

Disclaimer for Deliverables with dissemination level PUBLIC

This document is issued within the frame and for the purpose of the NEMO project. This project has received funding from the European

Union9s Horizon Europe Framework Programme under Grant Agreement No. 101070118. The opinions expressed and arguments employed

herein do not necessarily reflect the official views of the European Commission.

The dissemination of this document reflects only the author9s view, and the European Commission is not responsible for any use that may be

made of the information it contains. This deliverable is subject to final acceptance by the European Commission.

This document and its content are the property of the NEMO Consortium. The content of all or parts of this document can be used and

distributed provided that the NEMO project and the document are properly referenced.

Each NEMO Partner may use this document in conformity with the NEMO Consortium Grant Agreement provisions.

(*) Dissemination level: (PU) Public, fully open, e.g., web (Deliverables flagged as public will be automatically published in CORDIS project9s

page). (SEN) Sensitive, limited under the conditions of the Grant Agreement. (Classified EU-R) EU RESTRICTED under the Commission

Decision No2015/444. (Classified EU-C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified EU-S) EU

SECRET under the Commission Decision No2015/444.

Next Generation Meta Operating System

D4.2 Advanced NEMO platform & laboratory

testing results. Initial version

Keywords:

Integration, Validation, API, SDK, Lifecycle Management, Migration Controller, Automation

Document Identification

Status Final Due Date 30/11/2024

Version
1.0

Submission Date 17/12/2024

Related WP WP4 Document Reference D4.2
Related
Deliverable(s)

D1.1, D1.2, D1.3,
D2.2, D3.2, D4.1

Dissemination Level (*) PU

Lead Participant INTRA Lead Author Dimitrios Skias (INTRA)
Contributors SYN, INTRA,

AEGIS, SPACE,
ATOS, MAG, ENG,
ESOFT, SU

Reviewers Panagiotis Karkazis
(MAG)

Ignacio Prusiel (ATOS)

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 2 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Document Information

List of Contributors

Name Partner
Enric Pere Pages Montanera ATOS

Rubén Ramiro ATOS

Ignacio Prusiel ATOS

Matija Cankar COM

Dimitrios Skias INTRA

Panagiotis Karkazis MAG

Astik Samal MAG

Nikos Drosos SPACE

Emmanouil Bakiris SPACE

Antonis Gonos ESOFT

Theodore Zahariadis SYN

Terpsi Velivassaki SYN

Spyros Vantolas AEGIS

Hassane Rahich SU

Document History

Version Date Change editors Changes

0.1 12/09/2024 INTRA ToC

0.2 03/10/2024 INTRA Updates in ToC and initial input

0.3 18/10/2024 INTRA Updates in section 1,2 and 4

0.4 25/10/2024 SYN, ATOS, AEGIS, ESOFT Updates in section 3 and 4

0.5 08/11/2024 INTRA, MAG Updates in section 1 and 2

0.6 22/11/2024 SYN, ATOS, AEGIS, ESOFT Updates in section 3

0.7 29/11/2024 INTRA, ATOS, AEGIS, SYN,

COM

Updates in section 4, conclusions and

introduction of Annex A & B

0.8 6/12/2024 INTRA Document consolidation; Peer-review ready

version

0.9 13/12/2024 INTRA, MAG, ATOS Document consolidation; Peer-review

comments addressed

0.91 17/12/2024 INTRA Final version ready

1.0 17/12/2024 ATOS Format review and submission to EC

Quality Control

Role Who (Partner short name) Approval Date

Deliverable leader D. Skias (INTRA) 17/12/2024

Quality manager R. Valle Soriano (ATOS) 17/12/2024

Project Coordinator E. Pages (ATOS) 17/12/2024

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 3 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Table of Contents

Document Information ... 2

Table of Contents ... 3

List of Tables .. 6

List of Figures .. 9

List of Acronyms .. 12

Executive Summary ... 14

1 Introduction .. 15

1.1 Purpose of the document .. 15

1.2 Relation to other project work ... 15

1.3 Structure of the document .. 15

2 NEMO Integration, Validation & Verification approach and tools ... 17

2.1 NEMO CI/CD Environment & Tools .. 17

2.1.1 Open Source repository .. 17

2.1.2 NEMO Automated Deployment and Configuration .. 18

2.2 Cloud/Edge/IoT Integration and Validation Infrastructure ... 23

2.2.1 OneLab Clusters for NEMO ... 23

2.3 Integration & V&V Methodology & Plan ... 31

2.4 NEMO OneLab infrastructure deployments .. 33

2.5 NEMO Integrated Platform (Ver. 1) .. 34

2.5.1 Meta-OS functionality in NEMO v1 .. 36

3 NEMO Service Management Layer updates .. 38

3.1 Intent-based Migration Controller ... 38

3.1.1 Overview .. 38

3.1.2 Architecture .. 38

3.1.3 Interaction with other NEMO components .. 40

3.1.4 Initial results ... 41

3.1.5 Conclusion and roadmap .. 42

3.2 Plugin & Applications Lifecycle Manager .. 42

3.2.1 Architecture .. 42

3.2.2 Lifecycle Manager .. 43

3.2.3 Interaction with other NEMO components .. 45

3.2.4 Initial results ... 47

3.2.5 Conclusion and roadmap .. 48

3.3 Monetization and Consensus-based Accountability .. 48

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 4 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

3.3.1 Overview .. 48

3.3.2 Architecture .. 48

3.3.3 Interaction with other NEMO components .. 49

3.3.4 Initial result ... 51

3.3.5 Conclusion and roadmap .. 71

3.4 Intent-based SDK/API ... 72

3.4.1 Overview .. 72

3.4.2 Architecture .. 72

3.4.3 Initial results ... 77

3.4.4 Conclusion and Roadmap ... 77

4 NEMO scenario-driven verification & results ... 79

4.1 NEMO Cluster registration .. 79

4.1.1 Verification scenario .. 80

4.1.2 Results .. 81

4.1.3 Verification summary checklist .. 85

4.2 NEMO workload registration, deployment & provisioning .. 85

4.2.1 Verification scenario .. 88

4.2.2 Results .. 89

4.2.3 Verification summary checklist .. 103

4.3 NEMO workload migration ... 104

4.3.1 Verification scenario .. 104

4.3.2 Results .. 105

4.3.3 Verification summary checklist .. 109

4.4 NEMO workload lifecycle management ... 109

4.4.1 Process diagram .. 109

4.4.2 Verification scenario .. 110

4.4.3 Results .. 111

4.4.4 Verification summary checklist .. 118

5 Conclusions .. 119

6 References .. 120

7 Annex A 3 MOCA API & data models .. 121

7.1 MOCA Data models .. 121

7.2 MOCA API endpoints ... 123

7.2.1 GET /api/v1/accounting_events ... 123

7.2.2 DELETE /cluster/delete/{id} ... 124

7.2.3 POST /cluster/register .. 124

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 5 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

7.2.4 GET /cluster/retrieve .. 125

7.2.5 GET /cluster/retrieve/{id} .. 126

7.2.6 PUT, PATCH /cluster/update/{id} ... 126

7.2.7 POST /nemo_token_estimation_setup ... 127

7.2.8 GET /nemo_token_setup_retrieve/{region} ... 127

7.2.9 GET /nemo_user_info .. 128

7.2.10 GET /workload/retrieve/{id} .. 128

7.2.11 GET /workload_computations/{id} ... 129

8 Annex B 3 Intent-based API & data models .. 130

8.1 NEMO Intent-based API ... 130

8.2 Intent-API data models .. 130

8.3 Intent-based API endpoints .. 138

8.3.1 POST /api/v1/auth/login/ .. 138

8.3.2 POST /api/v1/auth/logout/ .. 138

8.3.3 POST /api/v1/cluster/register/ .. 138

8.3.4 GET /api/v1/cluster/retrieve/ .. 139

8.3.5 GET /api/v1/cluster/retrieve/{id}/ .. 139

8.3.6 GET, POST /api/v1/intent/ ... 139

8.3.7 POST /api/v1/intent/template/ .. 140

8.3.8 GET /api/v1/intent/types/ ... 140

8.3.9 PUT /api/v1/intent/{id}/action/ .. 141

8.3.10 PUT /api/v1/intent/{id}/target/ ... 141

8.3.11 GET, POST /api/v1/workload/ ... 141

8.3.12 List or Create a new workload document(s) (POST) ... 142

8.3.13 GET /api/v1/workload/instance/ ... 142

8.3.14 PUT /api/v1/workload/instance/{instance_id}/delete/ ... 143

8.3.15 GET /api/v1/workload/instance/{instance_id}/manifests/ ... 143

8.3.16 POST /api/v1/workload/upload/ ... 143

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 6 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

List of Tables

Table 1: NEMO dev cluster (K8S) __ 25
Table 2: Staging 1 cluster (K8S) ___ 27
Table 3: Staging 2 Cluster (K3S) ___ 29
Table 4: Production Cluster (k8S) __ 30
Table 5: The NemoTokenEstimation smart contract details __ 54
Table 6: The NemoFunds smart contract details __ 59
Table 7: The InfrastructureOwnerModel smart contract ___ 61
Table 8: The ServiceProviderModel smart contract __ 66
Table 9: Checklist for cluster registration scenario ___ 85
Table 10: Checklist for workload registration, deployment and provisioning scenario ___ Error! Bookmark not

defined.
Table 11: Test 3 - NEMO workload migration __ 105
Table 12: Checklist for Test3 - NEMO workload migration _______________________________________ 109
Table 13: Checklist for Test4 ___ 118
Table 14: MOCA AccountingEvents Data Model ___ 121
Table 15: MOCA ClusterResources Data Model __ 122
Table 16: MOCA ClusterState Data Model __ 122
Table 17: MOCA Workload Data Model __ 122
Table 18: MOCA IPFS Handler Data Model ___ 122
Table 19: MOCA WorkloadComputeTokensEvents Data Model ____________________________________ 123
Table 20: MOCA UserSmartContracts Data Model ___ 123
Table 21: MOCA NemoTokenSetup Data Model __ 123
Table 22: GET Accounting Events responses ___ 124
Table 23: DELETE Cluster responses __ 124
Table 24: DELETE Cluster parameters ___ 124
Table 25: REGISTER cluster parameters ___ 125
Table 26: POST Cluster responses ___ 125
Table 27: GET cluster parameters ___ 125
Table 28: GET Clusters responses ___ 125
Table 29: GET Cluster with ID parameters __ 126
Table 30: GET Cluster with ID responses ___ 126
Table 31: PUT, PATCH Cluster parameters ___ 126
Table 32: PUT, PATCH Cluster responses __ 126
Table 33: POST Region Costs responses __ 127
Table 34: GET Region Costs parameters __ 127
Table 35: GET Region Costs responses ___ 127
Table 36: GET user information responses __ 128
Table 37: GET workoads' details responses ___ 128
Table 38: GET workoad's details parameters __ 128
Table 39: GET workload9s details responses ___ 128
Table 40: GET workload computation details parameters __ 129
Table 41: GET workload computation details responses __ 129
Table 42: Data model description: AuthToken ___ 130
Table 43: Data model description: ClusterRegister __ 130
Table 44: Data model description: ClusterIpfs ___ 130
Table 45: Data model description: Cluster __ 130
Table 46: Data model description: Context __ 131
Table 47: Data model description: ExpectationObject ___ 131
Table 48: Data model description: ExpectationTarget ___ 131
Table 49: Data model description: IntentExpectation __ 131
Table 50: Data model description: Intent ___ 132

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 7 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Table 51: Data model description: ContextInput __ 132
Table 52: Data model description: ExpectationObjectInput _______________________________________ 132
Table 53: Data model description: ExpectationTargetInput _______________________________________ 132
Table 54: Data model description: IntentExpectationInput __ 133
Table 55: Data model description: IntentInput ___ 133
Table 56: Data model description: IntentInputAttribute __ 133
Table 57: Data model description: IntentOutput __ 133
Table 58: Data model description: TargetTemplate ___ 133
Table 59: Data model description: IntentTemplate __ 133
Table 60: Data model description: IntentActionInput __ 134
Table 61: Data model description: IntentTargetUpdate __ 134
Table 62: Data model description: User __ 134
Table 63: Data model description: WorkloadDocumentChartMaintainer ____________________________ 134
Table 64: Data model description: WorkloadDocumentChartDependency ___________________________ 135
Table 65: Data model description: WorkloadDocumentChartMetadata ______________________________ 135
Table 66: Data model description: WorkloadDocumentChart _____________________________________ 136
Table 67: Data model description: WorkloadDocumentList _______________________________________ 136
Table 68: Data model description: WorkloadDocumentCreate _____________________________________ 137
Table 69: Data model description: WorkloadDocumentLifecycleEvent ______________________________ 137
Table 70: Data model description: WorkloadDocumentInstance ___________________________________ 137
Table 71: Data model description: WorkloadDocumentUpdate ____________________________________ 138
Table 72: Data model description: WorkloadDocumentTemplateInput ______________________________ 138
Table 73: POST authorization token parameters __ 138
Table 74: POST authorization logout responses __ 138
Table 75: POST cluster registration responses ___ 139
Table 76: POST cluster registration parameters __ 139
Table 77: GET cluster retrieve responses ___ 139
Table 78: GET cluster retrieve (id) responses __ 139
Table 79: GET cluster retrieve (id) parameters ___ 139
Table 80: GET/POST intent responses __ 140
Table 81: GET/POST intent parameters __ 140
Table 82: GET/POST intent responses __ 140
Table 83: POST create intent responses __ 140
Table 84: POST create intent parameters ___ 140
Table 85: GET intent types responses __ 141
Table 86: PUT intent action responses ___ 141
Table 87: PUT intent action request ___ 141
Table 88: PUT intent's target (id) action responses __ 141
Table 89: PUT intent's target (id) action parameters __ 141
Table 90: GET workload documents list responses __ 142
Table 91: GET workload documents list parameters ___ 142
Table 92: POST workload document responses ___ 142
Table 93: POST workload document parameters ___ 142
Table 94: GET workload instances responses __ 142
Table 95: GET workload instances parameters ___ 142
Table 96: PUT workload instance delete responses ___ 143
Table 97: PUT workload instance delete parameters __ 143
Table 98: GET workload instance manifests responses ___ 143
Table 99: GET workload instance manifests parameters ___ 143
Table 100: POST workload upload request responses ___ 144
Table 101: POST workload upload request parameters __ 144
Table 102: GET workload responses ___ 144
Table 103: GET workload parameters __ 144
Table 104: PUT workload responses ___ 144
Table 105: PUT workload parameters __ 145

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 8 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Table 106: PATCH workload responses __ 145
Table 107: PATCH workload parameters ___ 145
Table 108: DELETE workload responses ___ 145
Table 109: DELETE workload parameters __ 145
Table 110: POST workload document instance parameters _______________________________________ 146
Table 111: POST workload document instance responses __ 146

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 9 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

List of Figures

Figure 1: NEMO code repository in Eclipse Research labs __ 17
Figure 2: NEMO Structure and Ownership ___ 18
Figure 3: NEMO meta-OS docker registry ___ 19
Figure 4: NEMO gitlab-ci.yml configuration __ 19
Figure 5: Kubernetes deployment manifest example (intent-based API) _______________________________ 20
Figure 6: Kubernetes ingress manifest example (intent-based API) __________________________________ 21
Figure 7: Image repository and policy configuration files ___ 22
Figure 8: Example of the Deployment manifest __ 23
Figure 9: Example of MetalLB configuration ___ 24
Figure 10: Dev cluster nodes __ 24
Figure 11: Dev cluster namespaces ___ 26
Figure 12: Staging 1 cluster nodes __ 27
Figure 13: Staging 1 cluster namespaces ___ 28
Figure 14: Staging 2 cluster nodes __ 28
Figure 15: Staging 2 cluster namespaces ___ 29
Figure 16: Production cluster namespaces ___ 31
Figure 17: NEMO project phases and main meta-OS version releases ________________________________ 31
Figure 18: Integration testing 3 Scenario template ___ 32
Figure 19: NEMO Integration testing - Checklist template (Example) ________________________________ 33
Figure 20: Default namespace ___ 33
Figure 21: Kubernetes-dashboard namespace ___ 33
Figure 22: l2SM namespace ___ 33
Figure 23: LinkerD namespace __ 33
Figure 24: NEMO Kernel namespace ___ 33
Figure 25: NEMO-net namespace __ 33
Figure 26: NEMO-PPEF namespace __ 34
Figure 27: NEMO-sec namespace __ 34
Figure 28: NEMO-svc namespace __ 34
Figure 29: NEMO-workloads namespace __ 34
Figure 30: The NEMO high-level architecture __ 35
Figure 31: The 1st integrated version of NEMO meta-OS (high-level architecture view) _________________ 35
Figure 32: IBMC Simplified Architecture __ 39
Figure 33: IBMC Complete Architecture ___ 39
Figure 34: Migration Sequence Diagram __ 40
Figure 35: LCM Architecture __ 43
Figure 36: Plugin Deployment ___ 43
Figure 37: Onelab deployment LCM and Security Controller _______________________________________ 45
Figure 38: Intent-based API workload management __ 46
Figure 39: Intent-based API intents management __ 46
Figure 40: MOCA Resource provisioning __ 46
Figure 41: Connect to RabbitMQ ______________________________________ Error! Bookmark not defined.
Figure 42: Listen RabbitMQ Exchanges ________________________________ Error! Bookmark not defined.
Figure 43: Searching LCM Repository __ 47
Figure 44: LCM Dashboard Homepage ___ 47
Figure 45: MOCA diagram ___ 49
Figure 46: The MOCA deployment in the Onelab cluster __ 49
Figure 47: MOCA integration diagram __ 50
Figure 48: MOCA API authorization example ___ 50
Figure 49: MOCA API ___ 51
Figure 50: Setup region information through Event Server ___ 52
Figure 51: Logs of inserting cluster information ___ 52

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 10 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Figure 52: Example of the transaction logs of the cluster registration ________________________________ 59
Figure 53: Example of the transaction logs of the workload registration ______________________________ 61
Figure 54: Example of the transaction logs of the workload usage fee ________________________________ 62
Figure 55: Example of the transaction logs of the cluster reward ____________________________________ 62
Figure 56: Example of the transaction logs of the NEMO fee paid by the cluster owner __________________ 62
Figure 57: Example of the transaction logs of the calculation of the workload usage fee _________________ 63
Figure 58: OneLab workload details __ 66
Figure 59: RabbitMQ logs of workload deployment __ 66
Figure 60: Workload registration to blockchain ___ 66
Figure 61: User info for workload owner after registration __ 66
Figure 62: Accounting event for workload registration __ 67
Figure 63: Smart Contracts deployment though Helm chart __ 67
Figure 64: Logs of deployment of NemoFunds contracts __ 67
Figure 65: Registering NEMO OneLab Cluster regional info _______________________________________ 68
Figure 66: Response for successful registration ___ 68
Figure 67: MOCA logs of the DApps component calculating the resource usage of a NEMO workload ______ 68
Figure 68: The accounting events of the workload user ___ 69
Figure 69: Workload user information __ 69
Figure 70: Details of the workload computation events ___ 70
Figure 71: Cluster owner accounting events __ 70
Figure 72: Cluster owner user information ___ 71
Figure 73: Scaled up deployment ___ 71
Figure 74: MOCA logs for scaled workload usage ___ 71
Figure 75: Comparison of workload usage results ___ 71
Figure 76: The final Intent-based API architecture ___ 73
Figure 77: State transitions and reporting events for Intents delivered for fulfilment. [9], supported also in

NEMO __ 74
Figure 78: The DeliverComputingWorkload intent definition in NEMO Intent-based API ________________ 75
Figure 79: Kubernetes Service Annotations ___ 77
Figure 80: Process diagram for cluster registration __ 80
Figure 81: Cluster summary view on LCM GUI ___ 81
Figure 82: Cluster registration page on LCM GUI ___ 81
Figure 83: MOCA Cluster registration demonstration __ 82
Figure 84: MOCA Cluster registration response ___ 82
Figure 85: MOCA sends cluster details to Meta Orchestrator ______________________________________ 83
Figure 86: Meta Orchestrator receives the cluster registration request _______________________________ 83
Figure 87: MOCA receives the Meta Orchestrator response _______________________________________ 83
Figure 88: Register cluster to blockchain __ 83
Figure 89: Updated cluster details __ 84
Figure 90: MOCA accounting event for cluster registration __ 84
Figure 91: Process diagram for workload registration __ 86
Figure 92: Process diagram for workload deployment (provisioning) ________________________________ 87
Figure 93: Access control sequence diagram - detailed view _______________________________________ 88
Figure 94: NEMO workload registration through LCM UI ___ 90
Figure 95: NEMO registered workloads ___ 90
Figure 96: NEMO workload instance creation (workload deployment process) through LCM UI __________ 91
Figure 97: NEMO workload instances and their respective status in LCM UI __________________________ 91
Figure 98: NEMO workload validation __ 91
Figure 99: Workload deployment confirmation through RabbitMQ for the newly created workload instance _ 92
Figure 100: Intent-based API endpoint where the scenario starts. ___________________________________ 93
Figure 101: JSON published in RabbitMQ to be consume by MO. ___________________________________ 93
Figure 102: Target cluster without the workload. __ 94
Figure 103: Deployment Controller log, receiving the workload petition and deploying it. ________________ 94
Figure 104: Workload already deployed in the cluster selected. _____________________________________ 94
Figure 105: Deployment Controller (MO) final response. ___ 94

