. Skiassand T.
Zahariadis, "FREDY: Federated Resilience Enhanced with Differential Privacys" Future Internet,
vol. 15, no. 9, 2023.

N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow and K. Talwar, "Semi-supervised
Knowledge Transfer for Deep Learning from Private Training Data," arxiv.

S. Mwanje, A. Banerjee, J. Goerge, A. Abdelkader, G. Hannak, P. Szilagyi, T. Subramanya, J.
Goser and T. Foth, "Intent-Driven Network andsSetvice Management: Definitions, Modeling and
Implementation," ITU Journal on Future and Evolving Technologies, vol. 3, no. 3, 2022.

R. Xu, M. Scott and S. Mwanje, "Enabling intelligence and autonomation for 5G Advanced
Networks," 3GPP, 2023. [Online]. Available: https://www.3gpp.org/technologies/intent.

3GPP, "3GPP TS 28.312 V18:3.0 (2024-03) - Technical Specification Group Services and System
Aspects - Management andiorchestration - Intent driven management services for mobile networks
(Release 18)," 3GPP;2024.

[10] NEMO, "D13ws; NEMO meta-architecture, components and benchmarking. Final version,"

HORIZON - 101070118 - NEMO Deliverable Report, 2024.

[11] NEMO, "D3.2,.- NEMO Kernel.Initial version," HORIZON - 101070118 - NEMO Deliverable

Repott, 2024,

Document name:

D4.2 Advanced NEMO platform & laboratory testing results.

Initial version Page: 120 of 146

Reference: D4.2 |Disseminqtion: |PU |Version: |1.0 Status: final

&8¢ NEMO

/ Annex A — MOCA API & data models

The MOCA API swagger page (OpenApi) is online available in this location (https:/intent-
api.nemo.onelab.eu/moca/api/v1l/swagger/)

7.1 MOCA Data models

and accounting details. This section will provide the API documentation and the data models used by

MOCA allows for the exposure of the cluster registration process, as well as management of resource
MOCA. V

Attribute Data type Description

id String The id of the accounting o\
type String The type of the accou
i : id of the cus
customer _id String The id of the cu

tokens number The IV
O tokens that the customer

balance number
currently has left

.. (id to retrieve the accounting event
balance action_id Integer from the blockchain
timestamp S
Ta 4: MOC ountingEvents Data Model

Attribute iy Data type Description

String The id of the Cluster
. The name of the Cluster that will be
String
deployed
Integer The number of CPUs of the Cluster
Integer The RAM of the Cluster in GB
storage Integer The disk storage of the Cluster in GB
I . The percentage of time that the cluster
availability String is up (99.9%. 99%, 90%)
The percentage of RES powering the
green_energy String cluster.
(0%,20%,40%,60%,80%,100%)
cost String The cost type of a cluster (low cost,
high performance)
cou base rate number The CPU cost of the cluster by the CPU
pu_base_ capacity of the cluster (in milliseconds)

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 IDisseminaﬁon: IPU |Version: |1 .0 Status: final

Document name: Page: 121 of 146

&8 NEMO

The memory cost of the cluster by the

memory_base rate number memory capacity of the cluster (in
MBs)
timestamp String
balance number The NEMO tokens of the cluster

Attribute

cluster_resources

Table 15: MOCA ClusterResources Data Model

Data type
String

Description

The id of the ClusterResources

status

Array

The status of the deplo
Cluster

timestamp

String

id

Table 16: MOCA ClusterState Data Model

Attribute Data type

Description

e id of the workload

The name of the cluster the workload

storage

cluster name String is deployed to
status S The status of the deployment of the
Cluster
The number of CPUs of the
cpus mber Y
Application
memory umber The RAM of the Application in MB

number

The space of the volume in GB

String
number The NEMO tokens of the workload
Integer The id of the Workload User

Table 17: MOCA Workload Data Model

Attribute ‘ Data type Description
cluster String The id of the ClusterState
. . . The CID of the Cluster config stored
link cid String i IPFS
ipfs_link String The link to retrieve the Cluster config
timestamp String