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 11 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Figure 106: Create workload through Intent-based API with Ingress support __________________________ 95
Figure 107: Workload Ingress annotations for integrating with Access Control ________________________ 95
Figure 108: The Onelab KongPlugin resources ___ 95
Figure 109: Workload Access Control service ___ 96
Figure 110: Workload Access Control service details ___ 96
Figure 111: Workload Access Control route __ 96
Figure 112: Workload Access Control route details __ 97
Figure 113: Workload oAuth2.0 plugin ___ 97
Figure 114: Workload oAuth2.0 plugin details __ 98
Figure 115: Workload oAuth2.0 plugin (cont'd) ___ 98
Figure 116: NEMO oAuth2.0 plugin test ___ 99
Figure 117: oAuth2.0plugin test - expired or false token ___ 99
Figure 118: oAuth2.0 plugin test - success __ 100
Figure 119: Locust experiments' setup __ 101
Figure 120: Locust request and response statistics for standard oAuth2.0plugin _______________________ 102
Figure 121: Locust request and response statistics for simplified oAuth2.0 plugin _____________________ 102
Figure 122: Locust charts for the oAuth2.0 plugin implementations _________________________________ 103
Figure 123: NEMO workload migration sequence diagram _______________________________________ 104
Figure 124: Intent message reaches MO __ 105
Figure 125: Pods currently running in onelab __ 106
Figure 126: Workload ID inspection ___ 106
Figure 127: Availability check __ 106
Figure 128: Migration message reaches source cluster9s IBMC instance ____________________________ 107
Figure 129: Backup status ___ 107
Figure 130: Restore message reaches target cluster9s IBMC instance _______________________________ 107
Figure 131: k3s cluster status before migration __ 107
Figure 132: k3s cluster status after migration completion __ 107
Figure 133: Description of workload in k3s cluster __ 108
Figure 134: OneLab cluster after migration ___ 108
Figure 135: Process diagram for workload monitoring and enforcement ____________________________ 110
Figure 136: Three queries to obtain network traffic stats collected by CMDT through Linkerd ___________ 112
Figure 137: Expected RabbitMQ message data model ___ 113
Figure 138: Workload 3 CPU usage ___ 114
Figure 139: Workload - RAM usage ___ 114
Figure 140: Workload - Energy consumption rate __ 114
Figure 141: Workload - Energy efficiency ___ 115
Figure 142: Workload - Energy consumption __ 115
Figure 143: Intent-API EnergyEfficiency metrics update ___ 116
Figure 144: Cluster RAM usage ___ 117
Figure 145: Cluster CPU usage ___ 117
Figure 146: Cluster Disk usage ___ 117
Figure 147: cluster metrics published to RabbitMQ ___ 117

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 12 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

List of Acronyms

Abbreviation /

acronym

Description

AAA Authentication, Authorization, and Accounting
AI Artificial Intelligence
API Application Programming Interface
CD Continuous Delivery
CFDRL Cybersecure Federated Deep Reinforcement Learning
CLI Command Line Interface

CMDT Cybersecure Microservices9 Digital Twin
CI Continuous Integration
CLI Command-line Interface
CMDT Cybersecure Microservices9 Digital Twin
CNCF Cloud Native Computing Foundation
CPU Central Processing Unit
CRD Custom Resource Definition

DApps Distributed Applications

DLT Distributed Ledger Technology

Dx.y Deliverable number y belonging to WP x
E2E End-to-End
EC European Commission

FL Federated Learning

GDPR General Data Protection Regulation

GPU Graphics Processing Unit

IBMC Intent-based Migration Controller

IdM Identity Management

IDS Intrusion Detection System

IPFS Interplanetary File System

IoT Internet-of-Things

IT Information Technology

K8s Kubernetes

LAN Local Area Network

LCM Life-Cycle Manager

meta-OS Meta-Operating System

ML Machine Learning

mNCC Meta Network Cluster Controller

MO Meta-Orchestrator

MOCA Monetization and Consensus-based Accountability

MQTT Message Queuing Telemetry Transport

NAC NEMO Access Control

OS Operating System

PPEF PRESS & Policy Enforcement Framework

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 13 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

RAM Random Access Memory

RBAC Role-Based Access Control

RL Reinforcement Learning

SDK Software Development Kit

SEE Secure Execution Environment

TRL Technology Readiness Level

V&V Validation & Verification

WAL Write-Ahead Logging

WP Work Package

YAML Yet Another Markup Language

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 14 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Executive Summary

The document presents insights into the first integrated version of the NEMO meta-OS consisting of the
core components, the interfaces and the integration activities to this point. The work also involves the
creation of integration scenarios that guided the integration tests conducted in a laboratory setting,
utilizing the supporting CI/CD environment and tools and verified the system-level technical capacity
of the platform. Moreover, the deliverable provides a detailed presentation of the technical developments
conducted within WP4, detailing the NEMO meta-OS Service Management Layer's technical
advancements and updates, including their associated interactions within NEMO meta-OS. The final
version of the NEMO meta-OS integrated platform is expected to be presented in D4.3 [1], "Advanced
NEMO Platform & Laboratory Testing Results. Final Version," which will be produced in the second
quarter of 2025.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 15 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

1 Introduction

The NEMO meta-OS framework aims to support optimal operation of hyper-distributed applications
implemented as microservices in a highly distributed and diverse environment of cloud-edge and IoT
technologies. Therefore, the associated integration and subsequently the verification and validation of
such activities are not trivial and require a well-designed methodology and execution plan.

In D4.1 [2], a detailed description of the zero-ops CI/CD environment and the associated integration
guidelines were discussed. This document aims to shed light on the scenario-driven integration and
validation activities that aim to realise the first integrated version of the NEMO meta-OS as dictated by
the Validation & Verification methodology that is presented. The main objective of this approach is on
one hand to assure that NEMO specifications on interfaces and data models are coherent and followed
by the stemming technical developments and on the on the other to facilitate and accelerated the
necessary integration activities.

1.1 Purpose of the document

The purpose of this document is twofold. First, it presents the technical advancements that fall into the
NEMO Service Management Layer and second to present in detail the integration activities that are
driven by the NEMO Validation & Verification (V&V) methodology and document the associated
results which led to the production of the first integrated NEMO meta-OS framework.

1.2 Relation to other project work

The integration and testing strategy act as the driver of the development process. Thus, this document is
strongly connected with all the technical WPs (WP2, WP3 and WP4). Furthermore, the work presented
in this document strongly relates to WP1 activities, as it considers the technical specifications arising
from the requirements9 elicitation process and the architectural specifications. In addition, the platform
integrated view and current prototype implementations will be applied and tailored to each of the NEMO
trials within WP5. Last, but not least, the document reports technical options and prototype
functionalities, which are meant to be used and extended by third parties joining the project through the
Open Calls.

1.3 Structure of the document

The remainder of this report is organized as follows.

Section 2 provides information on the CI/CD environment of the NEMO meta-OS and on the OneLab
facilities that provide for the integration activities of the first integrated version of the NEMO meta-OS.
In addition, it presents the high-level architecture view of the first integrated version of the NEMO meta-
OS highlighting the key integration activities for each functional layer and describes the components
that are fully or partially integrated.

Section 3 describes the overview, the architecture, the initial results and the interactions with other
components for the modules that are comprising the Service Management Layer of the NEMO meta-
OS platform, namely the intent-based Migration Controller (IBMC), the Plugin & Application Lifecycle
Manager (LCM), the Monetization and Consensus based Accountability (MOCA) and the Intent-based
SDK/API.

Section 4 sheds light into the integration activities that are conducted and materialized the first
integrated version of the NEMO meta-OS, following the scenario-driven V&V methodology.

Section 5 provides conclusions and insights in view of the final version of the NEMO meta-OS.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 16 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Finally, Annex A & B provide a detailed description of the Intent-based API and MOCA interfaces and
data models.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 17 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

2 NEMO Integration, Validation & Verification

approach and tools

The first integrated NEMO meta-OS version that is described in this document capitalizes on the NEMO
CI/CD environment and tools. The associated CI/CD pipeline facilitates the agile integration and
validation approach that the NEMO adopts and is applied throughout the cloud and edge infrastructure
that is available and orchestrated by NEMO meta-OS. The NEMO meta-OS underlying infrastructure
resides in OneLab facilities. The following sections shed light both on the source code repository
configuration in Eclipse Gitlab and on the OneLab cloud and edge infrastructure that is provided to
NEMO meta-OS. This environment is essential for conducting and subsequently demonstrating the
integration and validation activities that resulted in the first integrated version of NEMO meta-OS.

2.1 NEMO CI/CD Environment & Tools

2.1.1 Open Source repository

For the NEMO project, the GitLab CI/CD framework has been set up and organized in an Eclipse
Research Labs hosted instance of GitLab. The official GitLab group of NEMO is titled <NEMO Project=
and is accessible publicly at https://gitlab.eclipse.org/eclipse-research-labs/nemo-project. The group
hosts the source code that is related to each thematic entity-specific development as dictated by the
NEMO meta-OS architecture. Each thematic entity is organized as a subgroup of the NEMO GitLab
group, Figure 1.

Figure 1: NEMO code repository in Eclipse Research labs

Within each subgroup, the development activities are organized based on the implemented outcomes of
the relevant tasks. Moreover, for each subgroup an owner is assigned as illustrated in the Figure 2 below.

https://gitlab.eclipse.org/eclipse-research-labs/nemo-project

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 18 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Figure 2: NEMO Structure and Ownership

2.1.2 NEMO Automated Deployment and Configuration

The NEMO CI/CD environment capitalizes on Kubernetes1 manifests for the deployment of the NEMO
components in the NEMO meta-OS infrastructure. The documentation that concerns the NEMO CI/CD
integration steps that are necessary for the component deployment process is described in a readme file
within the NEMO repository.

The NEMO components9 container images are uploaded to the docker.io instance under the account of
NEMO, that is following the naming convention <nemometaos/Xcomponent_nameX=. The docker2
image repository (https://hub.docker.com/u/nemometaos) is presented in Figure 3.

1 https://kubernetes.io/
2 https://www.docker.com/

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 19 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Figure 3: NEMO meta-OS docker registry

Once a valid dockerfile3 exists, a <.gitlab-ci.yml= file must be created in the project root directory. Then
once the dockerfile exists for the NEMO developed component the <.gitlab-ci.yml= file must be created
in the project root directory. Figure 4 below presents the relevant configuration file that the NEMO
partners must adapt to their technical solution according to the instructions that are provided.

Figure 4: NEMO gitlab-ci.yml configuration

3 https://docs.docker.com/reference/dockerfile/

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 20 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

In the above example the NEMO partners have to substitute the <component_name> with the name of
their component. This configuration will do the following:

Upload the docker image nemometaos/<component_name>:latest tag every time a commit happens to
the main branch

Upload the docker image nemometaos/<component_name>:<tag_name> tag every time a new tag is
created.

For example, the creation of tag v0.1.1 on the nemometaos/intent-api uploaded to the docker registry is
nemometaos/intent-api:v0.1.1 image. The version of the component (tag) must be always ascending
integers.

In order to deploy the NEMO component to Kubernetes orchestrated environment the component owner
must provide all the necessary kubernetes configuration files (manifests) and test that they can be
deployed and work in the OneLab cluster by using the provided credentials to access the cluster.

In order to pull images from the nemometaos account, every namespace in Kubernetes has the nemo-
regcred secret that must be used as imagePullSecrets in the component9s Deployment manifest as
indicated in the following example.

Figure 5: Kubernetes deployment manifest example (intent-based API)

Moreover, the NEMO meta-OS provided integration guide described the Ingress configuration file that
concerns the communication of the outside world with the deployed component.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 21 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Figure 6: Kubernetes ingress manifest example (intent-based API)

Once the steps mentioned above has been completed then the developed component is deployed
successfully in the Kubernetes orchestrated environment in OneLab. In NEMO, the Continuous
Deployment part of the pipeline is configured through the FLUX CD4 which is a CNCF5 adopted open-
source tool that enables GitOps for managing the configuration of a Kubernetes cluster. In a GitOps
pipeline, the desired state of the cluster is stored in a Git repository, and FLUX CD ensures that the
actual cluster state matches the desired state defined in the repository.

4 https://fluxcd.io/
5 https://cncf.io/

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 22 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Once the manifests are created and the component is verified that is working, the manifests must be
transferred to the FLUX CD repository. The repository is structured in folders as follows:

<cluster_name> / <kubernetes_namespace> / <component_name> / <component_subcomponents>

Each component must be deployed into the respective folder that matched their Kubernetes assigned
namespace. Sub dependencies (e.g. postgres6, redis7 etc) can be also setup as Helm charts8.

To automate the process an ImageRepository & ImagePolicy Custom Resource Definition (CRD) must
be committed alongside the component manifests as indicated by the following examples.

Figure 7: Image repository and policy configuration files

The proper names must be set and must reside inside the flux-system namespace, and the appropriate
image repository must be set too. After that, the Deployment manifest of the component must upsert the
following annotation to the line that defines the newly created docker image as indicated in the
rectangular box in Figure 8 below.

6 https://www.postgresql.org/
7 https://redis.io/
8 https://helm/sh/

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 23 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Figure 8: Example of the Deployment manifest

 After that, any ascending, new tag version, that is created from the component repository, will be
pushed to the docker hub repository and set inside the deployment manifest (version bump) as commit
to the repository by FLUX CD.

2.2 Cloud/Edge/IoT Integration and Validation Infrastructure

2.2.1 OneLab Clusters for NEMO

Four distinct Kubernetes clusters have been established to fulfil specific operational requirements. These
include one primary cluster designated for development workloads, two supporting clusters including a
lightweight cluster deployed on Raspberry Pis9 and finally the production cluster optimized for handling
tasks requiring Graphics Processing Unit (GPU) resources.

Each cluster consists of a series of nodes structured to ensure efficient operation. The master node is
responsible for core functionalities such as application scheduling, scaling, and overarching cluster

9 https://www.raspberrypi.com/

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 24 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

management. Worker nodes are dedicated to executing tasks assigned by the master node, which include
deploying containers and hosting applications. In a production environment, multiple worker nodes are
typically utilized to provide redundancy and enhance service availability, thereby ensuring robust and
uninterrupted operations. Additionally, each cluster is configured with a load balancer, which distributes
incoming network traffic across the nodes to ensure optimal resource utilization, fault tolerance, and
high availability of the services.

Figure 9: Example of MetalLB10 configuration

2.2.1.1 NEMO Dev cluster

The development cluster consists of one control-plane node (k8smaster.onelab.eu) and five worker
nodes (k8sworker1-5.onelab.eu), all in a Ready status. The Kubernetes specified versions ranging from
v1.28.7 to v1.28.15.
	

Figure 10: Dev cluster nodes

Node name
Node

Type
Specifications Public IP

k8smaster.onelab.eu Master
CPU: 8 CPU Cores

RAM: 16GB
132.227.122.23

10 https://metallb.universe.tf/

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 25 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Node name
Node

Type
Specifications Public IP

Storage: 140GB Ephemeral

OS-Image: Ubuntu 22.04.4 LTS

Kernel Version: 5.15.0-116-generic

Container-runtime: containerd://1.6.28

k8sworker1.onelab.eu
Worker
and
Storage

CPU: 16 CPU Cores

RAM: 16GB

Storage: 120GB Ephemeral + 150GB Ceph

OS-Image: Ubuntu 22.04.4 LTS

Kernel Version: 5.15.0-116-generic

Container-runtime: containerd://1.6.28

132.227.122.66

k8sworker2.onelab.eu
Worker
and
Storage

CPU: 16 CPU Cores

RAM: 16GB

Storage: 120GB Ephemeral + 150GB Ceph

OS-Image: Ubuntu 22.04.4 LTS

Kernel Version: 5.15.0-116-generic

Container-runtime: containerd://1.6.28

132.227.122.24

k8sworker3.onelab.eu
Worker
and
Storage

CPU: 16 CPU Cores

RAM: 16GB

Storage: 120GB Ephemeral + 150GB Ceph

OS-Image: Ubuntu 22.04.4 LTS

Kernel Version: 5.15.0-116-generic

Container-runtime: containerd://1.6.28

132.227.122.59

k8sworker4.onelab.eu
Worker
and
Storage

CPU: 16 CPU Cores

RAM: 16GB

Storage: 120GB Ephemeral + 150GB Ceph

OS-image: Ubuntu 22.04.4 LTS

Kernel Version: 5.15.0-116-generic

Container-runtime: containerd://1.6.28

132.227.122.41

k8sworker5.onelab.eu
Worker
and
Storage

CPU: 16 CPU Cores

RAM: 16GB RAM

Storage: 120GB Ephemeral + 150GB Ceph

OS-image: Ubuntu 22.04.4 LTS

Kernel Version: 5.15.0-116-generic

Container-runtime: containerd://1.6.28

132.227.122.47

Table 1: NEMO dev cluster (K8S)

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 26 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Figure 11: Dev cluster namespaces

2.2.1.2 Staging 1 cluster

The staging cluster (Staging 1) comprises one control-plane node (nemo-s1-master) and three worker
nodes (nemo-s1-worker1, nemo-s1-worker2, and nemo-s1-worker3), all reporting a Ready status,
running Kubernetes versions v1.31.3 (control-plane) and v1.30.7 (workers).

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 27 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Figure 12: Staging 1 cluster nodes

Node Name
Node

Type
Specifications Public IP

nemo-s1-master Master

CPU: 8 CPU Cores

RAM: 16GB

Storage: 120GB Ephemeral + 150GB Ceph

OS Image: Ubuntu 22.04.3 LTS

Kernel Version: 5.15.0-78-generic

Container-runtime: containerd://1.7.12

132.227.122.104

nemo-s1-worker1
Worker
and
Storage

CPU: 16 CPU Cores

RAM: 16GB

Storage: 120GB Ephemeral + 150GB Ceph

OS Image: Ubuntu 22.04.3 LTS

Kernel Version: 5.15.0-78-generic

Container-runtime: containerd://1.7.12

132.227.122.105

nemo-s1-worker2
Worker
and
Storage

CPU: 16 CPU Cores

RAM: 16GB

Storage: 120GB Ephemeral + 150GB Ceph

OS Image: Ubuntu 22.04.3 LTS

Kernel Version: 5.15.0-78-generic

Container-runtime: containerd://1.7.12

132.227.122.106

nemo-s1-worker3
Worker
and
Storage

CPU: 16 CPU Cores

RAM: 16GB

Storage: 120GB Ephemeral + 150GB Ceph

OS Image: Ubuntu 22.04.3 LTS

Kernel Version: 5.15.0-78-generic

Container-runtime: containerd://1.7.12

132.227.122.107

Table 2: Staging 1 cluster (K8S)

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 28 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Figure 13: Staging 1 cluster namespaces

2.2.1.3 Staging 2 cluster (K3S)

The Staging 2), deployed on Raspberry Pis 4, consists of one control-plane node (nemo-k3s-master) and
two worker nodes (nemo-k3s-node-1 and nemo-k3s-node-2), all in a Ready state and running
Kubernetes version v1.30.6+k3s1.

Figure 14: Staging 2 cluster nodes

Node name
Node

Type
Specifications Public IP

nemo-k3s-master Master

CPU: 4 CPU Cores

RAM: 8GB

Storage: 64GB External SSD

OS Image: Ubuntu 24.10

Kernel Version: 6.11.0-1004-raspi

Container-runtime: containerd://1.7.22-k3s1

132.227.122.99

nemo-k3s-node-2
Worker
and
Storage

CPU: 4 CPU Cores

RAM: 8GB

Storage: 1TB External SSD

OS Image: Ubuntu 24.10

Kernel Version: 6.11.0-1004-raspi

Container-runtime: containerd://1.7.22-k3s1

132.227.122.88

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 29 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Node name
Node

Type
Specifications Public IP

nemo-k3s-node-3
Worker
and
Storage

CPU: 4 CPU Cores

RAM: 8GB

Storage: 64GB External SSD

OS Image: Ubuntu 24.10

Kernel Version: 6.11.0-1004-raspi

Container-runtime: containerd://1.7.22-k3s1

132.227.122.91

Table 3: Staging 2 Cluster (K3S)

Figure 15: Staging 2 cluster namespaces

2.2.1.4 Production cluster (K8S)

The production cluster includes one control-plane node (nemo-prod-master), three worker nodes (nemo-
prod-worker1, nemo-prod-worker2, and nemo-prod-worker3), and one GPU-enabled worker node
(nemo-prod-gpu-worker), all in a Ready state and running Kubernetes version v1.30.7.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 30 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Node Name
Node

Type
Specifications Public IP

nemo-prod-master Master

CPU: 4 CPU Cores

RAM: 8GB

Storage: 80GB Ephemeral

OS Image: Ubuntu 22.04.3 LTS

Kernel Version: 5.15.0-78-generic

Container-runtime: containerd://1.7.12

132.227.122.42

nemo-prod-
worker1

Worker
and
Storage

CPU: 8 CPU Cores

RAM: 16GB

Storage: 250GB Ephemeral + 150GB Ceph

OS Image: Ubuntu 22.04.3 LTS

Kernel Version: 5.15.0-78-generic

Container-runtime: containerd://1.7.12

132.227.122.43

nemo-prod-
worker2

Worker
and
Storage

CPU: 8 CPU Cores

RAM: 16GB

Storage: 120GB Ephemeral + 150GB Ceph

OS Image: Ubuntu 22.04.4 LTS

Kernel Version: 5.15.0-78-generic

Container-runtime: containerd://1.7.12

132.227.122.11
3

nemo-prod-
worker3

Worker
and
Storage

CPU: 8 CPU Cores

RAM: 16GB

Storage: 120GB Ephemeral + 150GB Ceph

OS Image: Ubuntu 22.04.2 LTS

Kernel Version: 5.15.0-78-generic

Container-runtime: containerd://1.7.12

132.227.122.11
4

nemo-prod-gpu-
worker

Worker
and
Storage

CPU: 4 CPU Cores

RAM: 8GB

Storage: 120GB Ephemeral + 150GB Ceph

OS Image: Ubuntu 22.04.4 LTS

Kernel Version: 5.15.0-78-generic

Container-runtime: containerd://1.7.12

132.227.122.11
5

Table 4: Production Cluster (k8S)

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 31 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Figure 16: Production cluster namespaces

2.3 Integration & V&V Methodology & Plan

NEMO will follow an agile and incremental approach of iteration cycles, grouped in 3 Phases, as
depicted in Figure 17.

Phase 1: Baseline (M1-M18). Provides the initial NEMO Proof of Concept. Phase 1 starts with system,
specification of the meta-OS Architecture and decomposition (WP1), design analysis, prototyping
(WP2-WP4), integration, testing and validation of all key meta-OS components (WP4). The outcome
will be NEMO Ver. A and initial Living Labs validation and the selection of the new consortium
members and new components from Open Call #1 to be implemented with Phase 2.

Phase 2: Advance (M19-M30). All NEMO components are further developed (WP2-WP4), while
NEMO is expanded with new functionality added from the new consortium members accepted via Open
Call #1. Stronger integration with 5G networks and MANO systems will be realized and validated in
Living Labs). The outcome will be NEMO Ver. B and Living Labs validation, along with new AIoT
applications and services from Open Call #2.

Phase 3: Mature (M30-M36). Focus on validation and optimization, and more realistic field conditions
testing and verification, not only from NEMO consortium but also from 3rd parties selected via Open
Call #2, increasing system TRL and preparing NEMO Ver. 1.0, validated in Living Labs. This phase
also strengthens activities related to engagement of open-source communities and relevant initiatives,
ensuring accessibility, sustainability and availability in open-source platforms.

Figure 17: NEMO project phases and main meta-OS version releases

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 32 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

It should be underlined that each phase will follow an agile and incremental Continuous Integration/

Continuous Deployment/ Continuous Piloting (CI/CD/CP) approach, as explained in the previous
subsections. The proposed approach allows responding to developments in the state of the art and
emerging technology trends, as well as to continuously improve the results based on experimentation in
the field.

2.3.1.1 NEMO Scenario-driven integration and verification

This section elaborates on the NEMO scenario-driven approach that is adopted by the project as the
foundation of the integration activities that resulted into the firstt integrated NEMO platform.

The integration tests conducted are scenario-driven and each scenario covers a part of the integration
workflow that are defined and described in section 4. The specified tests might be distinguished in
bilateral, that is between component A and B, and/or system level cross-cutting ones.

The integration tests that are conducted follow the below presented structure. First, the scenario is
defined. For this, the Scenario template presented below is used to specify the particular test. More
specifically, the Scenario template incorporates details that pertain to the objective of the tests, the
participating components, the requirements that are addressed, the features that are tested, the steps that
are needed to be verified and finally the test setup which provides details on the integration setting that
facilitates the test.

Then, the results are presented in detail as dictated by the steps that are defined in the scenario. Finally,
the Checklist template is applied describing the successful or unsuccessful are reported and fall into the
specific integration scenario. The stemming results for all the defined workflows are presented in section
5, following the abovementioned structure Scenario, Outcome/Results, Checkpoints.

Test 1:

Objective

Components

Requirements
alignment

Features to be
tested

Test setup

Steps 1.

2.

3.

Figure 18: Integration testing 3 Scenario template

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 33 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Checklist for Test1

 Yes No Comments

1 Is a service created?

2 Is the device registration completed successfully?

3 Is the device sending its data successfully?

4 Is the data stored in Database / Registry?

Figure 19: NEMO Integration testing - Checklist template (Example)

2.4 NEMO OneLab infrastructure deployments

The latest stable releases of the developed NEMO meta-OS components are deployed in the OneLab
cluster as indicated in the following figures that depict the NEMO deployments in each namespace.

Figure 20: Default namespace

Figure 21: Kubernetes-dashboard namespace

Figure 22: l2SM namespace

Figure 23: LinkerD namespace

Figure 24: NEMO Kernel namespace

Figure 25: NEMO-net namespace

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 34 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Figure 26: NEMO-PPEF namespace

Figure 27: NEMO-sec namespace

Figure 28: NEMO-svc namespace

The deployed workloads reside in a workloads9 specific namespace as indicated in the figure below.

Figure 29: NEMO-workloads namespace

2.5 NEMO Integrated Platform (Ver. 1)

The NEMO meta-OS platform concerns a composition of a big set of technical tools residing in every
functional layer of its architecture spanning from the infrastructure layer to the service management
layer of the platform.

Figure 30 below illustrates the functional view of the NEMO meta-OS architecture which was
introduced in D1.2 [3]. The functional view is segregated in three horizontal layers namely the

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 35 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Infrastructure Management layer, the NEMO Kernel and the NEMO Service Management layer,

including three NEMO cross-cutting functions (verticals) namely, the PPEF, the CFDRL and the
Cybersecurity & Federated Access Control.

Figure 30: The NEMO high-level architecture

The first integrated NEMO meta-OS platform materialized through four scenario-driven integration
activities that aimed glue together the first stable releases of the NEMO technical ecosystem. Figure 31
depicts the overview of the first integrated NEMO platform. The square rectangles denote the integrated
components.

The continuous lines indicate that the respective components are fully integrated meaning that the
exposed interfaces, the respective data models and the provided functionality that is included in their
latest stable release has been tested in the NEMO OneLab infrastructure and the communication between
the participating modules has been successfully verified.

Figure 31: The 1st integrated version of NEMO meta-OS (high-level architecture view)

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 36 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

One the other hand the dashed-line square rectangles indicate that the integration has been partially
achieved. This means that for the particular components the integration within NEMO meta-OS has
been achieved either through integration tests that were conducted in the context of partners premises
or indicates that the integration was limited due to implementation activities that are currently ongoing.

The results of the integration tests that were executed in view of the first release of the NEMO meta-OS
are presented in detail in section 4 of the deliverable. The main goal of the current release is to
demonstrate a good level of system-level coherence, verifying its readiness for the final integration
activities that will be performed to produce the final version of the NEMO meta-OS.

2.5.1 Meta-OS functionality in NEMO v1

This section aims to provide an overview of the conducted integration activities and provided
functionality of the current development state of the NEMO meta-OS components for each functional
layer of the NEMO meta-OS architecture.

2.5.1.1 NEMO Infrastructure Management

The mNCC is the NEMO components that provides an abstraction layer of the underlying infrastructure
network level. The mNCC delivers network orchestration overseeing network connectivity management
guaranteeing multi-cluster and multi-domain connectivity. The incorporated connectivity adaptors that
provide for data translation between different network protocols. More specifically, the L2S-M enables
dynamic creation and management of isolated virtual networks within meta-OS operator clusters, the
5G adaptor, supports deterministic communications through TSN bridges with 5G LAN solutions and

the SDN-based connectivity adaptor, supports network management. Finally, mNCC component

facilitates the monitoring of the communications between pods deployed in each cluster9s nodes. The

collected data are communicated through RabbitMQ.

Regarding integration activities, mNCC offered functionality is currently being finalized and initial
integration activities with on premise deployments have been achieved and documented. The latest
development updates of the component are presented in D2.3 [4] that will be submitted on M28.

2.5.1.2 NEMO Kernel

The NEMO components associated with the Kernel layer are the MO, the CMDT, the IBMC and the
SEE as illustrated in the NEMO meta-OS architecture view figures above. The core functionalities
offered from the NEMO Kernel components have been presented, demonstrated and documented in the
present document through scenario driven integration activities (section 4). More specifically, the MO
facilitates the workload deployment and migration processes. For the latter the IBMC supports the
workload migration process ensuring efficient resource use, improved scalability, and continuous
service availability during migrations. The CMDT provides enhanced workload monitoring related
measurements to the platform, which are being consumed through the RabbitMQ, by the NEMO meta-
OS components. Finally, the SEE (Kubernetes cluster) which is a solution for creating secure execution
environments for critical and dynamic services, ensuring robust, secure, and efficient operations, is
available and integrated within NEMO meta-OS ecosystem. The NEMO user (workload provider) can
formulate a request through the Service Management layer asking for their services to be deployed in
SEE. This is indicated by the proper configuration of workloads9 intents.

2.5.1.3 NEMO Service Management

The NEMO Service Management layer components9 functional updates are presented in detail in section
3 of the present document. More specifically, section 3 provides insights on components9 architecture,
provided functionality offered by the respective modules, their communication interfaces and associated
data models, initial results and plans in view of the final version of the platform.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 37 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

The provided functionality from the NEMO Service Management layer components9 namely, IBMC,
MOCA, LCM and Intent-based API can be considered almost completed. The final releases of these
components will be documented in D4.3 [1], due on M33, which will also describe the final integrated
version of the NEMO meta-OS.

2.5.1.4 NEMO Cross-cutting Functions

With reference to the crosscutting functions, AI is vertically present in the metaOS architecture. The
CFDRL component provides capacity of learning decision-making models capitalizing on the data
collected by the NEMO meta-OS monitoring tool procedures offered by PPEF, CMDT and mNCC. The
integration between the monitoring tools and CFDRL has been achieved allowing NEMO workload and
cluster-level measurements to be digested by the CFDRL through RabbitMQ. The AI-assisted decision
making that concern the workload optimal deployment and migration processes will be conducted in
view of the final version of the NEMO meta-OS, as it requires the verified integration of the participating
components for these workflows which has been achieved in the framework of this version (first) and is
documented in section 4. The learning procedure in CFDRL combines two complementary learning
paradigms: Federated Learning (FL) and Reinforcement Learning (RL). In addition, CFDRL to address
privacy preservation challenges introduced FREDY (Federated Resilience Enhanced with Differential
Privacy) [5] which integrates Flower with Private Aggregation of Teacher Ensembles (PATE) [6] to
bolster privacy features. For the first release of the NEMO meta-OS the CFDRL component is
considered as partially integrated.

Regarding Security in the NEMO meta-OS is built on the concept of ZeroTrust. NEMO Access Control
(NAC) allows the implementation of a comprehensive approach to applying flexible, easily
configurable, granular privileged access to NEMO resources by either internal components or, beyond
the perimeter, to external entities. NAC provides a common secure API gateway for all the requests that
are targeting NEMO meta-OS and offers access control based on a set of modular criteria, which may
include identity management, catering for Authentication, Authorization, and Accounting (AAA). The
NAC integration results in the context of the first release of the NEMO meta-OS are presented in section
4.

The NEMO meta-OS communication layer is based on RabbitMQ, a message broker enabling
communication and synchronization among distributed systems and applications. It acts as an
intermediary, facilitating secure message exchange while offering essential capabilities like message
routing, queuing, and transformation.

Finally, the PPEF component facilitates service and resource monitoring for the NEMO meta-OS at both
workload and cluster level. The PPEF concerns the metrics collection from the deployed monitoring
tools, the evaluation between the collected measurements and the intents9 expectation targets and the
communication of this information within NEMO meta-OS (through RabbitMQ). The integration of the
PPEF within NEMO meta-OS has been achieved and presented in section 4.4.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 38 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

3 NEMO Service Management Layer updates

This section reports the latest specifications and design options for the NEMO components of the
Service Management layer in the NEMO architecture. These components provide a middleware between
core NEMO functionality and workloads, but also end users. They support ZeroOps principles and
expose interfaces to external entities (services or users). Moreover, the supported services include
Lifecycle Management and DLT-based accountability of workload or infrastructure usage and
collectively contribute to NEMO openness and adoption by third parties, referring to application or
infrastructure owners, as well as developing entities.

3.1 Intent-based Migration Controller

3.1.1 Overview

The Intent-based Migration Controller (IBMC) serves as a key component within the NEMO ecosystem,
it is designed to facilitate the migration of workloads across the IoT, Edge, and Cloud Continuum. By
employing intent-based networking concepts, the IBMC ensures efficient resource use, improved
scalability, and continuous service availability during migrations. This approach enables the IBMC to
interpret and execute high-level migration intents, which supports the flexibility needed to manage the
complexities of the meta-OS environment effectively.

3.1.2 Architecture

Figure 32 illustrates a simplified high-level architecture of the components underneath the Development
View of the IBMC.

ibmc-controller: Is in charge of handling the communications with other components. This
communication is performed by managing different RabbitMQ11 queues and reading/delivering the
correct messages needed for each migration step.

Velero12: Each Velero operation is defined as a custom resource using a Kubernetes Custom Resource
Definition (CRD) and is stored in etcd. Velero also includes controllers responsible for processing these
custom resources to handle backups, restores, and related tasks. This allows to backup or restore every
resource in a cluster, with the capacity of selectively filter by resource type, namespace and/or label.

S3 Storage13: Dedicated to store the backups created by Velero, it9s a key element for the migration
process. The S3 bucket is located in the main NEMO cluster and every other cluster has access to it to
allow the possibility of retrieving backups from one cluster to another.

11 http://www.rabbitmq.com/
12 https://velero.io/
13 https://aws.amazon.com/s3/

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 39 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

Figure 32: IBMC Simplified Architecture

Figure 33 shows a more complete architecture of the IBMC. In this figure, the migration process of a
workload between two different clusters is represented, displaying the communication sequence since
the migration is triggered.

Figure 33: IBMC Complete Architecture

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 40 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: FINAL

3.1.3 Interaction with other NEMO components

Figure 34: Migration Sequence Diagram

1. The Intent-API publishes a workload intent with an availability requirement.
2. The MO retrieves workload status from the Intent-API (deployed or not deployed).
3. If the workload is already deployed in any cluster, then a migration action is triggered.
4. The cluster availability where the workload is currently deployed is compared to the one from

the intent. If X<Y, the workload migration is triggered.
5. The MO sends a message via RabbitMQ queue to the IBMC containing the workload ID and a

target cluster that meets the availability requirement.
6. The IBMC creates a backup of the workload associated resources and uploads it to the S3

MinIO14 instance located in the OneLab main cluster.
7. The IBMC downloads the resources and restores them in the target cluster. After this, the

workload is removed from the source cluster.
8. The IBMC sends a message to the Intent-API updating the workload status, specifying the

cluster where it has been deployed.

14 https://min.io/

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 41 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

3.1.3.1 Meta-Orchestrator (MO)

The meta-Orchestrator (MO) plays a central role in the IBMC's workflow. When the MO receives a
migration intent, it makes a placement decision based on cluster availability. This decision is sent to the
IBMC and contains the target cluster for the migration.

3.1.3.2 Intent-Based API

The Intent-Based API stores all the information related to the workloads deployed. It is responsible of
creating and sending the intents that trigger the migration of a workload.

When a migration is successfully completed, a message from the IBMC is sent to the Intent-Based API
to update the workload status, including the new cluster where it has been deployed.

3.1.4 Initial results

The sections below provide a summary of the results generated through the utilization of the component.

3.1.4.1 Standalone results

An initial test of the standalone IBMC component was conducted in the OneLab environment. The
experiment's setup included both OneLab clusters (the main cluster and the K3s cluster) with Velero
pre-installed and configured. Both clusters had access to the MinIO15 instance deployed in the main
cluster. Additionally, a workload was already deployed in the main cluster as part of the preconditions.

To simulate a migration scenario, a migration trigger was manually sent. This triggered the migration
process, moving the workload from the main cluster to the K3s cluster. Upon completion, the migration
was successful, with the workload fully deployed in the K3s cluster and removed from the main cluster.

3.1.4.2 Integration results

An end-to-end test was conducted involving the Intent-Based API, the Meta-Orchestrator and IBMC.
The initial conditions were the same of the previous experiment, with the same objective of migrating a
workload from the main cluster to the K3s cluster.

In this experiment, the process starts with the Intent-Based API posting an intent to RabbitMQ, which
is read by the Meta-Orchestrator. The Meta-Orchestrator interprets the intent and verifies whether the
workload ID specified in the intent is already deployed in any cluster. To obtain this information, the
Meta-Orchestrator sends a request back to the Intent-Based API in order to retrieve the workload's
deployment status.

If the workload is already deployed in a cluster, the Meta-Orchestrator compares the availability value
of that cluster to the one specified in the intent. If the availability value of the current cluster is lower,
the Meta-Orchestrator initiates a migration by posting a message to the RabbitMQ queue corresponding
to the cluster where the workload is currently deployed. This message contains the information detailing
the workload to be migrated (workload ID), the cluster where it is deployed and a new target cluster
meeting the availability requirements.

When the IBMC controller receives this message, the migration process proceeds as in the initial
experiment, resulting in the workload being successfully deployed in the K3s cluster and removed from
the main cluster.

15 https://min.io/

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 42 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

3.1.5 Conclusion and roadmap

The Intent-Based Migration Controller (IBMC) within the meta-OS framework represents a major leap
forward for the NEMO platform, enabling smooth workload migration across the IoT-to-Edge-to-Cloud
continuum while sustaining a dynamic balance within the meta-OS environment.

Looking forward, the IBMC roadmap emphasizes ongoing refinement and adaptation to meet emerging
needs and technological advancements within the meta-OS landscape. Planned enhancements and future
directions are outlined to ensure the IBMC continues to lead in migration capabilities as the meta-
Operating System ecosystem evolves.

3.2 Plugin & Applications Lifecycle Manager

Overview The Plugin & Applications Lifecycle Manager (LCM) is a versatile mechanism designed for
unified, just-in-time management of plugins and applications throughout the NEMO ecosystem. Serving
as the bridge between NEMO users and the ecosystem, the LCM enables seamless deployment of
workloads, such as services, applications, and plugins, within the NEMO environment. It also supports
over-the-air updates and bug fixes, ensuring the system remains up to date.

While workloads are running on the NEMO meta-OS, an event-driven mechanism monitors critical
performance-related events. Additionally, a security controller oversees security events, notifies users
of detected anomalies, and implements mitigation measures against identified cyber threats. The LCM9s
user interface will integrate with other NEMO components, including the Intent-based API, PPEF,
MOCA and CMDT, to provide a comprehensive and cohesive user experience. The interfaces offered
include user profiles, workload management and monitoring, security monitoring, and historical
analysis tailored to the user's role.

3.2.1 Architecture

The LCM comprises of a set of subcomponents namely the LCM CD, LCM Controller, Security
Controller, Event-based Response, LCM Repository and LCM Dashboard.

The LCM high-level architecture of NEMO meta-OS is depicted in the development view diagram in
Figure 35.