Table 18: MOCA IPFS Handler Data Model

Document name:

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version

Page: 122 of 146

Reference: D4.2 IDisseminaﬁon: IPU

|Version: | 1.0 Status: final

&8 NEMO

Attribute | Data type ‘ Description
id String
user_id String The id of the user
workload id String The id of .the Workload the
computation took place for
cluster_id String The id of the cluster
cpu String The cpu used by the workload
ram Array The ram used by the workload
tokens Arra The NEMO tokens that were charged
Y to the worklo
timestamp String

Table 19: MOCA WorkloadComputeTokensEvents Data Med

Attribute

username

Data type
String

Description

he user’s username

balance

number

The balance of the user

smart_contracts

The names of the smart contracts
related to a user

Attribute

Data type
String

martContracts Data Model

Description

Boolean

number

number

number

7.2 MOCA API endpoints

Table 21: MOCA NemoTokenSetup Data Model

7.2.1

GET /api/v1/accounting_events

Returns all the accounting events related to a user (GET).

Responses

HTTP Code | Description

Data Model

‘ Schema Type

400 Provided data is invalid or malformed

401 Invalid credentials

403 Invalid permissions

Document name: Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 123 of 146
Initial version

Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

&8 NEMO

201 The accounting events of a user Object ‘AccountingEvents |

Table 22: GET Accounting Events responses

7.2.2 DELETE /cluster/delete/{id}

Delete a cluster based on its ID (DELETE).

Responses
HTTP Code Description ‘ Schema Type Data Model
200 The cluster has been deleted
400 Provided data is invalid or
malformed
401 Invalid credentials
403 Invalid permissions

Table 23: DELETE Cluster responses

Parameters

Attribute

Parameter Type Description
The cluster id

string

Table 24: D E Cluster parameters

7.2.3 POST /cluster/register

Register a cluster in NEN O meta DS (POST)

Parameters

Attribute Parameter Type Description Required Data type

The cluster name | True string

body The cluster # of|True integer

cpus
body The cluster # of|True float

memory

storage body The cluster total|True float
storage capacity

availability body The cluster | True string
availability %

green_energy body The cluster RES|True string

powered %

cost body The cost category | True string
of the cluster

cpu_base body The cpu base cost|True float
for the cluster

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

Document name: Page: 124 of 146

&8 NEMO

memory_base rate |body The memory base|True float
cost for the cluster

Table 25: REGISTER cluster parameters

RENINE

'HTTP Code Description ‘ Schema Type Data Model ‘
400 Provided data is invalid or malformed

401 Invalid credentials V
403 Invalid permissions

406 The smart contract rolled back (declined) the transaction

201 The Cluster ID

Table 26: POST Cluster responses

7.2.4 GET /cluster/retrieve Q
Retrieve all the clusters’ details related to a user (GET). '

Parameters

Attribute Parameter Type Description Required Data type
~ |False [string |
cluster name body The name True string

cpus body The cl of cpus True integer

memory body e cluster # of memory True float
storage e cluster total storage capacity True float
availability The cluster availability % True string
green_energy The cluster RES powered % True string
The cost category of the cluster True string
The cpu base cost for the cluster True float
The memory base cost for the cluster | True float
Timestamp False string

Table 27: GET cluster parameters

Responses

HTTP Code Descripion ~ SchemaType Data Model

201 The details of all records Object ClusterResources
400 Provided data is invalid or malformed

401 Invalid credentials

403 Invalid permissions

Table 28: GET Clusters responses

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 IDisseminaﬁon: IPU |Version: |1 .0 Status: final

Document name: Page: 125 of 146

&8 NEMO

7.2.5 GET /cluster/retrieve/{id}

Retrieve a cluster’s details related to a user (GET).

Parameters

Attribute Parameter Type Description Required Data type

id path The cluster id True string
Table 29: GET Cluster with ID parameters

Responses

HTTP Code Description Schema Type Data Model

The details of selected records Object ‘W esources
400 Provided data is invalid or malformed '-
401 Invalid credentials ‘
403 Invalid permissions N O

Table 30: GET Cluster with ID res -’

7.2.6 PUT, PATCH /cluster/update/{id}

CH).

Update a cluster’s attributes (PUT, P
Parameters

Attribute | Parameter Type Description Required |Data type
i e cluster id

The cluster attributes True UpdateClusterResources

Table 31: PUT, PATCH Cluster parameters

Description Schema Data Model
Type

Object UpdateClusterResources
400 Provided data is invalid or malformed
401 Invalid credentials
403 Invalid permissions
406 The smart contract rolled back (declined) the
transaction

Table 32: PUT, PATCH Cluster responses

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

Document name: Page: 126 of 146

&8 NEMO

7.2.7 POST /nemo_token estimation_setup

Setup the region costs for that will be used in the workload usage calculation (POST).

Responses
HTTP Description Schema Type Data Model
Code
201 The generated transaction hash Object TransactionHash
400 Provided data is invalid or malformed
401 Invalid credentials
403 Invalid permissions
406 The smart contract rolled back (declined) the
transaction

Table 33: POST Region Costs responses
7.2.8 GET /nemo_token setup retrieve/{region} Q E

Retrieve the information on the region costs (GET).

Parameters

Attribute Parameter Type ‘ Description Required Data type

region path Theregion name True string

abl ET Region Costs parameters

RE RN

HTTP Description Schema Data Model

Code Type

NemoTokenSetupRetrieveRegion

Provided data is invalid or malformed

Invalid credentials

Invalid permissions

406 The smart contract rolled back (declined)
the transaction

Table 35: GET Region Costs responses

Document name: Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 127 of 146
Initial version

Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

&8 NEMO

7.2.9 GET /nemo user _info
Retrieve the information of a logged in user (GET).

Responses

HTTP Code Description Schema Type Data Model
201 The information of the user Object NemoUserInfo
400 Provided data is invalid or malformed

401 Invalid credentials

403 Invalid permissions

Table 36: GET user information responses

7.2.10 GET /workload/retrieve

Retrieve all the details of the workloads related to a user (GET). ’

Responses

HTTP Code Description Schema 7Vpe Data Model
201 The details of all records Object Workload

400 Provided data is invalid or malfo

Invalid credentials

Invalid permissions

Parameters

Attribute Parameter Type Description Required Data type
The workload id

Table 38: GET workoad's details parameters

RE VRN

HTTP Code Description Schema Type Data Model
201 The details of all records Object Workload
400 Provided data is invalid or malformed

401 Invalid credentials

403 Invalid permissions

Table 39: GET workload’s details responses

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

Document name: Page: 128 of 146

&8 NEMO

7.2.12 GET /workload computations/{id}

Retrieve all the events of a workload that show its resource usage details (GET).

Parameters
Attribute Parameter Type Description Required Data type
id path The workload id True string
Table 40: GET workload computation details parameters V

REN OIS

HTTP Code | Description Schema Type | Data Model
The details of all records Object WorkloadCompute'T

400 Provided data is invalid or malformed

401 Invalid credentials

403 Invalid permissions

Table 41: GET workload c@n d;ils responses

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

Document name: Page: 129 of 146

&8 NEMO

8 Annex B - Intent-based APl & data models

8.1 NEMO Intent-based API

The Intent-based API Server allows for exposure of NEMO functionalities, as well as management of
intents and workloads. The API is available online at https://intent-api.nemo.onelab.cu/api/vl/swagger/.