LCM CD is based on ARGO CD framework to manage NEMO workloads provided by NEMO partners
or NEMO Open Call participants and deploys workloads in S3 bucket container.

LCM Controller is a control mechanism that facilitates communication between LCM submodules and
the NEMO ecosystem, offering endpoints for sending and receiving information.

Security Controller handles runtime security monitoring of NEMO workloads, notifying both users
and relevant NEMO components of detected events.

Event-based Response module is designed to implement automated actions in response to events
initiated by user input or detected by other NEMO components.

LCM Repository is used to store data related to workload lifecycle, security incidents, detected events
and other workload related information to provide historical analysis and runtime statuses.

LCM Dashboard serves as the gateway between end-users and the NEMO meta-OS ecosystem,
granting privileged users access to manage their workloads and monitor both performance and security.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 43 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 35: LCM Architecture

3.2.2 Lifecycle Manager

3.2.2.1 LCM CD

LCM CD, which corresponds to LCM Continuous Deployment, automates workloads deployment by
ensuring that the state of applications in a Kubernetes cluster matches the configurations stored in Git
repositories. Its key strength lies in the declarative approach to application definition, enabling users to
define Kubernetes manifests in a version-controlled format.

Figure 36 provides a description of the payload transmitted while a plugin is being deployed.

Figure 36: Plugin Deployment

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 44 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

LCM CD is based on ArgoCD tool and provides features like automated synchronization, rollback
options, and support for multi-environment deployments. With its user-friendly web interface and
seamless Kubernetes integration, LCM CD simplifies the deployment lifecycle, enhancing
collaboration, traceability, and overall efficiency.

3.2.2.2 LCM Controller

The LCM Controller contains the logic of the LCM component and interacts with the internal
subcomponents as well as the other NEMO components to retrieve information in real-time and feed the
user interface while stores meaningful information in the LCM storage for keeping the historical status
and performance for further analysis. The LCM controller includes functions to subscribe and consume
data from relevant RabbitMQ channels, API endpoints to communicate with other components and
functions to store and retrieve data from the storage repository. As the LCM Controller interacts with
the other NEMO components more details on functions and APIs used will be reported in Section 4.2.3.

3.2.2.3 LCM Repository

LCM Repository uses Elasticsearch16 for storing, searching, and analysing data provided by various
NEMO components like Intent-based API, PPEF, MOCA and CMDT. Elasticsearch provides fast search
responses and comes with extensive REST APIs for storing and searching the data. Stored data include
the status and lifecycle of the workloads, security events detected, workload performance and resource
usage.

3.2.2.4 Security Controller

The Security Controller caters for security monitoring at runtime regarding NEMO workloads and alerts
both the user and relevant NEMO components for detected events. This component aims to complement
the security validation checks made before deployment of workloads into NEMO clusters, such as
scanning processes in the Continuous Integration workflow or in the images registries, as these
validation checks take place prior to the containers9 deployment and even block some deployments as a
result of failing the security assessment. The Security Controller aims to identify security incidents
which take place at containers9 runtime and may refer either to events at the system call level or to
vulnerabilities arising from software dependencies, known vulnerabilities and insufficient security
configurations.

Falco17 framework was selected as the foundation for the development of the plugin that is available
through Security Controller. Falco is an open-source, CNCF adopted, runtime security platform that
allows you to detect and respond to suspicious behavior within containers and applications. Falco is
deployed in OneLab premises, as illustrated in section 2.4.

 Falco continuously monitors the deployed containers and generates security auditing events that are
digested by the Security Controller and are handled by the LCM. The Security Controller is responsible
for the filtration of security events and subsequently their mapping with deployed workloads that
correspond to a NEMO user.

3.2.2.5 LCM Visualization

LCM visualization is the main interface of NEMO project providing the necessary interfaces for each
NEMO user role to manage workloads and resources in NEMO meta-OS. The LCM visualizations aim
to provide interfaces for seamless user experience with NEMO ecosystem available to experts and less
experienced users. The target is to provide the relevant information for workloads and resources
lifecycle, usage, and security in a compact format at different levels of detail (workload, resources, user,

16 https://elastic.co/
17 https://www.falcoframework.com/

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 45 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

system). Indicative screenshots are presented in section 3.2.4 containing the initial results of the LCM
component based on the implementation and integration progress at the current phase.

3.2.3 Interaction with other NEMO components

The LCM component is deployed in the NEMO Onelab infrastructure, as shown in Figure 37.

Figure 37: Onelab deployment LCM and Security Controller

The LCM interacts with Intent-based API and MOCA components through relevant API endpoints and
consumes data from PPEF, CMDT and Security Controller through RabbitMQ exchanges. This section
describes in more detail the functions and data models used to interact with other NEMO components.
Figure 38 depicts the data model of the Intent-based API endpoints which are used for the management
of the workloads.

GET /workload/
 {
 name: string,
 version: string,
 }
 -
POST /workload/
 {
 name: string,
 version: string,
 schema:{},
 type: string (chart),
 intents: Array [],
 }

POST /workload/upload/
 {
 file: file (tgz helm chart),
 name: string,
 version: string
 }
POST /workload/{id}/template/
 {
 release_ name: string,
 namespace: string,
 values_override:{},
 include_crds:boolean,
 is_upgrade:boolean,
 no_hooks:boolean,
 ingress_enabled:boolean,
 intents:[
 {
 intent_type,
 service_start_time,
 service_end_time,
 targets:[
 {

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 46 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

 target_name,
 target_condition,
 target_value_range
 }
]
 }
]
 }

GET /workload/instance/
 {
 instance_id: string
 }

Figure 38: Intent-based API workload management

Figure 39 presents the data model of the Intent-based API endpoints which are used for the management
of the intents.

GET /intent/
 {
 intent_id:string
 }
 -
POST /intent/template/
 {
 instance_id: string,
 intent_type: string,
 service_start_time: string,
 service_end_time: string,
 targets:[
 {
 target_name: string,
 target_condition: string,
 target_value_range: string
 }
]
 }

Figure 39: Intent-based API intents management

Figure 40 presents the data model of the MOCA API for the resources provisioning.

GET /moca/cluster/retrieve
 {
 }
 -
POST /moca/cluster/register
 {
 cluster_name: string,
 cpus: number,
 memory: number,
 storage: number,
 availability: string,
 green_energy: string,
 cost: string,
 cpu_base_rate: number,
 memory_base_rate: number
 }

Figure 40: MOCA Resource provisioning

Additionally, the LCM subscribes to RabbitMQ exchanges to retrieve real-time data from PPEF,
Security Controller and CMDT.

In summary, the retrieved information includes cluster usage metrics from PPEF (CPU, RAM, and
storage, etc.), security events identified by the Security Controller (both system-wide and per workload),
and data from CMDT, which currently encompasses the number of workload replicas and network

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 47 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

related information including workload9s response times. Finally, data consumed from RabbitMQ or
API endpoints are stored in LCM internal repository for historical overview and detailed analysis.

Figure 41 depicts functions to retrieve data to/from LCM Repository.

GET /cluster/{id}/data/
 {
 timestamp_from: string,
 timestamp_to: string,
 cluster_id: string
 }
GET /workload_instance/{id}/data
 {
 timestamp_from: string,
 timestamp_to: string,
 workload_id: string
 }
GET /workload_security_events/{id}/data
 {
 timestamp_from: string,
 timestamp_to: string,
 workload_id: string
 }
GET /workload_CMDT/{id}/data
 {
 timestamp_from: string,
 timestamp_to: string,
 workload_id: string
 }

Figure 41: Searching LCM Repository

3.2.4 Initial results

The LCM provides interfaces for different services such as Plugin Monitoring, Workload Monitoring,
Intent Management and Resource Provisioning. Figure 42 illustrates the homepage of LCM dashboard.

Figure 42: LCM Dashboard Homepage

Plugin Monitoring offers a CI/CD process and lifecycle monitoring for NEMO plugins and applications.
Currently, the user is able to deploy a plugin and manage already deployed plugins while monitoring
basic lifecycle parameters like versioning and activity are also available.

The Workload Monitoring section includes functionality to manage workloads in their whole lifecycle,
from registering to Intent-based API to deployment and running several instances according to the user
role and credentials. More details on the LCM UI available views are presented in Section 4 which
concerns the NEMO scenario-driven integration and verification results.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 48 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

3.2.5 Conclusion and roadmap

The achievements of LCM component, considering developments that are deployed in OneLab
environment, fully integrated in NEMO meta-OS include:

¥ Workload management and monitoring
¥ Resources provisioning and monitoring
¥ Plugin deployment and lifecycle management
¥ Security/vulnerability scanning and monitoring

Towards the NEMO final version release, our goal is to deliver a comprehensive tool for managing and
monitoring workload and resource lifecycle. This tool will consolidate information from various NEMO
components into a streamlined format, ensuring a seamless experience for both expert and non-expert
users within the NEMO ecosystem.

3.3 Monetization and Consensus-based Accountability

3.3.1 Overview

The Monetization and Consensus-based Accountability (MOCA) component enables the fair and secure
monetization of the NEMO platform among the different users participating (consumers or providers).
MOCA creates a distributed, tamper-resistant blockchain based ledger between different operators and
verticals to track provenance and enforce secure negotiation and transaction of resources such as through
smart contracts. The MOCA system provides the users with <credits= - the accountability unit of the
platform. Their purpose is to reward the users who contribute to the platform by either providing
infrastructure or deploying their services and allow them to accelerate precommercial exploitation of
multi-tenant AIoT-Edge-Cloud continuum. The usage of DLT-based smart contracts for computing the
accounting tasks allows for transparency and immutability in the transactions.

In retrospect, MOCA encompasses the following features:

¥ It uses blockchain technologies (more specifically Quorum) to perform the accounting actions
and to transmit the results. This allows for immutability and traceability for all actions.

¥ It is integrated with NEMO9s Authentication platform; therefore, the users have role-based
capabilities.

¥ It gives periodic but also real-time reports of the users9 information, like their bill details and
the state of their resources (clusters, workloads).

¥ The accounting process takes into consideration the amount of the offered resources, the region
demands and the infrastructure type to properly calculate the costs and rewards of each user.

3.3.2 Architecture

MOCA comprises of the following components:

¥ An Event Server that allows other components and users to retrieve information on the details
of the registered resources (clusters and workloads) and the accounting events.

¥ The Decentralized Applications (DApps), which contain the accounting logic and store
information like the IPFS links to the cluster configuration files and the NEMO resources9
information.

¥ The Smart Contracts component (private Quorum blockchain), where DApps are deployed,
and the transactions and calculations take place.

¥ An IPFS network, where the cluster configuration files are stored. Like Quorum, IPFS offers
immutability to the data and detection of malicious attacks.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 49 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Since the full description of the sub-components' functionality is provided in deliverable D4.1, the basic
workflow will be presented, briefly. Figure 43 shows the sub-components that are part of the MOCA
component. The Event Server is the main communication interface with the rest of the MOCA
components which is responsible for handling (a) the requests for the cluster registration, (b) the
communication with the IPFS for storing the cluster configuration files and (c) the exposure of the
functionality of the DApps through REST API endpoints. The MOCA in periodic basis computes the
resource usage of the deployed workloads and the usability status of the registered clusters. These
periodic tasks communicate with the DApps and update appropriately the users9 information held by the
Event Server. A closer inspection on the calculation details is delivered in Section 3.3.4 and a full
example of the workflow in Section 4.

Figure 43: MOCA diagram

3.3.3 Interaction with other NEMO components

The MOCA component is deployed in the NEMO OneLab premises, as shown in Figure 44.

Figure 44: The MOCA deployment in the Onelab cluster

Figure 45 demonstrates the interactions of MOCA with the rest of the NEMO components. More
specifically, MOCA integrates directly with the NEMO Intent API and NEMO RabbitMQ. Other
NEMO components (LCM, PPEF, CMDT) can go through the Intent API, to access the MOCA Event
Server endpoints. The RabbitMQ integration establishes the connection between MOCA and the NEMO
Meta-Orchestrator. During the cluster registration, the two components exchange though the RabbitMQ
the appropriate information to complete the action.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 50 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 45: MOCA integration diagram

The following sections give a more thorough look on the MOCA API and the capabilities it offers.

Note: All the endpoints require to be authorized with the use of an authorization header, which sends a
token provided from the NEMO Access Control plugin, as shown in the demonstration of Figure 46.

Figure 46: MOCA API authorization example

3.3.3.1 MOCA API

This section presents the MOCA API that is exposed and is available in openAPI format (https://intent-
api.nemo.onelab.eu/moca/api/v1/swagger/). Figure 47, illustrates the relevant contents. The complete
functionality offered by the MOCA API (endpoints and data models) is described in detail in ANNEX
A.

https://intent-api.nemo.onelab.eu/moca/api/v1/swagger/
https://intent-api.nemo.onelab.eu/moca/api/v1/swagger/

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 51 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 47: MOCA API

3.3.4 Initial result

MOCA uses various smart contracts to perform the accounting of the NEMO platform. In first version
four contracts are supported namely the (a) NemoTokenEstimation, (b) NemoFunds, (c)
InfrastructureOwnerModel and (d) ServiceProviderModel. In the following sections, a more thorough
analysis of their functionality will be presented to better understand the calculation mechanism.

3.3.4.1 Regional Costs

The contact NemoTokenEstimation is responsible for supplying the costs for all the registered clusters
to NEMO. A cluster can be categorized by whether it is in high/low demand, and its usability status in
terms of available resources (CPU, RAM, Network bandwidth, etc.). The contract stores that
information and allows for the retrieval of the details via the MOCA Event Server with the use of the
/nemo_token_estimation_setup endpoint (Figure 48).

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 52 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 48: Setup region information through Event Server

An example of a successful cluster registering information is shown in Figure 49.

Figure 49: Logs of inserting cluster information

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 53 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Table 5 shows the details of the contract.
NemoTokenEstimationSetupContract.sol

pragma solidity ^0.8.0;

contract NemoTokenEstimationSetupContract {

 address private _owner;

 struct RegionInfo {

 bool isSet;

 bool highDemand;

 uint256 highDemandCost;

 uint256 regionalCpuCosts;

 uint256 regionalMemoryCosts;

 }

 mapping(string => RegionInfo) public regionalInfoMapping;

 modifier onlyOwner() {

 require(msg.sender == _owner, "Caller is not owner!");

 _;

 }

 modifier validateRegionInfo(

 uint256 _regionLength,

 uint256 _highDemandLength,

 uint256 _highDemandCost,

 uint256 _regionalCpuCostsLength,

 uint256 _regionalMemoryCostsLength

) {

 require(

 _regionLength == _highDemandLength &&

 _regionLength == _highDemandCost &&

 _regionLength == _regionalCpuCostsLength &&

 _regionLength == _regionalMemoryCostsLength,

 "Input array lengths must match"

);

 _;

 }

 constructor() {

 _owner = msg.sender;

 }

 function initializeNemoTokenEstimationInfo(

 string[] memory _region,

 bool[] memory _highDemand,

 uint256[] memory _highDemandCost,

 uint256[] memory _regionalCpuCosts,

 uint256[] memory _regionalMemoryCosts

)

 public

 onlyOwner

 validateRegionInfo(

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 54 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

 _region.length,

 _highDemand.length,

 _highDemandCost.length,

 _regionalCpuCosts.length,

 _regionalMemoryCosts.length

)

 {

 for (uint256 i = 0; i < _region.length; i++) {

 regionalInfoMapping[_region[i]] = RegionInfo({

 isSet: true,

 highDemand: _highDemand[i],

 highDemandCost: _highDemandCost[i],

 regionalCpuCosts: _regionalCpuCosts[i],

 regionalMemoryCosts: _regionalMemoryCosts[i]

 });

 }

 }

 function isRegionSet(string memory _region) public view returns (bool) {

 RegionInfo memory info = regionalInfoMapping[_region];

 return info.isSet;

 }

 function getRegionInfo(

 string memory _region

) public view returns (bool, uint256, uint256, uint256) {

 RegionInfo storage info = regionalInfoMapping[_region];

 return (

 info.highDemand,

 info.highDemandCost,

 info.regionalCpuCosts,

 info.regionalMemoryCosts

);

 }

}

Table 5: The NemoTokenEstimation smart contract details

3.3.4.2 Handling transactions of clusters and workflows

The NemoFunds contract is responsible for keeping track of registered clusters and workflows, storing
and emitting the transactions taking place and tracking the tokens available for every entity. When the
usage of a workload is computed, the NemoFunds contract makes sure to appropriately change the
balance of the actors involved (clusters, workloads, NEMO platform). Then, the changes become known
to the Event Server though the use of events. Table 6 shows the details of the contract.

NemoFunds.sol

pragma solidity ^0.8.0;

contract NemoFunds {

 address public owner;

 uint256 public nemoTotalBalance;

 uint256 public nemoActionsCounter;

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 55 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

 uint256 public nemoRate;

 enum TransactionType {

 deposit,

 withdrawal

 }

 struct NemoBalanceInfo {

 string customerId;

 uint256 customerTokens;

 TransactionType transactionType;

 }

 mapping(uint256 => NemoBalanceInfo) public nemoBalanceActions;

 mapping(string => uint256) public customersBalance;

 mapping(string => bool) public registeredCustomers;

 event CustomerRegistered(

 string customerId,

 string customerType,

 uint256 balance,

 uint256 nemoBalanceActionId

);

 event DepositTokens(

 string customerId,

 uint256 tokens,

 uint256 balance,

 uint256 nemoBalanceActionId

);

 event WithdrawTokens(

 string customerId,

 uint256 tokens,

 uint256 balance,

 uint256 nemoBalanceActionId

);

 modifier onlyOwner() {

 require(msg.sender == owner, "Caller is not the owner");

 _;

 }

 constructor() {

 nemoTotalBalance = 10000000000;

 nemoActionsCounter = 0;

 nemoRate = 20000;

 }

 function isCustomerRegistered(

 string memory customerId

) public view returns (bool) {

 return registeredCustomers[customerId];

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 56 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

 }

 function registerCustomer(

 string memory customerId,

 string memory _identifier

) public {

 require(

 !isCustomerRegistered(customerId),

 "The customer is already registered!"

);

 if (

 keccak256(abi.encode(_identifier)) ==

 keccak256(abi.encode("ServiceProvider"))

) {

 registerServiceProvider(customerId);

 } else if (

 keccak256(abi.encode(_identifier)) ==

 keccak256(abi.encode("InfrastructureOwner"))

) {

 registerInfrastructureOwner(customerId);

 }

 }

 function registerServiceProvider(string memory customerId) private {

 registeredCustomers[customerId] = true;

 customersBalance[customerId] = 500000000;

 nemoBalanceActions[nemoActionsCounter] = NemoBalanceInfo({

 customerId: customerId,

 customerTokens: customersBalance[customerId],

 transactionType: TransactionType.deposit

 });

 emit CustomerRegistered(

 customerId,

 "service",

 customersBalance[customerId],

 nemoActionsCounter

);

 nemoActionsCounter++;

 }

 function registerInfrastructureOwner(string memory customerId) private {

 registeredCustomers[customerId] = true;

 customersBalance[customerId] = 1000000000;

 nemoBalanceActions[nemoActionsCounter] = NemoBalanceInfo({

 customerId: customerId,

 customerTokens: customersBalance[customerId],

 transactionType: TransactionType.deposit

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 57 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

 });

 emit CustomerRegistered(

 customerId,

 "infrastructure",

 customersBalance[customerId],

 nemoActionsCounter

);

 nemoActionsCounter++;

 }

 function depositTokens(string memory customerId, uint256 tokens) public {

 require(nemoTotalBalance > tokens, "NEMO is out of funds!!!");

 nemoTotalBalance -= tokens;

 customersBalance[customerId] += tokens;

 nemoBalanceActions[nemoActionsCounter] = NemoBalanceInfo({

 customerId: customerId,

 customerTokens: customersBalance[customerId],

 transactionType: TransactionType.deposit

 });

 emit DepositTokens(

 customerId,

 tokens,

 customersBalance[customerId],

 nemoActionsCounter

);

 nemoActionsCounter++;

 }

 function withdrawTokens(string memory customerId, uint256 tokens) public {

 require(

 customersBalance[customerId] > tokens,

 "Customer is out of funds!!!"

);

 customersBalance[customerId] -= tokens;

 nemoTotalBalance += tokens;

 nemoBalanceActions[nemoActionsCounter] = NemoBalanceInfo({

 customerId: customerId,

 customerTokens: customersBalance[customerId],

 transactionType: TransactionType.deposit

 });

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 58 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

 emit WithdrawTokens(

 customerId,

 tokens,

 customersBalance[customerId],

 nemoActionsCounter

);

 nemoActionsCounter++;

 }

 function nemoPayment(string memory customerId) public {

 require(

 customersBalance[customerId] > nemoRate,

 "Customer is out of funds!!!"