8.2 Intent-API data models V

Attribute

‘ Data type Description ‘ Comments

username String
password String
token String

Table 42: Data model description: AuthToke

Attribute Data type Description ‘ Comments
String The name of th
The number of the CPUs

cluster name

cpus Integer

memory Integer

storage Integer

Attribute
link id
ipfs_link

The IPFS link id
The IPFS link to retrieve the cluster config

Table 44: Data model description: Clusterlpfs

Description

The ID of the cluster
vm_name String The name of the cluster resource
cpus Integer The number of the CPUs
memory Integer The RAM of the cluster in GB
storage Integer The storage of the cluster in GB
endpoint String The endpoint of the Cluster
ipfs Clusterlpfs

Table 45: Data model description: Cluster

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 IDisseminaﬁon: IPU |Version: |1 .0 Status: final

Document name: Page: 130 of 146

&8 NEMO

Attribute | Data type ‘ Description
id Integer

context_attribute String

context_condition String

context value range String

Attribute

Table 46: Data model description: Context

Data type Description

Attribute

id Integer

It describes the expectatio
. . which can be sup

object_type String intent handlin
producer.

object instance String

.. . among the stated
context_selectivity String Contexts
object contexts Array
Table 47: Data model desc ectationObject

Data type Description

id

target name String

target condition String
String
Array

Data type Description

Integer
A unique identifier of the
expectation_id String intentExpectation within the
intent
expectation_verb String
expectation_object ExpectationObject
expectation_targets Array
expectation_contexts Array

Table 49: Data model description: IntentExpectation

Document name:

Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 131 of 146
Initial version

Reference:

D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

&8 NEMO

Attribute | Data type ‘ Description
id Integer
user_lzbel String assignabley name of th ftent.
intent_preemption_capability String
observation_period Integer In seconds
intent_expectations Array
intent_report reference String
intent_contexts Array

Table 50: Data model description: Intent ‘ N
Attribute Data type Description
context_attribute String '
context _condition String .
context value range String - 5

Table 51: Data model descripti Inp

Attribute

It describes the expectation object type which
can be supported by a specific intent handling
function of MnS producer.

object_type

object_instance

How to select among the stated

context_selectivi .
- - expectationContexts

object conte \
‘

String

Array

-

Table 52: Data model description: ExpectationObjectInput

Attribute Data type Description

_[target name String
target condition String
target value range String
target contexts Array

Table 53: Data model description: ExpectationTargetInput

Attribute | Data type ‘ Description
L . A unique identifier of the
tat tr . . iy - .
expectation_id String intentExpectation within the intent
expectation_verb String

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 IDisseminaﬁon: IPU |Version: |1 .0 Status: final

Document name: Page: 132 of 146

&8 NEMO

expectation_object ExpectationObjectInput
expectation_targets Array
expectation_contexts Array

Table 54: Data model description: IntentExpectationInput

Attribute | Data type ‘ Description

user label String ﬁa ;Zez}fililznﬁt}; n(ta.tnd user assignable)
context_selectivity String i?;tégnt:;‘::a among the stat
intent_preemption_capability String “
observation_period Integer In seconds P ‘
intent_expectations Array \ A
intent_contexts Array "

Table 55: Data model description: Intentl @

-
Attribute Data type Description

intent IntentInput

Table 56: Data model description: lutentInputAttribute

Attribute Data type Description

intent Intent ID (PK)

Attribute ‘ Description

arget _condition String
String

Table 58: Data model description: TargetTemplate

Attribute | Data type | Description ‘ Comments
instance_id String NEMO Workload instance [D 'uuid'
intent_type String Intent userLabels

service start time String Optional 'date-time’'
service_end_time String Optional 'date-time’'
targets Array Expectation targets

instance_id String NEMO Workload instance ID 'uuid'

Table 59: Data model description: IntentTemplate

Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 133 of 146
Initial version

Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

Document name:

&8 NEMO

Attribute Data type Description

action String Action to perform

Table 60: Data model description: IntentActionInput

Attribute | Data type | Description

target id Integer

target value range String

Table 61: Data model description: IntentTargetUpdate

Attribute
id

Data type Description l ~omments

Integer

Required. 150 ¢

username String fewer. Letters, dig -
/_only.

email String 'email'

first name String

last name String

Table 62: Data modelidescription: User

Attribute Data type Description Comments

The maintainers name (required)

email The maintainers email (optional) | 'email'
. A url for the maintainer|, .,
url String . uri
(optional)
Integer

Table 63: Data model description: WorkloadDocumentChartMaintainer

Attribute Data type Description

id Integer

name String The name of the chart

version String A SemVer 2 version string

repository String The repository URL or alias ("repo-name")

(optional)

A yaml path that resolves to a boolean, used for
condition String enabling/disabling charts (e.g.
subchart].enabled) (optional)

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

Document name: Page: 134 of 146

&8¢ NEMO

tags Arra Tags can be used to group charts for
& Y enabling/disabling together
. ImportValues holds the mapping of source
import_values Array values to parent key to be imported.
alias Strin Alias to be used for the chart. Useful when you
& have to add the same chart multiple times
chart Integer

Table 64: Data model description: WorkloadDocumentChartDependency

A bute Data type De pt1o
id Integer

container_registries Object

manifests Array

values Object

resource_mappings Object

memory_requests Integer

memory_limits Integer

cpu_requests Integer

cpu_limits Integer

Table 65: Data model description: WorkloadDocumentChartMetadata

Attribute | Data type Description
id

maintainers

‘ Comments

dependencies

loadDocumentChartMetadata

The chart API version

(required)
Strin The name of the chart
& (required)
String A SemVer 2 version string
kube version String A SemVer range of compatlble
- Kubernetes versions (optional)
Iy . A single-sentence description
description String of this project (optional)
type String The type of the chart (optional)
A list of keywords about this
keywords Array project (optional)
home String The URL.of this projects home i
page (optional)
Document name: Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 135 of 146
Initial version
Reference: D4.2 IDisseminaﬁon: IPU |Version: |1 .0 Status: final

&8¢ NEMO

A list of URLs to source code
for this project (optional)

A URL to an SVG or PNG
icon String image to be used as an icon
(optional)

sources Array

uri

The version of the app that this
contains (optional). Needn't be
SemVer. Quotes
recommended.

deprecated Boolean Whether this chart is

p deprecated (optional, boolean)

annotations Object A list of annotations keyed by
name (optional)

app_version String

Table 66: Data model description: WorkloadDocumentChart ’

Attribute Data type | Description ‘ Comments
id Integer '

user User The er

chart WorkloadDocumentChart he associated helm chart

created String 'date-time'
modified String 'date-time’'
name String The workload document name

version String A SemVer 2 version string

schema Object The document schema

intents A List of supported intents

The workload document type

type

The workload document status

Whether the workload document
can be exposed via NEMO

Boolean

If the workload document is

al Boolean enabled

rejection reason | String Rejection reason

Table 67: Data model description: WorkloadDocumentList

Attribute | Data type ‘ Description

id Integer

status String The workload document status
user Integer The NEMO user

name String The workload document name
version String A SemVer 2 version string

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 IDisseminaﬁon: IPU |Version: |1 .0 Status: final

Document name: Page: 136 of 146

&8¢ NEMO

schema Object The document schema

type String The workload document type

intents Array List of supported intents

ingress_support |Boolean | Whether the workload document can be exposed via NEMO

Table 68: Data model description: WorkloadDocumentCreate

Attribute Data type | Description Comments
id Integer

type String Lifecycle event type

deployment_cluster String The NEMO deployment cluster
migration_from_cluster String The NEMO migration from cluster
migration_to_cluster String The NEMO migration to cluster

timestamp String The timestamp of the lifecycle

Table 69: Data model description: WorkloadDocumentLif

Attribute Comments

id

Data type | Description

Integer

lifecycle events Array

created String 'date-time’'
modified String 'date-time’'
instance_id String E ique workload document instance identifier |'uuid'
release name String load document instance release name

status e workload document instance status

lifecycle _metad The lifecycle metadata associated with the instance

ing The NEMO cluster name that the instance resides in
Boolean | Whether the instance should be exposed via NEMO
Object Ingress metadata

Integer | The workload document

Table 70: Data model description: WorkloadDocumentInstance

Attribute | Data type ‘ Description

name String The workload document name
version String A SemVer 2 version string
schema Object The document schema

type String The workload document type
status String The workload document status
user Integer The NEMO user