);

 uint256 nemoPaymentFee = (customersBalance[customerId] * nemoRate) /

 10 ** 8;

 customersBalance[customerId] -= nemoPaymentFee;

 nemoTotalBalance += nemoPaymentFee;

 nemoBalanceActions[nemoActionsCounter] = NemoBalanceInfo({

 customerId: customerId,

 customerTokens: customersBalance[customerId],

 transactionType: TransactionType.withdrawal

 });

 emit WithdrawTokens(

 customerId,

 nemoPaymentFee,

 customersBalance[customerId],

 nemoActionsCounter

);

 nemoActionsCounter++;

 }

 function getNemoBalance() public view returns (uint256) {

 return nemoTotalBalance;

 }

 function makeTransaction(

 string memory serviceId,

 string memory clusterId,

 uint256 _tokens

) public {

 withdrawTokens(serviceId, _tokens);

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 59 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

 depositTokens(clusterId, _tokens);

 nemoPayment(clusterId);

 }

}

Table 6: The NemoFunds smart contract details

3.3.4.3 Cluster provision

The contract InfrastructureOwnerModel is responsible for registering the clusters joining NEMO. It
communicates with the NemoFunds contract to complete the registration. The process provides the
cluster with 10 tokens as an initialization sum. An example of the result of the registration of the cluster
from the blockchain9s side can be seen in Figure 50, where the transaction logs show the successful
registration of the cluster. The logs show that an event was emitted (the CustomerRegistered event), to
inform the Event Server of the action. It should be noted here that all the arithmetic values presented are
normalized (multiplied with a constant variable 108), since Solidity18, the programming language for the
smart contacts, cannot handle float values. Therefore, all the values are multiplied with a big enough
constant to avoid issues with any float numbers.

Figure 50: Example of the transaction logs of the cluster registration

A more thorough example of how the cluster registration is performed will be presented in Section 4 of
the deliverable. Table 7 shows the details of the contract.

InfrastructureOwnerModel.sol

pragma solidity ^0.8.0;

import "./NemoFunds.sol";

contract InfrastructureOwnerModel {

 NemoFunds public nemoFunds;

 struct InfrastructureInfo {

 string cluster_name;

 uint256 totalCpu;

 uint256 totalMemory;

 uint256 totalDisk;

 string ipfsLink;

18 https://soliditylang.org/

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 60 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

 string availability;

 string green_energy;

 string cost;

 uint256 cpu_base_rate;

 uint256 memory_base_rate;

 }

 mapping(string => InfrastructureInfo) infrastructureInfo;

 constructor(address _nemoFundsAddress) {

 nemoFunds = NemoFunds(_nemoFundsAddress);

 }

 function register(

 string memory clusterId,

 InfrastructureInfo memory info

) public {

 require(

 !nemoFunds.isCustomerRegistered(clusterId),

 "The customer is already registered!"

);

 string memory _identifier = "InfrastructureOwner";

 nemoFunds.registerCustomer(clusterId, _identifier);

 infrastructureInfo[clusterId] = InfrastructureInfo({

 cluster_name: info.cluster_name,

 totalCpu: info.totalCpu,

 totalMemory: info.totalMemory,

 totalDisk: info.totalDisk,

 ipfsLink: info.ipfsLink,

 availability: info.availability,

 green_energy: info.green_energy,

 cost: info.cost,

 cpu_base_rate: info.cpu_base_rate,

 memory_base_rate: info.memory_base_rate

 });

 }

 function getInfrastructureInfo(

 string memory clusterId

)

 public

 view

 returns (

 string memory,

 uint256,

 uint256,

 uint256,

 string memory,

 string memory,

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 61 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

 string memory,

 string memory,

 uint256,

 uint256

)

 {

 require(

 nemoFunds.isCustomerRegistered(clusterId),

 "The customer is not registered!"

);

 InfrastructureInfo storage info = infrastructureInfo[clusterId];

 return (

 info.cluster_name,

 info.totalCpu,

 info.totalMemory,

 info.totalDisk,

 info.ipfsLink,

 info.availability,

 info.green_energy,

 info.cost,

 info.cpu_base_rate,

 info.memory_base_rate

);

 }

}

Table 7: The InfrastructureOwnerModel smart contract

3.3.4.4 Workload provision and usage calculation

The ServiceProviderModel contract is responsible for registering the NEMO workloads joining NEMO
and calculating their impact on the cluster resources. It communicates with the NemoFunds contract to
complete the registration and the NemoTokenEstimation to retrieve the costs associated with the regions.
The registration process provides the workload with 5 tokens as an initialization sum.

An example transaction is available in Figure 51, where its logs show the emitted event with the
registration9s info.

Figure 51: Example of the transaction logs of the workload registration

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 62 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

The main function of the contract is to calculate the tokens that will be charged to the workload for the
usage it made in a period, for example, 5 minutes. The next figures show the logs for the usage
calculation, and it will be explained how these reflect on the involved actors (clusters, running
workloads). Figure 52 shows how the balance of the workload was affected. In this simple example, for
its usage of the cluster resources, it was charged 0,00001 tokens.

Figure 52: Example of the transaction logs of the workload usage fee

These tokens are credited to the cluster, as shown in Figure 53.

Figure 53: Example of the transaction logs of the cluster reward

Figure 54 shows that a 0.02% rate is rewarded to the NEMO account from the cluster9s balance to reward
NEMO with a small payment for the services provided.

Figure 54: Example of the transaction logs of the NEMO fee paid by the cluster owner

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 63 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Finally, Figure 55 gives a detailed account on the computation details (how many resources were used
to justify the cost). In this example, the workload was charged 0,00001 tokens for utilizing 5,6
milliecycles of CPU and 0,235 MB RAM for a 5-minute time window that the metrics were collected.

The token calculations are examining the usage of the workload in question against the total resource
usage of the deployment cluster, in order to reflect the real-time pressure on the cluster. Additionally, if
the workload has exceeded the base resource limitations of the region it is assigned to, then that will be
added to the total cost.

A more thorough example of how the workload usage calculation is performed end-to-end through
MOCA will be presented in the next section.

Figure 55: Example of the transaction logs of the calculation of the workload usage fee

Table 8 shows the details of the contract.
 ServiceProviderModel.sol
pragma solidity ^0.8.0;

import "./NemoTokenEstimationSetupContract.sol";

import "./NemoFunds.sol";

contract ServiceProviderModel {

 NemoTokenEstimationSetupContract public nemoTokenEstimationSetup;

 NemoFunds public nemoFunds;

 address public owner;

 struct ServiceMetrics {

 string serviceId;

 string clusterId;

 string region;

 uint256 cpuUsage;

 uint256 memoryUsage;

 uint256 clusterCpuUsage;

 uint256 clusterMemoryUsage;

 }

 event ServiceComputeTokens(

 string serviceId,

 string clusterId,

 uint256 cpu,

 uint256 ram,

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 64 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

 uint256 tokens

);

 mapping(string => string[]) public ServiceProviderWorkflows;

 constructor(

 address _nemoTokenEstimationSetupContractAddress,

 address _nemoFundsAddress

) {

 nemoTokenEstimationSetup = NemoTokenEstimationSetupContract(

 _nemoTokenEstimationSetupContractAddress

);

 nemoFunds = NemoFunds(_nemoFundsAddress);

 }

 modifier checkRegistration(string memory serviceId) {

 require(

 !nemoFunds.isCustomerRegistered(serviceId),

 "The customer is already registered!"

);

 _;

 }

 modifier checkRegionData(string memory region) {

 require(

 nemoTokenEstimationSetup.isRegionSet(region),

 "Data for region must be set before calling this function."

);

 _;

 }

 function register(

 string memory serviceId

) public checkRegistration(serviceId) {

 string memory _identifier = "ServiceProvider";

 nemoFunds.registerCustomer(serviceId, _identifier);

 }

 function computeCredits(

 ServiceMetrics memory _metrics

) public checkRegionData(_metrics.region) {

 require(

 nemoFunds.isCustomerRegistered(_metrics.clusterId),

 "The cluster is not registered!"

);

 require(

 nemoFunds.isCustomerRegistered(_metrics.serviceId),

 "The service is not registered!"

);

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 65 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

 (

 bool _highDemand,

 uint256 _highDemandCost,

 uint256 _regionalCpuCosts,

 uint256 _regionalMemoryCosts

) = nemoTokenEstimationSetup.getRegionInfo(_metrics.region);

 string memory _serviceId = _metrics.serviceId;

 string memory _clusterId = _metrics.clusterId;

 uint256 _tokens = 0;

 // CPU

 uint256 _cpuTokens;

 uint256 _cpuUsage = _metrics.cpuUsage * 10 ** 3;

 uint256 _maxCpuUsage = _metrics.clusterCpuUsage;

 //RAM

 uint256 _ramTokens;

 uint256 _ramUsage = _metrics.memoryUsage * 10 ** 3;

 uint256 _maxRamUsage = _metrics.clusterMemoryUsage;

 if (_cpuUsage > _regionalCpuCosts) {

 _cpuTokens = (_cpuUsage / _maxCpuUsage) * 10 ** 8;

 } else {

 _cpuTokens = 0;

 }

 if (_ramUsage > _regionalMemoryCosts) {

 _ramTokens = (_ramUsage / _maxRamUsage) * 10 ** 8;

 } else {

 _ramTokens = 0;

 }

 _tokens = _cpuTokens + _ramTokens;

 if (_highDemand) {

 _tokens += _highDemandCost;

 }

 _tokens = _tokens / 1000;

 nemoFunds.makeTransaction(_serviceId, _clusterId, _tokens);

 emit ServiceComputeTokens(

 _serviceId,

 _clusterId,

 _cpuUsage,

 _ramUsage,

 _tokens

);

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 66 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

 }

}

Table 8: The ServiceProviderModel smart contract

3.3.4.5 Accountability Service

In this section we present an example of how MOCA computes the tokens that will be charged for the
resource usage of the deployment cluster end-to-end. For this example, we will use a workload deployed
in the NEMO OneLab cluster (Figure 56).

Figure 56: OneLab workload details

This workload is first registered though the Intent-Based API and is deployed to the cluster through the
Meta Orchestrator. After the successful deployment an event is published in the NEMO RabbitMQ
which is consumed by MOCA. (Figure 57 shows for the workload of Figure 56 that the Meta
Orchestrator has sent the payload which informs of the successful deployment.) Then, MOCA registers
in the appropriate smart contract for the specific workload (for more details refer to section 3.3.4.4
workload provision and usage calculation) (Figure 58) and give the owner of the workload five
initialization tokens (Figure 59). The registration event can also be viewed though the
/moca/api/v1/accounting_events endpoint (Figure 60).

Figure 57: RabbitMQ logs of workload deployment

Figure 58: Workload registration to blockchain

Figure 59: User info for workload owner after registration

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 67 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 60: Accounting event for workload registration

At this point, it should be noted that the smart contracts are already deployed in the blockchain and ready
to be executed when the right conditions are triggered (for example the registration of a workload that
was examined before). The deployment of the contracts, at this point of the development, is performed
with the help of the MOCA Helm chart available here19. Figure 61 shows the Kubernetes jobs that are
created to perform the deployment of the contracts and Figure 62 gives an example of the logs for the
successful deployment of one of the contracts (in this case NemoFunds).

Figure 61: Smart Contracts deployment though Helm chart

Figure 62: Logs of deployment of NemoFunds contracts

19 https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-service-management/monetization-and-

consensus-based-accountability/moca/-/tree/main/bc-network?ref_type=heads

https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-service-management/monetization-and-consensus-based-accountability/moca/-/tree/main/bc-network?ref_type=heads

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 68 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

In this example we are using the region <eu-west-1= of the Onelab cluster, in which we are going to
register the region as high demand and charge a fee of 0.01 tokens and set the base utilization limit as
0.05417 milliseconds for the CPU and 0.2345 MBs for the memory. If these limits are exceeded, the
workload will be charged accordingly (more details on the costing mechanism can be found in section
3.3.4.4 workload provision and usage calculation). Figure 63 and Figure 64 show the successful
registration of the region to the blockchain though MOCA.

Figure 63: Registering NEMO OneLab Cluster regional info

Figure 64: Response for successful registration

MOCA has in place automatic mechanisms that communicate with the PPEF component to acquire the
resource usage of all the deployed workloads in periodic intervals (e.g. 5 minutes). Figure 65 shows the
logs of MOCA, which has received from the appropriate smart contract the event with the calculation
details.

Figure 65: MOCA logs of the DApps component calculating the resource usage of a NEMO workload

Querying the endpoint for the accounting events activity (Figure 66), as the workload owner, we notice
that the events hold information like the type of the transaction (deposit or withdraw), the workload ID

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 69 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

(customer_id), the tokens the workload was charged depending on its usage (tokens), the state of the
balance for the workload (balance), the ID of the accounting event as it is registered in the smart contract
(balance_action_id) and the timestamp of the registration of the accounting event.

Figure 66: The accounting events of the workload user

Querying the endpoint available for the user9s information, we can see that the balance has been updated
accordingly for the previous transactions Figure 67.

Figure 67: Workload user information

The details of the amount of resources used and the tokens charged, are also available through the
/moca/api/v1/workload_computations endpoint (Figure 68).

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 70 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 68: Details of the workload computation events

If we also query the accounting events as the cluster owner, we can see that events of depositing the
payment to the owner are registered (Figure 69).

Figure 69: Cluster owner accounting events

Through the endpoint for the user9s information, we can also check that the balance has been updated
appropriately (Figure 70).

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 71 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 70: Cluster owner user information

Now, we will examine the case of scaling up an already deployed workload from one to three pods
(Figure 71).

Figure 71: Scaled up deployment

Since the deployment has been scaled up, its usage has increased, as well as the tokens it will be charged.
Figure 72 shows the logs of MOCA when receiving the token computation for the workload resources.

Figure 72: MOCA logs for scaled workload usage

The last two entries in the /moca/api/v1/workload_computations endpoint show the computations before
and after the workload scale, respectively. Both the memory and the CPU have increased and, as a result,
the usage cost has a slight increase, as well (Figure 73).

 Figure 73: Comparison of workload usage results

3.3.5 Conclusion and roadmap

The conducted developments that materialized the first release of MOCA as part of the 1st integrated
version of the NEMO meta-OS are summarized below.

¥ The development of smart contracts that facilitate the accounting process supporting several
business models.

¥ The integration with the Service Management Layer components as part of the 1st integrated
version of the NEMO meta-OS, namely the Intent-Based API and PPEF

¥ The development of MOCA to handle the different types of users and the calculations and
updates made in a private blockchain network.

The associated results were presented in this section verified the functional competence of the
component. Although majority of the required functionality and the corresponding integration with the
meta-OS platform has already been achieved, the final release of the MOCA component in view of the
final version of the NEMO meta-OS, concern the following activities:

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 72 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

¥ Finalization of the accounting approach used in the smart contracts, by enriching the
calculations.

¥ Provision of a management mechanism for adding, updating and deleting smart contracts via
API.

¥ Enhancements on the provided functionalities to further enrich the information available for the
NEMO users and their resources.

¥ Integration with the final version of the NEMO meta-OS.

3.4 Intent-based SDK/API

3.4.1 Overview

The NEMO Intent-based Application Programming Interface (IB-API) and Software Development Kit
(SDK) act as the programmatic interface of NEMO to external users and/or services. It exposes NEMO
functionality, as delivered by NEMO components, through RESTful calls to the API. It also supports
configuration and for clusters and workloads in a declarative manner, realized as intent-based
orchestration of network and computing loads. The Intent-based API stores NEMO workloads and their
instances as API objects, which can be queried and managed via HTTP API calls. The Intent-based API
can be accessed programmatically by NEMO users, as well as graphically via the LCM UI.

3.4.2 Architecture

The Intent-based API follows a modular architecture for delivering its main capabilities:

¥ Intent-based management that is consistent for both network and computing tasks
¥ Workload management and discovery
¥ NEMO functionalities exposure

The final version of the architecture features a simplified design and is depicted in Figure 74.

The IB-API services delivering intent-based orchestration include:

¥ NEMO Intent Manager
¥ NEMO Intent Validator
¥ NEMO Intent Collector

The IB-API services responsible for workload management and delivery include:

¥ NEMO Workload Manager
¥ NEMO Workload Validator
¥ NEMO Workload Registry, including the workload documents
¥ NEMO Intent Validator
¥ NEMO Intent Collector

In addition, the NEMO functionality exposure is directly offered through the Intent-based API Server,
which provides RESTful endpoints for the supported operations.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 73 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 74: The final Intent-based API architecture

3.4.2.1 NEMO Intent Manager

Intent-driven Management has been introduced originally for automating and adding intelligence into
network systems. Network management in 5G systems is becoming too complex to deal with,
considering increased human intervention or policy-based network management, present in 3G and 4G
architectures. Intent1Driven Management (IDM) has, then, arisen to simplify network management and
interaction of involved stakeholders, with operators having been alleviated from the burden of having
technical awareness of network infrastructure, their policies, etc. [7]. 3GPP [8] defines an intent as an
expression of the desired state of a system used to describe an intended network or service. In other
words, an intent defines operator9s expectations in a declarative yet concise manner in order for it to be
understandable by both humans and machines.
Adopting this approach, in NEMO we extend intent-driven management to both network and computing
workloads9 management. Within the Intent-based API, the NEMO Intent Manager subcomponent
undertakes the intents9 -both for network and computing- lifecycle management within the NEMO
ecosystem. This subcomponent provides backend logic for the management of the NEMO intents,
following 3GPP TS 28.312 V18.3.0 (2024-03) [9]. Based on this technical specification, an intent has
the following properties:

¥ It is typically understandable by humans and also needs to be interpreted by the machine
without any ambiguity.

¥ It expresses in a declarative manner on the desired result (<what=) and not the way it will be
achieved (<how=). So, the intent includes metrics and target values, allowing alternative
options to achieve them.

¥ The expectations expressed by an intent is agnostic to the underlying system implementation,
technology and infrastructure.

Following TS 28.312, the NEMO Intent Manager subcomponent supports state management of the
intents as per their lifecycle, as defined in Figure 75, borrowed from [9].

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 74 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 75: State transitions and reporting events for Intents delivered for fulfilment. [9], supported also in NEMO

So far, five intents have been defined and integrated into the Intent-based API, namely:

¥ Cloud continuum (network-oriented intent)
¥ Deliver computing workload (computing-oriented intent)
¥ Secure execution (computing-oriented intent)
¥ Federated learning (computing-oriented intent)
¥ Energy carbon efficiency (computing-oriented intent)

Indicatively, the <Deliver computing workload= intent is depicted in Figure 76.

- id: 1

 user_label: DeliverComputingWorkload

 intent_preemption_capability: 'FALSE'

 observation_period: 60

 intent_expectations:

 - id: 1

 expectation_id: '1'

 expectation_verb: ENSURE

 expectation_object:

 id: 1

 object_type: NEMO_WORKLOAD

 object_instance: b6a77b9a-4cb2-41e9-953b-0a0b569c8cdb

 context_selectivity: null

 object_contexts: []

 expectation_targets:

 - id: 1

 target_name: cpuUsage

 target_condition: IS_LESS_THAN

 target_value_range: '20'

 target_contexts: []

 - id: 2

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 75 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

 target_name: ramUsage

 target_condition: IS_LESS_THAN

 target_value_range: '200'

 target_contexts: []

 expectation_contexts: []

 intent_report_reference:

 id: 1

 intent_fulfilment_report:

 id: 1

 intent_fulfilment_info:

 fulfilment_status: FULFILLED

 not_fulfilled_state: COMPLIANT

 not_fulfilled_reasons: []

 expectation_fulfilment_results:

 - expectation_fulfilment_info:

 fulfilment_status: FULFILLED

 not_fulfilled_state: COMPLIANT

 not_fulfilled_reasons: []

 expectation_id: 1

 target_fulfilment_results:

 - target: 1

 target_achieved_value: '0.307'

 target_fulfilment_info:

 fulfilment_status: FULFILLED

 not_fulfilled_state: COMPLIANT

 not_fulfilled_reasons: []

 - target: 2

 target_achieved_value: '1.2'

 target_fulfilment_info:

 fulfilment_status: FULFILLED

 not_fulfilled_state: COMPLIANT

 not_fulfilled_reasons: []

 intent_feasibility_check_report:

 id: 1

 feasibility_check_type: FEASIBLE

 infeasibility_reason: null

 last_updated_time: '2024-11-05T15:10:07.949361Z'

 intent_contexts: []

Figure 76: The DeliverComputingWorkload intent definition in NEMO Intent-based API

3.4.2.2 NEMO Intent Validator

The NEMO Intent Validator is performing a set of validation checks on intents that are newly defined
or desired to be updated. It interacts with the Intent Manager enhancing its provided functionality
offering validation checks which include:

¥ Schema validation: This process ensures that data conforms to a defined structure or format,
typically described in a schema. A schema acts as a blueprint, specifying the expected data
types, required fields, and constraints for a dataset. The schema used for intents follows 3GPP
TS 28.312 V18.3.0 specification, so the component ensures that the required fields are provided,
within the acceptable value range, as well as in acceptable combinations (e.g. compatible target
names, intent types and expectation verbs). Schema validation is crucial for maintaining data

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 76 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

integrity, preventing malformed or unexpected data from causing errors or security
vulnerabilities in applications. By enforcing these rules at an early stage, schema validation
helps streamline data processing and reduces the likelihood of runtime issues.