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 IDisseminaﬁon: IPU |Version: |1 .0 Status: final

Document name: Page: 137 of 146

&8 NEMO

intents Array List of supported intents

ingress_support |Boolean | Whether the workload document can be exposed via NEMO

Table 71: Data model description: WorkloadDocumentUpdate

Attribute | Data type | Description
release name String The release name
values_override Object values.yaml override
include crds Boolean Include CRDS
is_upgrade Boolean If its upgrade
namespace String Namespace to associate with
no_hooks Boolean No hooks flag
ingress_enabled Boolean Expose workload instance via NEM
cluster name String Target cluster override
Table 72: Data model description: WorkloadDocument te t

8.3 Intent-based API endpoints

8.3.1 POST /api/v1/auth/login/
Create a new auth token for the user (POST)

Parameters

Attribute Parameter Type J Description Required Data type

AuthToken

POST authorization token parameters

8.3.2 POST /api¥ oout/
ith the user. (POST)

RE VR

Description ‘ Schema Type Data Model
Object AuthToken

Table 74: POST authorization logout responses

8.3.3 POST /api/v1/cluster/register/

This endpoint writes a message to the rabbitmq topic that MOCA component listens to. This is
performed in asynchronous manner. (POST)

RE VIR
HTTP Code Description Schema Type Data Model
204 No Content
401 Invalid credentials
403 Forbidden from performing this action
404 Resource not found

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 IDisseminaﬁon: IPU |Version: |1 .0 Status: final

Document name: Page: 138 of 146

&8 NEMO

Table 75: POST cluster registration responses

Parameters

Attribute Parameter Type Description Required Data type

data body True ClusterRegister

Table 76: POST cluster registration parameters

8.3.4 GET /api/vl/cluster/retrieve/
Retrieve cluster details from MOCA component (GET)

Responses

HTTP Code

Description Schema Type Data Model

Created
400 Provided data is invalid or malformed
401 Invalid credentials
403 Forbidden from performing this action
404 Resource not found

Table 77: GET cluster retrieve re ses

8.3.5 GET /api/vl/cluster/retrieve/{id}/
Retrieve a single cluster details from MOCA component (GET)

Responses

HTTP Code Description Schema Type Data Model

-

200 Object list Cluster
400 Provided data'is itiyalid or malformed
401 Invalid credéntia
403 forbidden from performing this action
404 @ e not found
A
‘ Table 78: GET cluster retrieve (id) responses

Parameters

‘ Attribute Parameter Type Description Required Data type

1d path True

Table 79: GET cluster retrieve (id) parameter

8.3.6 GET, POST /api/v1l/intent/

RGN VR
HTTP Code Description Schema Type Data Model
200 Object list Cluster
400 Provided data is invalid or malformed
401 Invalid credentials
403 Forbidden from performing this action

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 139 of 146
Initial version

Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

Document name:

&8 NEMO

| 404 ‘ Resource not found ‘ | |
Table 80: GET/POST intent responses
Parameters
Attribute Parameter Type Description Required Data type
user_label query user_label False String
object_instance query object_instance False String
fulfilment status query fulfilment status False String
not_fulfilled state |query not_fulfilled state |False String
intent_id query intent_id False String
data body True IntentInput Attribut

Table 81: GET/POST intent parameters

L 2

Responses

HTTP Code Description Schema Type Data Model
200 Object list < W |Intent
Table 82: GET/POST intent resp
8.3.7 POST /api/vl/intent/template/
Creates an Intent with the given template (POS]
REN NN
HTTP Code Description Schema Type Data Model
200 | 4K
400 Provided data, is invalid or malformed
401 @ redentials
403 - orbidden from performing this action
Resource not found
Table 83: POST create intent responses
Parameters
Attribute Parameter Type ~ Description ~ Required ~ Datatype
data body True IntentTemplate

Table 84: POST create intent parameters

8.3.8 GET /api/vl/intent/types/
Lists the valid intent types (GET)

Responses
HTTP Code Description Schema Type Data Model
201 Object IntentOutput
Document name: Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 140 of 146
Initial version
Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

&8 NEMO

400 Provided data is invalid or malformed
401 Invalid credentials

403 Forbidden from performing this action
404 Resource not found

Table 85: GET intent types responses

8.3.9 PUT /api/vl/intent/{id}/action/
Perform an action to a given Intent (PUT)

Responses
Data Model

‘ Schema Type

HTTP Code Description

Table 86: PUT intent action responses

Parameters
Attribute Parameter Type Description Required Data type
id path True)
@ .
data body T e IntentActionInput
Table 87: PUT intent action req '

8.3.10 PUT /api/vl/intent/{id}/target/

Intent has to be in a valid state. It is best tofuse this
““application/yaml™" in order to derive data types bett

st api tool, e.g. postman and send data via
r. (PUT)

RES R

HTTP Code Description A\ 4 Schema Type Data Model
200 Ok -
400 Provided data is invalid or malformed
401 &M credentials
403 - ‘. otbidden from performing this action
40 Resource not found
'X Table 88: PUT intent's target (id) action responses
1 Parameters
Attribute Parameter Type Description Required Data type
id path True
data body True IntentTargetUpdate
Table 89: PUT intent's target (id) action parameters
8.3.11 GET, POST /api/vl/workload/
List or Create a new workload document(s) (GET)
Responses
HTTP Code Description Schema Type Data Model
Document name: :?]ﬁ.iélzé\\g\r/;gfed NEMO platform & laboratory testing results. Page: 141 of 146
Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

&8 NEMO

200 Ok

400 Provided data is invalid or malformed
401 Invalid credentials

403 Forbidden from performing this action
404 Resource not found

Table 90: GET workload documents list responses

Parameters

Attribute | Parameter Type ‘ Description Required | Data type
name query name False String

version query version False String
data body True

Table 91: GET workload documents list parameters

8.3.12 List or Create a new workload document(s) (POST)
REN IO
HTTP Code Description Schema Type Data Model

oadDocumentList

rarameters

Attribute | Parameter Type ‘ DescriptiG | Required ‘ Data type
|

name query False String
version query False String
data body True WorkloadDocumentCreate

able 93: POST workload document parameters

rkload/instance/

ad documents instances (GET)
RGN VR
‘ HTTP Code Description ‘ Schema Type Data Model

WorkloadDocumentCreate

Table 94: GET workload instances responses

Parameters
Attribute Parameter Type Description Required Data type
release name query release name False String
cluster_name query cluster_name False String
workload document query workload document False String
status query status False String

Table 95: GET workload instances parameters

Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 142 of 146
Initial version

Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

Document name:

&8 NEMO

8.3.14 PUT /api/vl/workload/instance/{instance id}/delete/

Propagate a workload document instance deletion request for a deployed workload instance to the MO.
(PUT)

Responses

HTTP Code Description Schema Type Data Model
200 Object list WorkloadDocumentInstance

Table 96: PUT workload instance delete responses
Parameters

Attribute Parameter Type ‘ Description Required ‘ Data type

Table 97: PUT workload instance delete parameters '

8.3.15 GET /api/vl/workload/instance/{instance id}/manifests/
Fetch workload instance manifests in a single **.yaml'" format. (GET)

instance id

RE VR

HTTP Code Description ‘ Schema Type

Parameters

Attribute Parameter Type Description Required Data type

instance_id

instance_id orkload Document instance uuid True String

art must be packed as **".tgz"*" (by running helm package).

elm chart must have a matching (name, version) pair with the associated workload
ent. - The helm chart must have a valid structure, files ***Chart.yaml' ", " *values.yaml
d folder *"'templates’"* are mandatory.

e The helm chart must be able to render (via helm template) without any errors.

e The helm chart underlying containers images must exist and be reachable by NEMO Intent API

(either public or private registries with appropriate imagePullSecrets).