¥ Intent definition updates: There are fields in the defined intents that are allowed to be updated,
such as the period during which the intent will be active or the expectation target value range.
However, such updates are allowed before the intent is activated, i.e. for intent states
<FULFILMENTFAILED=, <TERMINATED= and <ACKNOWLEDGED=.

¥ Intent operations: Operations on intents can be performed, depending on both the desired intent
action and the <NotFulfilledState= value. Intent operations include <RESUME=, <SUSPEND=,
<TERMINATE=, etc. The <Not_Fulfilled_State= field represents the state of the intent, while it
is not fulfilled. The attempted action must comply with the state transition schema in Figure 75.

¥ Intent expectation updates: Are allowed only for expectations defined for each intent.
Depending on the selected <userLabel= (intent type), the corresponding allowed expectation
targets are check for validity. For example, <DeliverComputingWorkload= support targets of
type ram usage and/or cpu usage.

¥ Additional Feasibility checks: After intent validation, an asynchronous validation step is
performed in order to test the feasibility of the intent in question. Reasons for failure in this step
include <serviceStartTimes= & <serviceEndTimes= out of order and/or collisions with an already
existing Intent for the given workload.

3.4.2.3 NEMO Intent Collector

The NEMO Intent Collector is a significant modality of the Intent-based API which facilitates the
collection of the intent associated measurements governed by the PPEF component. More specifically,
the NEMO Intent Collector receives as an input the intent related measurements that correspond to the
expectation targets that have set by the NEMO user, as they are reported from the PPEF. The
communication with the PPEF is achieved via a RabbitMQ listener service that is provided by the
NEMO Intent Collector. Then the consumed information is processed and structured as intent fulfillment
data which correspond to intents expectation targets9 achieved values. Finally, the intent report is
consumed by the NEMO Intent Manager which updates the corresponding information in the NEMO
Registry.

3.4.2.4 NEMO Workload Manager

The NEMO Workload Manager modality is the heart of the Intent-based API component. Its
functionality concerns the management and the governance of the NEMO workloads as it is dictated by
the NEMO user. Specifically, the NEMO Workload Manager manages the processes for
registration/deregistration, deployment and migration of workloads, including NEMO annotations,
workflow execution, provisioning, logging and notification of external entities. As it is illustrated in
Figure 74, the NEMO Workload Manager handles the workload requests that are dispatched by the
Intent-based API. The requests can be triggered either from the LCM UI or directly from the Intent-
based API Server. The workload Manager validates the workload registration and/or deployment
configuration files that are issued through the NEMO Workload Validator (its respective activities are
detailed in section 3.4.2.5). At the same time, the NEMO Workload Manager facilitates the update of
the workload state in the NEMO registry and responds to workload queries. Once the workload request
is pre-processed the workload9s status changes to <onboarding= and subsequently it9s communicated
through the RabbitMQ message queue to the Meta-Orchestrator (MO). In case the workload validation
process fails, the workload status is changing to rejected and the request is terminated. The MO executes
the requested action and dispatches back the result of the requested activity (acknowledgement
message). The NEMO Workload Manager updates the NEMO Registry accordingly.

Finally, the NEMO workload Manager supports automated provisioning, triggering authorization
requests (RBAC access) for the workload to Access Control component.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 77 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

3.4.2.5 NEMO Workload Validator

The NEMO Workload Validator9s offered functionality, in the context of the NEMO Workload

Manager, is described above. This section sheds light into the specific validation tests that are performed
by the module. The validation tests are listed below.

1. Helm chart structural validation. The uploaded .tgz helm chart that corresponds to the
workload upload request triggered by the NEMO user through LCM UI or directly through
the Intent-based API (invokes the /workload/upload/ endpoint; described in Annex B) is
validated by checking the existence of Chart.yaml, values.yaml, templates folder (with
appropriate .tpl .yaml template files) alongside with the contents of Chart.yaml (matching
version and naming scheme during the invocation of the /workload/ POST endpoint). In
addition, all the .yaml files pass a syntax check.

2. Helm chart template validation. The uploaded .tgz helm chart is extracted and undergoes a
rendering phase of the templates with the default provided values.yaml. (by using the standard
helm template sub-command)

3. Docker image access validation. For every generated manifest (Deployment, Statefulset,

DaemonSet) the container image of every mentioned image is tested for access. Provided
imagePullSecrets are taken into consideration with additional secrets of type
kubernetes.io/dockerconfigjson or against well-known docker repositories (e.g. NEMO
repository)

4. Ingress support validation. If the uploaded NEMO workload supports ingress via the Access
Control component, the validator checks for the existence of a Kubernetes Service with the
annotations described in the figure below.

Figure 77: Kubernetes Service Annotations20

3.4.3 Initial results

The Intent-based API associated results stemming from the integration tests that are conducted in view
of the 1st integrated version of the NEMO framework are documented in section 4.

3.4.4 Conclusion and Roadmap

The implementation of the core functionality that is offered by the Intent-based API in the context of
the 1st integrated NEMO framework is considered completed. The component was integrated with the
rest of the NEMO Service Management Layer components namely, the MOCA, PPEF, LCM and the
Access Control. Moreover, the Intent-based API demonstrated its integration with the NEMO Kernel
and the MO supporting the workload deployment and migration process.

With respect to the next steps, the Intent-based API as part of the 1st integrated version of the NEMO
framework, will be deployed in NEMO pilots9 infrastructures and will be further validated through the

20 https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-service-management/intent-based-

sdk_api/intent-api#exposing-a-workload-document-instance-via-nemo

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 78 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

NEMO pilots9 specific use cases and also via the integration with the NEMO OC1 offered meta-OS
extensions and OC2 provided NEMO services.

In view of the final version of the NEMO meta-OS framework, the Intent-based API aims to further
enhance its provided functionality where necessary (according also the feedback that will be gained
through the abovementioned activities) improving the quality of its provided services.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 79 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

4 NEMO scenario-driven verification & results

The purpose of this section is to provide insights on the integration tests conducted in the framework of
the integration activities that materialized the 1st integrated version of the NEMO platform. NEMO
integration verification approach that is defined and adopted, as described in section 2.3, establishes the
foundation upon which the integration activities are conducted and documented. Emphasizing on cross-
cutting functions of the NEMO meta-OS, NEMO defined four (4) system-level integration scenarios
that aim to illustrate the technical readiness of the NEMO developed components. These scenarios, as
detailed below, define the context of the integration activities conducted for the realization of the 1st
integrated version of the NEMO meta-OS. The four (4) scenarios are the following:

" NEMO cluster registration

" NEMO workload registration and provisioning

" NEMO workload scheduling and orchestration

" NEMO workload lifecycle management

For each of the abovementioned test cases, the respective scenario that is followed is described. Based
on that, the resulting process diagram highlights the steps that materialize the integration objective in
each case. The scenario-driven process diagrams reflect the latest iteration/evolution of the process that
was described in D1.3 [10]. Finally, the results that are collected for each of the steps are detailed and
subsequently the summary checklist, presents the outcome of the conducted tests.

4.1 NEMO Cluster registration

This section describes the NEMO Cluster registration integration scenario. The Cluster registration
workflow aims to provide technical details of the process that is followed allowing the NEMO partner
(infrastructure owner/provider) to access the NEMO meta-OS service management layer through either
via Intent-API or LCM UI and register a new resource (infrastructure) to be utilized and governed by
the NEMO meta-OS. The associated sequence diagram is presented in Figure 78.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 80 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 78: Process diagram for cluster registration

4.1.1 Verification scenario

Test 1: NEMO Cluster registration

Objective To verify the cluster registration process in NEMO that facilitates the resource
provisioning triggered by the NEMO partner (resource owner)

Components ¥ LCM

¥ Intent-based API

¥ MO

¥ MOCA

¥ RabbitMQ

Features to be
tested

The feature that this scenario aims to test are the cluster registration process which is
initiated by the NEMO partner (cluster provider) through the LCM UI & Intent-based API.
Then, the newly registered cluster is added into the NEMO meta-OS ecosystem by the
MO. The results (status) of this process are then visualized to the user.

Test setup All the participating components were deployed in the NEMO meta-OS cloud/edge
infrastructure at OneLab (dev cluster 1).

Steps 1. Cluster registration through the LCM UI
2. Cluster registration through the Intent-based API (realized in MOCA)
3. Cluster registration message communication to MO
4. Cluster addition process by MO
5. Cluster status provisioning to RabbitMQ
6. Cluster status update visualization in LCM UI

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 81 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

4.1.2 Results

This section documents the process that is described in the scenario above step by step.

4.1.2.1 Cluster registration through the LCM UI

The following figure (Figure 79) depicts the cluster table summary that the NEMO meta-OS governs.
Through this interface the user is able to overview some high-level information that describes each of
the provided infrastructures.

Figure 79: Cluster summary view on LCM GUI

Figure 80, illustrates the form that corresponds to the <create cluster= button of the dashboard. Through
this form the NEMO user is able to add the cluster description and subsequently initiate the cluster
registration process. This form, once filled in by the user, triggers the corresponding endpoint that is
provided through the MOCA API (section 3.3.3.1).

Figure 80: Cluster registration page on LCM GUI

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 82 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

4.1.2.2 MOCA operations for cluster registration

When a new cluster comes for registration, the /moca/api/v1/cluster/register endpoint can be used
through the LCM UI. Alternatively, as indicated in the process diagram above, the user can trigger the
associated endpoint directly from the Intent-based API (Figure 81). For both of these cases, the cluster
registration request is executed via the MOCA API provided endpoint that is mentioned above.
The cluster provider needs to provide the specifications of the cluster that is to be added, like its name,
the resources it provides (CPUs, memory, disk), the availability percentage, the green energy percentage
that reflects the amount of energy that used to power the cluster and comes from renewable energy
sources, its cost category and the associated costs for its available resources. Figure 81 shows the
registration payload of a cluster named <k3s-onelab=. Figure 82 shows the response of the successful
registration to MOCA. The response is the cluster9s id.

Figure 81: MOCA Cluster registration demonstration

Figure 82: MOCA Cluster registration response

4.1.2.3 MO cluster registration operation

When MOCA receives a new request performs the necessary validation checks and sends the request to
the NEMO Meta Orchestrator, through the NEMO RabbitMQ, in order to join the cluster with the
NEMO platform. Figure 83 shows this step of the cluster registration workflow.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 83 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 83: MOCA sends cluster details to Meta Orchestrator

Figure 84 shows that the Meta Orchestrator has successfully received the cluster9s details.

Figure 84: Meta Orchestrator receives the cluster registration request

After the request is processed successfully by the Meta Orchestrator, it informs MOCA again though
the RabbitMQ. Figure 85 shows that MOCA received the Meta Orchestrator validation message for the
successful registration. We can, additionally, see that the cluster was also registered in the blockchain.

Figure 85: MOCA receives the Meta Orchestrator response

4.1.2.4 MOCA cluster registration to the blockchain

To register the cluster in the blockchain, MOCA communicates with the DApps deployed, specifically
the one responsible for handling the cluster registration (see section 3.3.4.3). Figure 86 shows MOCA
calling the contract and successfully registering the cluster, receiving back the appropriate response (the
cluster registration initial tokens).

Figure 86: Register cluster to blockchain

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 84 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

MOCA, then, appropriately, updates the details of the cluster and the user. Figure 87 shows that the
status of the cluster has been updated, as well as the tokens provided to the cluster.

Figure 87: Updated cluster details

Finally, Figure 88 shows that the cluster provider can view through the /moca/api/v1/acounting_events

endpoint the event of the registration, and more specifically the deposit of the ten initialization tokens.
It should be noted that the balance field is the total amount of tokens owned by a user. Here, the user
owns a number of resources. Every time a user registers a new resource, the registration reward tokens
will be added to his/her total balance.

Figure 88: MOCA accounting event for cluster registration

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 85 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

4.1.3 Verification summary checklist

Checklist for Cluster registration scenario

 Yes No Comments

1 Is the cluster registered by the user through the LCM UI

 Success

2 Is the cluster registered through the Intent-based API (realized in

MOCA)

 Success

3 Is the registration process communicated to the MOCA

 Success

4 Is the MOCA validation check successfully executed?

 Success

5 Is MOCA communicating successfully the request to MO?

 Success

6 Is the MO provided functionality successfully executed?

 Success

7 Is the cluster successfully added to the NEMO meta-OS?

 Success

8 Is the updated status communicated successfully to MOCA through

RabbitMQ?

 Success

9 Is the new cluster registered to the MOCA operated BC

 Success

10 Are the new cluster details available through the MOCA API?

 Success

11 Are the information visible to the LCM UI

The provisioning of the

accounting events to the

LCM UI. Feature to be

available in the final

version.

12 Is the updated status visible to the NEMO user?

 Success

Table 9: Checklist for cluster registration scenario

4.2 NEMO workload registration, deployment & provisioning

This scenario concerns two specific operations. The first on is the NEMO workload registration process
and the second one is the NEMO workload deployment process. For both of these activities, the
corresponding sequence diagrams dictating the integration scenario that is followed are presented in
Figure 89 and Figure 90, respectively. The former describes the steps necessary for the workload
registration process while the latter the workload deployment and provisioning steps. The workload
provisioning step that is facilitated by the Access Control is illustrated in Figure 91.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 86 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 89: Process diagram for workload registration

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 87 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 90: Process diagram for workload deployment (provisioning)

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 88 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 91: Access control sequence diagram - detailed view

4.2.1 Verification scenario

Test 2: NEMO workload registration and provisioning

Objective Verify the NEMO workload registration, deployment and provisioning process

Components ¥ NEMO Workload Registration

o LCM

o Intent-based API

o RabbitMQ

¥ NEMO Workload deployment

o LCM

o Intent-based API

o CMDT

o RabbitMQ

o Meta-Orchestrator

o CFDRL

o NEMO Access Control

¥ NEMO Workload provisioning

o Intent-based API

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 89 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

o Access Control

Features to be
tested

To verify the workload registration, deployment and provisioning process in NEMO, the following

features will be tested:

¥ Workload Registration
¥ Workload Deployment
¥ Workload Provisioning

The feature that this scenario aims to test are the workload registration process which is
initiated by the NEMO consumer (workload provider) through the LCM UI & Intent-based
API. Then, the newly registered workload is requested to be deployed into the NEMO
meta-OS ecosystem by the MO. Finaly the workload provisioning process is triggered
which is facilitated by the Intent-based API and the Access Control components. The
results including the workload status are visualized to the user.

Test setup The associated components are deployed in OneLab facilities (dev cluster 1 & staging
cluster 2)

Steps The steps identified in the associated sequence diagrams are listed below:

1. NEMO workload registration
a. Workload registration by the NEMO user through the LCM UI
b. Execution of workload validation process in Intent-based API
c. Notification of the LCM UI about the status of the workload registration

2. NEMO workload deployment
a. Workload deployment by the NEMO user through the LCM GUI
b. Execution of workload validation in Intent-based API
c. Communication of the deployment request to the LCM UI
d. Communication of the deployment request to the MO
e. Deployment operation process triggered by MO
f. Request scheduling by the CFDRL component
g. Deployment operation process executed by MO
h. Communication and update of the deployment operation status to the Intent-API
i. Visualization of the updated status to the LCM UI

3. NEMO workload provisioning
a. NEMO workload provisioning is triggered by the Intent-based API
b. NEMO Access Control workload setup
c. NEMO Access Control Keycloak plugin functionality
d. Performance resilience of Kong Plugin

4.2.2 Results

This section documents the process that is described in the scenario above step by step.

4.2.2.1 Workload registration through LCM GUI

The workload registration process is facilitated by the LCM component and its UI as it9s described in
section 3.2.4. The LCM component utilizes the Intent-based API provided functionality in order to
realize the NEMO user triggered operations for the workload registration process. Figure 92, presents
the form that corresponds to the workload registration and Figure 93 presents the list of the registered
workloads.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 90 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 92: NEMO workload registration through LCM UI

Figure 93: NEMO registered workloads

Intent Management provides the privileged user with the interfaces to create and manage intents. Figure
94 shows the create workload instance form.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 91 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 94: NEMO workload instance creation (workload deployment process) through LCM UI

The newly created NEMO workload instance is visible in the workload instances table in LCM UI
(Figure 95).

Figure 95: NEMO workload instances and their respective status in LCM UI

The workload is getting validated by the NEMO Workload Validator. Its functionality is described in
section 3.4.2.5 which presents the validation checks that are performed by the validator. Once the tests
have been successfully passed (Figure 96)then the workload upload request is dispatched.

Figure 96: NEMO workload validation

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 92 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Finally, the NEMO workload instance is deployed in the NEMO meta-OS platform as confirmed by the
acknowledgment message received by the MO. The workload ID matches with the one that is visible in
the LCM UI (Figure 97).

Figure 97: Workload deployment confirmation through RabbitMQ for the newly created workload instance

4.2.2.2 Meta-Orchestrator & Deployment Controller

The Meta-Orchestrator (MO) within its architecture has several subcomponents, including the
Deployment Controller (DC). This component handles communication, processes workload deployment
configuration files, turns them into workloads9 instances, and finally deploys those workloads9 instances
in a selected cluster. The Intent-based API sends the message with the workload to be deployed by the
MO through RabbitMQ in JSON format, (Figure 98), and the message body created in the RabbitMQ
queue, (Figure 99). The MO then processes that message, decoding it to adapt the JSON into a data
structure within the programming language. It checks for metadata like labels and namespaces in the
manifests and assigns defaults if they are missing.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 93 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 98: Intent-based API endpoint where the scenario starts.

Moreover from Figure 98 is important remark that the future workload has the name <echo-server-

integration24= and it has a workload id with the value: <bf4c24eb-c263-4854-b886-51b915d79264=.

Figure 99: JSON published in RabbitMQ to be consume by MO.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 94 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 100: Target cluster without the workload.

In Figure 100, before the workload deployment we can check that any workload is already deployed.
Once the MO triggers the workload deployment, we can see in Figure 101 the pods of the workload
<echo-server-integration24= deployed in the k3s-onelab as the target cluster chosen.

Figure 101: Deployment Controller log, receiving the workload petition and deploying it.

In parallel, the MO asks the CFDRL which cluster is best for deploying a workload; the CDFRL
recommends a specific cluster in direct communication with the MO. The recommendation of the
CFDRL which is the product of the inference that stems from AI model that CFDRL incorporates, was
simulated as the development of the component is in progress. Once the MO has the workload ready
and the CFDRL recommendation, the MO deploys the workload in the chosen cluster using the OCM
libraries and the NEMO cluster network. The results are showed in Figure 102 up and running as pods.

Figure 102: Workload already deployed in the cluster selected.

Finally, in Figure 103, the DC publishes the previous message into RabbitMQ to update the workload
status. The Intent-Base API and other components will read this status.

Figure 103: Deployment Controller (MO) final response.

4.2.2.3 Access control provisioning

In deliverable D4.1 [2], the deployment and integration of the NEMO Access Control with the Intent-

based API were presented. For the integration part, we had developed an API that would receive a
payload with the necessary information to properly set the workload in the Access Control (set the Kong
services, routes and plugins). In this section, we will present the improvements made to the Access
Control workload provisioning to better automate and simplify the workflow.
During the initial creation of a workload, the Intent-based API offers the ability to choose whether to
deploy the workload with an Ingress or not. For this scenario, we will create a workload for a simple
NGINX21 server (Figure 104).

21 https://nginx.org/

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 95 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 104: Create workload through Intent-based API with Ingress support

When the workload is successfully created, the Intent-based API produces an Ingress that holds specific
annotations to integrate with the NEMO Access Control, and enable the oAuth 2.0 plugin for limiting
access to unauthorized users. Figure 105 shows the annotations added to the Ingress to specify details
for the services and routes that will be created in the Access Control (konghq.com/protocols,
konghq.com/http-forwarded etc), as well as the plugins that will be applied to the deployment workload
(konghq.com/plugins).

Figure 105: Workload Ingress annotations for integrating with Access Control

The oAuth 2.0 configuration (named keycloak-plugin) is deployed in the OneLab cluster as a Kongplugin
[61] resource. This allows for the plugin to already be configured and ready to apply to new Ingresses.
Figure 106 shows the Kong plugins resources available in the OneLab cluster.

Figure 106: The Onelab KongPlugin resources

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 96 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

When the Ingress is successfully deployed to the cluster, the Access Control is automatically updated
with the specifications in the Ingress annotations. Figure 107 and Figure 108 show the Access Control
service that was created and its details, respectively.

Figure 107: Workload Access Control service

Figure 108: Workload Access Control service details

Figure 109 and Figure 110 show the Access Control route that was created and its details, respectively.
In both the service and the route details, we can see that the name of the workload, its path and its Ingress
host name have all been registered successfully.

Figure 109: Workload Access Control route

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 97 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 110: Workload Access Control route details

Finally, Figure 111, Figure 112 and Figure 113 present the oAuth2.0 plugin and its details.

Figure 111: Workload oAuth2.0 plugin

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 98 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 112: Workload oAuth2.0 plugin details

Figure 113: Workload oAuth2.0 plugin (cont'd)

Now that the NEMO Access Control has been configured properly, we can test how the access to the
workload works. In order to access the protected resource, all the requests should provide an
authorization header with a Bearer token from the NEMO Identity Management component. The
oAuth2.0 plugin is configured to test the provided token and, depending on its validity, deny or grant
access. In Figure 114, the request provides no authorization header, therefore the user is denied access.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 99 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 114: NEMO oAuth2.0 plugin test

In Figure 115, even if the token is provided, it could have expired, been tampered with or come from an
unknown source. The plugin, again, denies access to the NGINX server.

Figure 115: oAuth2.0plugin test - expired or false token

Finally, if the token is valid, the user can view the resource, in this case the welcome page of the NGINX
server (Figure 116).

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 100 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 116: oAuth2.0 plugin test - success

4.2.2.4 NEMO Access Control plugin response performance

The plugin, in order to reduce the time needed to validate the provided token, instead of using an HTTP
request to connect to the NEMO Identity Management component, it connects directly to its database to
perform the user token validation.

This decision has come from studying the code of the Identity Management component for the token
introspection22. The outcome of this study indicated that the Identity Management component performs
several checks which are not necessary for the project use cases. These can add significantly to the
plugin response time, particularly under load-testing scenarios. Therefore, the oAuth2.0 implementation
with the direct database connection performs only the necessary checks to verify the token, user, realm

and client_id validity.

Notably, in order to increase the overall system performance and redundancy and avoid security risks
that stem from directly connecting to the Identity Management database, the latter has been configured
with streaming replication (WAL). Under this framework, the plugin does not directly connect to the
master instantiation of the database itself but, instead, it connects to a ready-only live replica.
Additionally, the database user used by the plugin has been configured with restricted access to the
tables that are strictly necessary for the token introspection.

We will now present the performance of the plugin when it directly connects to the database, versus
when it uses requests to perform the token validation. To conduct the performance tests, we are using

22
https://github.com/keycloak/keycloak/blob/83f8622d15d9a3559ee6d99a4c57033190a5392d/services/src/main/java/org/keycl
oak/protocol/oidc/endpoints/TokenIntrospectionEndpoint.java#L72

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 101 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Locust23, an open-source tool, which gives information on metrics, like the percentiles of the response
times, the number of requests, minimum, max and average request times. For both experiments we will
use the same setup parameters (Figure 117): (a) the max number of users will reach 20, the users will
increase every one second and (b) each experiment will last 5 minutes. Each request will be executed
randomly between the span of 1 and 5 seconds. The first run will use the implementation of the oAuth2.0
plugin that make a direct connection to the database (standard oAuth2.0 plugin), while in the second
one we will apply to the same Ingress the version of the plugin which makes requests to the Identity
Management API (simplified oAuth2.0 plugin).

Figure 117: Locust experiments' setup

Figure 118 and Figure 119 present the request and response statistics of Locust for the standard plugin.
In the request statistics table, we can see the total number of requests, the average, minimum and max
times of the requests. If we compare the two averages, we can see that the average request time of the
simplified plugin is approximately four times larger than the standard implementation. The percentiles,
also, in the response statistics table, show that the simplified version has greater response times in
comparison.

23 https://locust.io

https://locust.io/

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 102 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 118: Locust request and response statistics for standard oAuth2.0 plugin

Figure 119: Locust request and response statistics for simplified oAuth2.0 plugin

Figure 120 compares side by side the two runs. If we compare the response times, we can see that in the
first run, the plugin requires less time to stabilize the response times when the number of users have
peaked for the experiment. During the first execution the response times were almost half of the second
one. Finally, the deviation of the 50th and 95th percentiles in the first run has a smaller deviation,
meaning that the majority of the users will experience a stable experience.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 103 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 120: Locust charts for the oAuth2.0 plugin implementations

4.2.3 Verification summary checklist

Table 10: Checklist for workload registration, deployment and provisioning scenario

!"#A%CDEF*+I-*K#EFLM*NOP4*RI-%CIST*-#UDEF-SFDIV:*T#;CI<=#VF*SVT*;-I>DEDIVDVU*

! "#$! %C! 'C((#)*$!

?! NOP4*RI-%CIST* -#UDEF-SFDIV* @<* F"#* NOP4* AE#-* F"-IAU"*

B!P*Ca*
* * bAAA#EE*

L! NOP4*RI-%CIST*-#UDEF-SFDIV*F"-IAU"*F"#*aVF#VFc@SE#T*dea* * * bAAA#EE*

f! NIFD+DASFDIV*I+*F"#*B!P*Ca*S@IAF*F"#*EFSFAE*I+*F"#*RI-%CIST*

-#UDEF-SFDIV*
* * bAAA#EE*

g! Oh#AAFDIV*I+*RI-%CIST*>SCDTSFDIV*DV*aVF#VFc@SE#T*dea* * * bAAA#EE*

i* NOP4*RI-%CIST* T#;CI<=#VF* @<* F"#*NOP4*AE#-* F"-IAU"*

B!P*Ca*
* * bAAA#EE*

M* !I==AVDASFDIV* I+* F"#* T#;CI<=#VF* SA%VIRC#TU#=#VF* FI*

B!P*Ca*
* * bAAA#EE*

k* !I==AVDASFDIV*I+*F"#*T#;CI<=#VF*-#lA#EF*FI*F"#*P4* * * bAAA#EE*

m* !nopB*T#;CI<=#VF*-#AI==#VTSFDIV*FI*P4* * * bD=ACSF#T*EF#;*

q* o#;CI<=#VF*I;#-SFDIV*;-IA#EE*#h#AAF#T*@<*F"#*P4* * * bAAA#EE*

?r* !I==AVDASFDIV* SVT* A;TSF#* I+* F"#* T#;CI<=#VF* I;#-SFDIV*

EFSFAE*FI*F"#*aVF#VFc@SE#T*dea*
* * bAAA#EE*

??* sDEASCDtSFDIV*I+*F"#*A;TSF#T*EFSFAE*FI*F"#*B!P*Ca* * * bAAA#EE*

?L* NOP4*RI-%CIST*;-I>DEDIVDVU*F-DUU#-#T*@<*F"#*aVF#VFc@SE#T*

dea*
* * bAAA#EE*

?f* NOP4*dAA#EE*!IVF-IC*RI-%CIST*E#FA;*;-IA#EE* * * bAAA#EE*

?g* NOP4* dAA#EE* !IVF-IC* u#<ACIS%* ;CAUDV* +AVAFDIVSCDF<*

#h#AAF#T*
* * bAAA#EE*

?i* e#-+I-=SVA#*-#EDCD#VA#*I+*F"#*uIVU*eCAUDV* * * bAAA#EE*

*

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 104 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

4.3 NEMO workload migration

This integration scenario aims to illustrate the workload migration process. The process is facilitated by
the Intent-based API, the MO and the Intent-based Migration Controller (IBMC). Figure 121, depicts
the steps executed to complete the task.

Figure 121: NEMO workload migration sequence diagram

4.3.1 Verification scenario

Test 3: NEMO workload migration

Objective The objective of this task is to validate the NEMO workload migration process.

Components IBMC

Intent-API

MO

MinIO

Features to be
tested

The NEMO workload migration process is triggered by the CFDRL component once its

inference states that it is preferable for the workload9s optimal operation to be moved from

cluster A to cluster B. Once the request is communicated to the Meta-Orchestrator

component then the workload migration is executed.

Test setup All the participating components were deployed in the NEMO meta-OS cloud/edge
infrastructure at OneLab (dev cluster 1 and staging cluster 1).

Steps 1. Intent-API publishes a workload intent with an availability requirement.

2. MO retrieves workload status from the Intent-API.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 105 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

3. If the workload is already deployed in any cluster, then a migration action is
triggered.

4. Check cluster availability.

5. MO sends a message to the IBMC containing the workload ID and the target

cluster.

6. IBMC backs up the workload resources and uploads them MinIO.

7. IBMC restores the resources in the target cluster. After the resources get restored,

the workload is removed from the source cluster.

8. The IBMC sends a message to the Intent-API updating the workload status,

specifying the cluster where it has been deployed.

Table 11: Test 3 - NEMO workload migration

4.3.2 Results

The section below presents the steps that concern the execution of the workload migration integration
workflow.

4.3.2.1 Step 1

An intent is published by the Intent-Based API in RabbitMQ and reaches the Meta-Orchestrator:

Figure 122: Intent message reaches MO

4.3.2.2 Step 2 & 3

The Meta-Orchestrator sends a query back to the Intent-Based API to retrieve a json with the workload
status. As shown in the following code snippet, the workload appears to be already deployed in oneLab
cluster, hence a migration action will take place:

This can be verified in the oneLab cluster by executing kubectl get pods Ð-context onelab.
The list of pods shows the workload running:

{

"id": 6,

"instance_id": "a3177d01-863d-415b-a998-180c87113z50",
"workload_document_id": 9,

"release_name": "migration-workload",

"status": "deployed",

"manifests": [],

"cluster_name": onelab

}

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 106 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 123: Pods currently running in onelab

When kubectl describe pod migration-workload is executed, the workload ID can be found in the
<labels= metadata:

Figure 124: Workload ID inspection

4.3.2.3 Step 4

The MO proceeds to check its internal database, which contains the availability information of every
cluster. The availability value specified in the intent is compared with the one from the cluster where
the workload is currently deployed. As seen in the Figure 125, the availability of the OneLab cluster
(90%) is lower than the one required (99.9%). This will trigger the migration of the workload to a more
suitable cluster. In this case, this is the k3s one.

Figure 125: Availability check

4.3.2.4 Step 5 & 6

The MO sends a message via RabbitMQ to the IBMC containing the source and target clusters for the
migration and the workload to be migrated. When the message reaches the IBMC, the migration process
begins with the backup of the workload9s resources, which is stored in the OneLab9 MinIO instance.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 107 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 126: Migration message reaches source cluster9s IBMC instance

The backup status can be checked at any moment by executing velero get backup -n nemo-kernel.

Figure 127: Backup status

Once the backup is completed, a message is sent to the target cluster in order to continue with the
migration process.

4.3.2.5 Step 7

The IBMC instance running in the target cluster receives the message from the source cluster and
proceeds to restore the workload resources.

Figure 128: Restore message reaches target cluster9s IBMC instance

If kubectl get pods Ðcontext onelab-k3s is executed before the migration, it can be observed that the
workload doesn9t exist in the cluster:

Figure 129: k3s cluster status before migration

Once the restore is completed, the workload is correctly deployed:

Figure 130: k3s cluster status after migration completion

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 108 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 131: Description of workload in k3s cluster

The source cluster can be checked to verify that the workload has been deleted from it:

Figure 132: OneLab cluster after migration

4.3.2.6 Step 8

When the migration is successfully completed, a message is sent to the Intent-Based API updating the
workload status:

SourceCluster: onelab

TargetCluster: onelab-k3s

WorkloadID: a3177d01-863d-415b-a998-180c87113z50

Status: migrated

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 109 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

4.3.3 Verification summary checklist

Checklist for Test3: NEMO workload migration

 Yes No Comments

1 The CFDRL issues the workload migration request to the MO

 Success

2 Intent-API publishes a workload intent with an availability

requirement.

 Success

3 MO retrieves workload status from the Intent-API.

 Success

4 If the workload is already deployed in any cluster, then a migration

action is triggered.

 Success

5 Check cluster availability.

 Success

6 MO sends a message to the IBMC containing the workload ID and

the target cluster.

 Success

7 IBMC backs up the workload resources and uploads them MinIO.

 Success

8 IBMC restores the resources in the target cluster. After the

resources get resotred, the workload is removed from the source

cluster.

 Success

9 The IBMC sends a message to the Intent-API updating the

workload status, specifying the cluster where it has been deployed.

 Success

Table 12: Checklist for Test3 - NEMO workload migration

4.4 NEMO workload lifecycle management

NEMO incorporates the concept of intents for the declarative description of requirements for workload
execution and operation within the meta-OS. Intent management processes are integrated by design in
NEMO operations. Once the NEMO workload is registered by the NEMO user through the LCM UI
and the NEMO workload instance specified the intents that define the required operation for the NEMO
workload the monitoring process starts. The monitoring process concerns both the cluster and the
NEMO workloads9 dynamic resource consumption properties that adhere to the defined expectation
targets. The abovementioned measurements are collected by the PPEF component. The PPEF9s specific
functionality is described in detail in D3.2 [11]. In addition, complementary metrics about the network
and health (among others) characteristics of a workload are also collected via the CMDT component.
The latter will be documented in D2.3 [4] in full detail. The collected information is visualized through
the LCM UI and is available to the NEMO user (workload provider). This particular scenario concerns
also the policy enforcement and notification of the NEMO user in case of a policy breach (for an intent).
As indicated in the process diagram below, this information is captured by the Intent-based API (which
is notified by the PPEF in advance) and is communicated to the LCM component.

4.4.1 Process diagram

The process diagram presented below summarizes the NEMO workload lifecycle management that
concerns the workload monitoring and management of the asset by the NEMO user. The NEMO
components that provide cluster level and workload level measurements are included in the relevant
scenario. The collected information is communicated through the RabbitMQ and the Intent-based API
to the LCM UI where they are visualized to the NEMO user.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 110 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 133: Process diagram for workload monitoring and enforcement

4.4.2 Verification scenario

Test 4: NEMO workload lifecycle management

Objective To verify the workload lifecycle management process in NEMO covering all the steps
identified.

Components ¥ LCM

¥ Intent-API

¥ PPEF

¥ CMDT

¥ RabbitMQ

Features to be
tested

This integration scenario aims to validate the workload lifecycle management. The NEMO

workload intents and complementary measurements that concern the resources9 consumption and

the resulting performance and liveness of a workload are collected by the PPEF and the CMDT

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 111 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

components. From there they are communicated through the RabbitMQ to the LCM UI where there

are visualized to the NEMO user.

Test setup The associated components are deployed in OneLab facilities at NEMO dev cluster 1

The CFDRL component which is undergoes its final stages of development.

Steps 1. The NEMO user accesses the LCM UI
2. NEMO workload monitoring collects metrics that correspond to the NEMO workload

(PPEF)
3. The collected workload metrics are communicated to the Intent-API
4. The NEMO Cluster monitoring collects measurements that concern the NEMO meta-OS

operated clusters (PPEF)
5. The collected cluster metrics are communicated to the RabbitMQ
6. NEMO workload complementary monitoring (CMDT)
7. The collected metrics are communicated to the Rabbit MQ
8. The LCM aggregates the collected metrics and visualize them to the NEMO user
9. The PPEF report intent violations to the Intent-based API

4.4.3 Results

This section documents the process that is described in the scenario above step by step.

4.4.3.1 NEMO workload monitoring 3 CMDT

The CMDT collects network traffic characteristics and observes Kubernetes pod history. This is done
through querying Kubernetes API, and Thanos/Prometheus. More detailed description of CMDT
functionalities is available in D2.3 [4].

The Figure 134 illustrates how part of information is obtained through Prometheus to gain insight into
network traffic characteristics, which were collected by Linkerd24 service. The first query concerns pod9s
response rate per minute sorted by HTTP status code (5xx server side error, 2xx success), the second
query provides the summary of maximum response latency for 99%, 95%, 75%, and 50% of
connections, and the third the incoming request rate per minute.

24 https://linkerd.io/

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 112 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 134: Three queries to obtain network traffic stats collected by CMDT through Linkerd

The CMDT instances then fuse data from different parts of monitoring infrastructure and produce per-
pod summary message sent through RabbitMQ to other services (Figure 135) that contains pod9s history,
pod labels and traffic measurements i.e. request/response rate per minute, and latency.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 113 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 135: Expected RabbitMQ message data model

4.4.3.2 NEMO workload monitoring 3 PPEF

In the following paragraphs the workload monitoring associated results are presented.

Computing workload intent

The PPEF collects the computing workload intent measurements (CPU and RAM) by querying the
deployed monitoring tool (Thanos25). The detailed description of the PPEF architecture and provided
functionality is included in D3.2 [11]. The Figure 136 below illustrates CPU measurement collection
and Figure 137 the RAM measurement collection.

25 https://thanos.io/

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 114 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 136: Workload 3 CPU usage

Figure 137: Workload - RAM usage

EnergyEfficiency intent

The Figure 138 below depicts the Green Energy Consumption Rate (the containers of the deployment
<demo-nginx= are consuming approximately 1,23 joules per second averaged over the last 5 minutes).

Figure 138: Workload - Energy consumption rate

NEMO workload Energy Efficiency shows that the service consumes 40k Joules for every second of
CPU time as illustrated in the collected query below (Figure 139).

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 115 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 139: Workload - Energy efficiency

Energy consumption

The Energy consumption of a particular workflow is depicted in Figure 140 below.

Figure 140: Workload - Energy consumption

The Energy Efficiency intents provisioning in Intent-based API is presented below. Here the NEMO
user can assign expectation targets for the Energy Efficiency related expectations.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 116 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 141: Intent-API EnergyEfficiency metrics update

4.4.3.3 NEMO Cluster monitoring

The Figure 142, Figure 143 and Figure 144 below summarize the cluster level metrics that are collected
by the PPEF component for CPU, RAM and Disk storage respectively and communicated to the
RabbitMQ.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 117 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Figure 142: Cluster RAM usage

Figure 143: Cluster CPU usage

Figure 144: Cluster Disk usage

4.4.3.4 Cluster metrics to RabbitMQ

Figure 145 below presents the cluster level metrics communication to the RabbitMQ from the PPEF
component.

Figure 145: cluster metrics published to RabbitMQ

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 118 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

4.4.4 Verification summary checklist

Checklist for Test4: NEMO workload lifecycle management

 Yes No Comments

2 NEMO workload monitoring collects metrics that
correspond to the NEMO workload (PPEF)

 Success

3 The collected workload metrics are communicated to the
Intent-API

 Success

4 The NEMO Cluster monitoring collects measurements that
concern the NEMO meta-OS operated clusters (PPEF)

 Success

5 The collected cluster metrics are communicated to the
RabbitMQ

 Success

6 NEMO workload complementary monitoring (CMDT)
 Success

7 The collected metrics are communicated to the Rabbit MQ
 Success

8 The LCM aggregates the collected metrics and visualize
them to the NEMO user

The LCM UI view that

corresponds to this aspect

is under development

Table 13: Checklist for Test4

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 119 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

5 Conclusions

This deliverable provided insights on the scenario-driven integration activities that produced the first
integrated NEMO meta-OS. In addition, the NEMO meta-OS cloud/edge infrastructure established in
OneLab facilities that supported the integration activities along with the CI/CD environment and
configuration was presented in detail.

Moreover, the NEMO meta-OS components that belong into the NEMO Service Management Layer
namely, the Intent-based API, the IBMC, the LCM and the MOCA were described presenting their
provided functionalities, the updated architectures, the interfaces and data models and initial results.

Finally, the document provided a comprehensive description of the integration steps that were followed
as part of end-to-end scenarios that reflected the technical capacity of the first integration version of the
NEMO meta-OS.

The verification results will feed enhancements in the development of the NEMO meta-OS components
for the next integration cycle that will produce the final version of the NEMO meta-OS platform and
will be documented in D4.3 <Advanced NEMO platform & laboratory testing results. Final version=.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 120 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

6 References

[1] NEMO, "D4.3 - Advanced NEMO platform & laboratory testing results. Final version,"
HORIZON - 101070118 - NEMO Deliverable Report, 2025.

[2] NEMO, "D4.1 - Integration guidelines & initial NEMO WP4 integration," HORIZON -
101070118 - NEMO Deliverable Report, 2023.

[3] NEMO, "D1.2 - NEMO meta-architecture, components and benchmarking. Initial version,"
HORIZON - 101070118 - NEMO Deliverable Report, 2023.

[4] NEMO, "D2.3 - Enhancing NEMO Underlying Technology. Final version," HORIZON -
101070118 - NEMO Deliverable Report, 2024.

[5] Z. Anastasakis, T.-H. Velivassaki, A. Voulkidis, S. Bourou, K. Psychogyios, D. Skias and T.
Zahariadis, "FREDY: Federated Resilience Enhanced with Differential Privacy," Future Internet,

vol. 15, no. 9, 2023.

[6] N. Papernot, M. Abadi, Ú. Erlingsson, I. Goodfellow and K. Talwar, "Semi-supervised
Knowledge Transfer for Deep Learning from Private Training Data," arxiv.

[7] S. Mwanje, A. Banerjee, J. Goerge, A. Abdelkader, G. Hannak, P. Szilágyi, T. Subramanya, J.
Goser and T. Foth, "Intent-Driven Network and Service Management: Definitions, Modeling and
Implementation," ITU Journal on Future and Evolving Technologies, vol. 3, no. 3, 2022.

[8] R. Xu, M. Scott and S. Mwanje, "Enabling intelligence and autonomation for 5G Advanced
Networks," 3GPP, 2023. [Online]. Available: https://www.3gpp.org/technologies/intent.

[9] 3GPP, "3GPP TS 28.312 V18.3.0 (2024-03) - Technical Specification Group Services and System
Aspects - Management and orchestration - Intent driven management services for mobile networks
(Release 18)," 3GPP, 2024.

[10] NEMO, "D1.3 - NEMO meta-architecture, components and benchmarking. Final version,"
HORIZON - 101070118 - NEMO Deliverable Report, 2024.

[11] NEMO, "D3.2 - NEMO Kernel.Initial version," HORIZON - 101070118 - NEMO Deliverable
Report, 2024.

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 121 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

7 Annex A Ð MOCA API & data models

The MOCA API swagger page (OpenApi) is online available in this location (https://intent-
api.nemo.onelab.eu/moca/api/v1/swagger/)

7.1 MOCA Data models

MOCA allows for the exposure of the cluster registration process, as well as management of resource
and accounting details. This section will provide the API documentation and the data models used by
MOCA.

Attribute Data type Description

id String The id of the accounting event

type String The type of the accounting event

customer_id String
The id of the customer (workloads,

clusters)

tokens number
The NEMO tokens that were deposited

or withdrawn

balance number
The NEMO tokens that the customer

currently has left

balance_action_id Integer
The id to retrieve the accounting event

from the blockchain

timestamp String

Table 14: MOCA AccountingEvents Data Model

Attribute Data type Description

id String The id of the Cluster

cluster_name String
The name of the Cluster that will be

deployed

cpus Integer The number of CPUs of the Cluster

memory Integer The RAM of the Cluster in GB

storage Integer The disk storage of the Cluster in GB

availability String
The percentage of time that the cluster

is up (99.9%, 99%, 90%)

green_energy String
The percentage of RES powering the

cluster.
(0%,20%,40%,60%,80%,100%)

cost String
The cost type of a cluster (low cost,

high performance)

cpu_base_rate number
The CPU cost of the cluster by the CPU
capacity of the cluster (in milliseconds)

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 122 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

memory_base_rate number
The memory cost of the cluster by the

memory capacity of the cluster (in
MBs)

timestamp String

balance number The NEMO tokens of the cluster

Table 15: MOCA ClusterResources Data Model

Attribute Data type Description

cluster_resources String The id of the ClusterResources

status Array
The status of the deployment of the

Cluster

timestamp String

Table 16: MOCA ClusterState Data Model

Attribute Data type Description

id String The id of the workload

cluster_name String
The name of the cluster the workload

is deployed to

status String
The status of the deployment of the

Cluster

cpus number
The number of CPUs of the

Application

memory number The RAM of the Application in MB

storage number The space of the volume in GB

timestamp String

balance number The NEMO tokens of the workload

user Integer The id of the Workload User

Table 17: MOCA Workload Data Model

Attribute Data type Description

cluster String The id of the ClusterState

link_cid String
The CID of the Cluster config stored

in IPFS

ipfs_link String The link to retrieve the Cluster config

timestamp String

Table 18: MOCA IPFS Handler Data Model

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 123 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Attribute Data type Description

id String

user_id String The id of the user

workload_id String
The id of the Workload the
computation took place for

cluster_id String The id of the cluster

cpu String The cpu used by the workload

ram Array The ram used by the workload

tokens Array
The NEMO tokens that were charged

to the workload

timestamp String

Table 19: MOCA WorkloadComputeTokensEvents Data Model

Attribute Data type Description

username String The user9s username

balance number The balance of the user

smart_contracts Array
The names of the smart contracts

related to a user

Table 20: MOCA UserSmartContracts Data Model

Attribute Data type Description

region String

high_demand Boolean

high_demand_cost number

regional_cpu_limit number

regional_ram_limit number

Table 21: MOCA NemoTokenSetup Data Model

7.2 MOCA API endpoints

7.2.1 GET /api/v1/accounting_events

Returns all the accounting events related to a user (GET).

Responses

HTTP Code Description Schema Type Data Model

400 Provided data is invalid or malformed

401 Invalid credentials

403 Invalid permissions

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 124 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

201 The accounting events of a user Object AccountingEvents

Table 22: GET Accounting Events responses

7.2.2 DELETE /cluster/delete/{id}

Delete a cluster based on its ID (DELETE).

Responses

HTTP Code Description Schema Type Data Model

200 The cluster has been deleted

400 Provided data is invalid or
malformed

401 Invalid credentials

403 Invalid permissions

Table 23: DELETE Cluster responses

Parameters

Attribute Parameter Type Description Required Data type

id path The cluster id True string

Table 24: DELETE Cluster parameters

7.2.3 POST /cluster/register

Register a cluster in NEMO meta-OS (POST)

Parameters

Attribute Parameter Type Description Required Data type

cluster_name body The cluster name True string

cpus body The cluster # of
cpus

True integer

memory body The cluster # of
memory

True float

storage body The cluster total
storage capacity

True float

availability body The cluster
availability %

True string

green_energy body The cluster RES
powered %

True string

cost body The cost category
of the cluster

True string

cpu_base body The cpu base cost
for the cluster

True float

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 125 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

memory_base_rate body The memory base
cost for the cluster

True float

Table 25: REGISTER cluster parameters

Responses

HTTP Code Description Schema Type Data Model

400 Provided data is invalid or malformed

401 Invalid credentials

403 Invalid permissions

406 The smart contract rolled back (declined) the transaction

201 The Cluster ID

Table 26: POST Cluster responses

7.2.4 GET /cluster/retrieve

Retrieve all the clusters9 details related to a user (GET).

Parameters

Attribute Parameter Type Description Required Data type

id body The id of the cluster False string

cluster_name body The cluster name True string

cpus body The cluster # of cpus True integer

memory body The cluster # of memory True float

storage body The cluster total storage capacity True float

availability body The cluster availability % True string

green_energy body The cluster RES powered % True string

cost body The cost category of the cluster True string

cpu_base body The cpu base cost for the cluster True float

memory_base_rate body The memory base cost for the cluster True float

timestamp body Timestamp False string

Table 27: GET cluster parameters

Responses

HTTP Code Description Schema Type Data Model

201 The details of all records Object ClusterResources

400 Provided data is invalid or malformed

401 Invalid credentials

403 Invalid permissions

Table 28: GET Clusters responses

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 126 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

7.2.5 GET /cluster/retrieve/{id}

Retrieve a cluster9s details related to a user (GET).

Parameters

Attribute Parameter Type Description Required Data type

id path The cluster id True string

Table 29: GET Cluster with ID parameters

Responses

HTTP Code Description Schema Type Data Model

201 The details of selected records Object ClusterResources

400 Provided data is invalid or malformed

401 Invalid credentials

403 Invalid permissions

Table 30: GET Cluster with ID responses

7.2.6 PUT, PATCH /cluster/update/{id}

Update a cluster9s attributes (PUT, PATCH).

Parameters

Attribute Parameter Type Description Required Data type

id path The cluster id True

data body The cluster attributes True UpdateClusterResources

Table 31: PUT, PATCH Cluster parameters

Responses

HTTP
Code

Description Schema
Type

Data Model

200 Object UpdateClusterResources

400 Provided data is invalid or malformed

401 Invalid credentials

403 Invalid permissions

406 The smart contract rolled back (declined) the
transaction

Table 32: PUT, PATCH Cluster responses

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 127 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

7.2.7 POST /nemo_token_estimation_setup

Setup the region costs for that will be used in the workload usage calculation (POST).

Responses

HTTP
Code

Description Schema Type Data Model

201 The generated transaction hash Object TransactionHash

400 Provided data is invalid or malformed

401 Invalid credentials

403 Invalid permissions

406 The smart contract rolled back (declined) the
transaction

Table 33: POST Region Costs responses

7.2.8 GET /nemo_token_setup_retrieve/{region}

Retrieve the information on the region costs (GET).

Parameters

Attribute Parameter Type Description Required Data type

region path The region name True string

Table 34: GET Region Costs parameters

Responses

HTTP
Code

Description Schema
Type

Data Model

201 The region info Object NemoTokenSetupRetrieveRegion

400 Provided data is invalid or malformed

401 Invalid credentials

403 Invalid permissions

406 The smart contract rolled back (declined)
the transaction

Table 35: GET Region Costs responses

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 128 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

7.2.9 GET /nemo_user_info

Retrieve the information of a logged in user (GET).

Responses

HTTP Code Description Schema Type Data Model

201 The information of the user Object NemoUserInfo

400 Provided data is invalid or malformed

401 Invalid credentials

403 Invalid permissions

Table 36: GET user information responses

7.2.10 GET /workload/retrieve

Retrieve all the details of the workloads related to a user (GET).

Responses

HTTP Code Description Schema Type Data Model

201 The details of all records Object Workload

400 Provided data is invalid or malformed

401 Invalid credentials

403 Invalid permissions

Table 37: GET workoads' details responses

7.2.11 GET /workload/retrieve/{id}

Retrieve the details of a workload based on its ID (GET).

Parameters

Attribute Parameter Type Description Required Data type

id path The workload id True string

Table 38: GET workoad's details parameters

Responses

HTTP Code Description Schema Type Data Model

201 The details of all records Object Workload

400 Provided data is invalid or malformed

401 Invalid credentials

403 Invalid permissions

Table 39: GET workload9s details responses

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 129 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

7.2.12 GET /workload_computations/{id}

Retrieve all the events of a workload that show its resource usage details (GET).

Parameters

Attribute Parameter Type Description Required Data type

id path The workload id True string

Table 40: GET workload computation details parameters

Responses

HTTP Code Description Schema Type Data Model

201 The details of all records Object WorkloadComputeTokensEvents

400 Provided data is invalid or malformed

401 Invalid credentials

403 Invalid permissions

Table 41: GET workload computation details responses

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 130 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

8 Annex B Ð Intent-based API & data models

8.1 NEMO Intent-based API

The Intent-based API Server allows for exposure of NEMO functionalities, as well as management of
intents and workloads. The API is available online at https://intent-api.nemo.onelab.eu/api/v1/swagger/.

8.2 Intent-API data models

Attribute Data type Description Comments

username String

password String

token String

Table 42: Data model description: AuthToken

Attribute Data type Description Comments

cluster_name String The name of the cluster resource

cpus Integer The number of the CPUs

memory Integer The RAM of the cluster in GB

storage Integer The storage of the cluster in GB

Table 43: Data model description: ClusterRegister

Attribute Data type Description

link_id String The IPFS link id

ipfs_link String The IPFS link to retrieve the cluster config

Table 44: Data model description: ClusterIpfs

Attribute Data type Description

id String The ID of the cluster

vm_name String The name of the cluster resource

cpus Integer The number of the CPUs

memory Integer The RAM of the cluster in GB

storage Integer The storage of the cluster in GB

endpoint String The endpoint of the Cluster

ipfs ClusterIpfs

Table 45: Data model description: Cluster

https://intent-api.nemo.onelab.eu/api/v1/swagger/

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 131 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Attribute Data type Description

id Integer

context_attribute String

context_condition String

context_value_range String

Table 46: Data model description: Context

Attribute Data type Description

id Integer

object_type String

It describes the expectation object type
which can be supported by a specific
intent handling function of MnS
producer.

object_instance String

context_selectivity String
How to select among the stated
expectationContexts

object_contexts Array

Table 47: Data model description: ExpectationObject

Attribute Data type Description

id Integer

target_name String

target_condition String

target_value_range String

target_contexts Array

Table 48: Data model description: ExpectationTarget

Attribute Data type Description

id Integer

expectation_id String
A unique identifier of the
intentExpectation within the
intent

expectation_verb String

expectation_object ExpectationObject

expectation_targets Array

expectation_contexts Array

Table 49: Data model description: IntentExpectation

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 132 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Attribute Data type Description

id Integer

user_label String
A user-friendly (and user
assignable) name of the intent.

intent_preemption_capability String

observation_period Integer In seconds

intent_expectations Array

intent_report_reference String

intent_contexts Array

Table 50: Data model description: Intent

Attribute Data type Description

context_attribute String

context_condition String

context_value_range String

Table 51: Data model description: ContextInput

Attribute Data type Description

object_type String
It describes the expectation object type which
can be supported by a specific intent handling
function of MnS producer.

object_instance String

context_selectivity String
How to select among the stated
expectationContexts

object_contexts Array

Table 52: Data model description: ExpectationObjectInput

Attribute Data type Description

target_name String

target_condition String

target_value_range String

target_contexts Array

Table 53: Data model description: ExpectationTargetInput

Attribute Data type Description

expectation_id String
A unique identifier of the
intentExpectation within the intent

expectation_verb String

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 133 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

expectation_object ExpectationObjectInput

expectation_targets Array

expectation_contexts Array

Table 54: Data model description: IntentExpectationInput

Attribute Data type Description

user_label String
A user-friendly (and user assignable)
name of the intent.

context_selectivity String
How to select among the stated
intentContexts

intent_preemption_capability String

observation_period Integer In seconds

intent_expectations Array

intent_contexts Array

Table 55: Data model description: IntentInput

Attribute Data type Description

intent IntentInput

Table 56: Data model description: IntentInputAttribute

Attribute Data type Description

intent Integer Intent ID (PK)

Table 57: Data model description: IntentOutput

Attribute Data type Description

target_name String

target_condition String

target_value_range String

Table 58: Data model description: TargetTemplate

Attribute Data type Description Comments

instance_id String NEMO Workload instance ID 'uuid'

intent_type String Intent userLabels

service_start_time String Optional 'date-time'

service_end_time String Optional 'date-time'

targets Array Expectation targets

instance_id String NEMO Workload instance ID 'uuid'

Table 59: Data model description: IntentTemplate

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 134 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Attribute Data type Description

action String Action to perform

Table 60: Data model description: IntentActionInput

Attribute Data type Description

target_id Integer

target_value_range String

Table 61: Data model description: IntentTargetUpdate

Attribute Data type Description Comments

id Integer

username String
Required. 150 characters or
fewer. Letters, digits and @/./+/-
/_ only.

email String 'email'

first_name String

last_name String

Table 62: Data model description: User

Attribute Data type Description Comments

id Integer

name String The maintainers name (required)

email String The maintainers email (optional) 'email'

url String
A url for the maintainer
(optional)

'uri'

chart Integer

Table 63: Data model description: WorkloadDocumentChartMaintainer

Attribute Data type Description

id Integer

name String The name of the chart

version String A SemVer 2 version string

repository String
The repository URL or alias ("repo-name")
(optional)

condition String
A yaml path that resolves to a boolean, used for
enabling/disabling charts (e.g.
subchart1.enabled) (optional)

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 135 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

tags Array
Tags can be used to group charts for
enabling/disabling together

import_values Array
ImportValues holds the mapping of source
values to parent key to be imported.

alias String
Alias to be used for the chart. Useful when you
have to add the same chart multiple times

chart Integer

Table 64: Data model description: WorkloadDocumentChartDependency

Attribute Data type Description

id Integer

container_registries Object The mapped container registries

manifests Array The default generated manifests

values Object The chart default values

resource_mappings Object The container resource mappings

memory_requests Integer Total memory requests (in bytes)

memory_limits Integer Total memory limits (in bytes)

cpu_requests Integer Total CPU requests (in milli cpus

cpu_limits Integer Total CPU limits (in milli cpus)

Table 65: Data model description: WorkloadDocumentChartMetadata

Attribute Data type Description Comments

id Integer

maintainers Array

dependencies Array

metadata WorkloadDocumentChartMetadata

api_version String
The chart API version
(required)

name String
The name of the chart
(required)

version String A SemVer 2 version string

kube_version String
A SemVer range of compatible
Kubernetes versions (optional)

description String
A single-sentence description
of this project (optional)

type String The type of the chart (optional)

keywords Array
A list of keywords about this
project (optional)

home String
The URL of this projects home
page (optional)

'uri'

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 136 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

sources Array
A list of URLs to source code
for this project (optional)

icon String
A URL to an SVG or PNG
image to be used as an icon
(optional)

'uri'

app_version String

The version of the app that this
contains (optional). Needn't be
SemVer. Quotes
recommended.

deprecated Boolean
Whether this chart is
deprecated (optional, boolean)

annotations Object
A list of annotations keyed by
name (optional)

Table 66: Data model description: WorkloadDocumentChart

Attribute Data type Description Comments

id Integer

user User The NEMO user

chart WorkloadDocumentChart The associated helm chart

created String 'date-time'

modified String 'date-time'

name String The workload document name

version String A SemVer 2 version string

schema Object The document schema

intents Array List of supported intents

type String The workload document type

status String The workload document status

ingress_support Boolean
Whether the workload document
can be exposed via NEMO

enabled Boolean
If the workload document is
enabled

rejection_reason String Rejection reason

Table 67: Data model description: WorkloadDocumentList

Attribute Data type Description

id Integer

status String The workload document status

user Integer The NEMO user

name String The workload document name

version String A SemVer 2 version string

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 137 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

schema Object The document schema

type String The workload document type

intents Array List of supported intents

ingress_support Boolean Whether the workload document can be exposed via NEMO

Table 68: Data model description: WorkloadDocumentCreate

Attribute Data type Description Comments

id Integer

type String Lifecycle event type

deployment_cluster String The NEMO deployment cluster

migration_from_cluster String The NEMO migration from cluster

migration_to_cluster String The NEMO migration to cluster

timestamp String The timestamp of the lifecycle event 'date-time'

Table 69: Data model description: WorkloadDocumentLifecycleEvent

Attribute Data type Description Comments

id Integer

lifecycle_events Array

created String 'date-time'

modified String 'date-time'

instance_id String NEMO unique workload document instance identifier 'uuid'

release_name String The workload document instance release name

status String The workload document instance status

lifecycle_metadata Array The lifecycle metadata associated with the instance

cluster_name String The NEMO cluster name that the instance resides in

ingress_enabled Boolean Whether the instance should be exposed via NEMO

ingress_metadata Object Ingress metadata

workload_document Integer The workload document

Table 70: Data model description: WorkloadDocumentInstance

Attribute Data type Description

name String The workload document name

version String A SemVer 2 version string

schema Object The document schema

type String The workload document type

status String The workload document status

user Integer The NEMO user

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 138 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

intents Array List of supported intents

ingress_support Boolean Whether the workload document can be exposed via NEMO

Table 71: Data model description: WorkloadDocumentUpdate

Attribute Data type Description

release_name String The release name

values_override Object values.yaml override

include_crds Boolean Include CRDS

is_upgrade Boolean If its upgrade

namespace String Namespace to associate with

no_hooks Boolean No hooks flag

ingress_enabled Boolean Expose workload instance via NEMO

cluster_name String Target cluster override

Table 72: Data model description: WorkloadDocumentTemplateInput

8.3 Intent-based API endpoints

8.3.1 POST /api/v1/auth/login/

Create a new auth token for the user (POST)

Parameters

Attribute Parameter Type Description Required Data type

data body

True AuthToken

Table 73: POST authorization token parameters

8.3.2 POST /api/v1/auth/logout