If everything is OK, the helm chart is uploaded to the NEMO S3 Helm Repository. After successful
upload, the Workload Document is set to **“status=onboarding™ " for further validation. After successful
validation, the Workload Document is set to "' “status=accepted’ " or ' 'status=rejected " if validation
has failed. RabbitMQ is notified as per README.md (POST)

REN RN
HTTP Code Description Schema Type Data Model
200 Kubernetes Manifests Object list
400 Provided data is invalid or malformed

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 IDisseminaﬁon: IPU |Version: |1 .0 Status: final

Document name: Page: 143 of 146

&8 NEMO

401 Invalid credentials
403 Forbidden from performing this action
404 Resource not found

Table 100: POST workload upload request responses

Parameters

Attribute Parameter Type | Description Required Data type
file

name formData Workload Name to associate with True String

formData Packaged helm chart in *"".tgz"*" extension

version |formData Workload Version to associate with True

Table 101: POST workload upload request parameters

8.3.16.1 GET, PUT, PATCH, DELETE /api/v1/workload/{id}/

Update & Delete operations are only allowed when a workload document is i
the same user if performing the operation. (GET)

REN NN
HTTP Code Description Schema Type Data Model

Created
400 Provided data is invalid or malfo
401 Invalid credentials
403 Forbidden from performing this‘actio
404 Resource not found

Table 102: GET workload responses

Parameters
Attribute Parameter 7esTipti0n Required Data type
id m v A unique integer value identifying|True
this Workload Document.
K. body True WorkloadDocumentUpdate
‘p ata body True WorkloadDocumentUpdate

Table 103: GET workload parameters

pdate & Delete operations are only allowed when a workload document is in " status=pending’ " and
the same user if performing the operation. (PUT)

REN NN

HTTP Code Description Schema Type Data Model
200 Object WorkloadDocumentList

Table 104: PUT workload responses

Parameters

Attribute Parameter | Description Required Data type
Type

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

Document name: Page: 144 of 146

&8 NEMO

id path A unique integer value identifying|True

this Workload Document.
data body True WorkloadDocumentUpdate
data body True WorkloadDocumentUpdate

Table 105: PUT workload parameters

Update & Delete methods are only allowed when a workload document is in **“status=pending” " and
the same user if performing the operation. (PATCH)

Responses V
HTTP Code Description Schema Type Data Model V

WorkloadDocumentUpdate

Table 106: PATCH workload responses

Parameters
Attribute Parameter | Description Required Data type
Type
path

A unique integer value identifying
this Workload Document.

WorkloadDocumentUpdate
WorkloadDocumentUpdate

data body
data body

Table 107: PA kload parameters

Update & Delete operations are only allowed'when a workload document is in **'status=pending™ " and

the same user if performing the operation. (D

Data Model
WorkloadDocumentUpdate

Table 108: DELETE workload responses
Parameters

Attribute Paramcter Description Required Data type

A unique integer value identifying
this Workload Document.

body True WorkloadDocumentUpdate
data body True WorkloadDocumentUpdate

Table 109: DELETE workload parameters

8.3.16.2 POST /api/v1/workload/{id}/template/

Set header ***Accept'" to " application/json’ " or *application/yaml’"" (default). This action creates a
workload document instance with a unique NEMO workload identifier (" 'instance id'"'). RabbitMQ is
notified as per README.md (POST)

Parameters

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 IDisseminaﬁon: IPU |Version: |1 .0 Status: final

Document name: Page: 145 of 146

&8 NEMO

Attribute | Parameter Type Description |Required |Data type

id path True
data body True WorkloadDocumentTemplateInput

Table 110: POST workload document instance parameters

Responses
HTTP Code Description Schema Type Data Model
201 Created
400 Provided data is invalid or malformed
401 Invalid credentials
403 Forbidden from performing this action
404 Resource not found

Table 111: POST workload document instance responses

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 146 of 146
Initial version

Reference: D4.2 |Dissemination: [PU [version: [1.0 [Status: [final

Document name:

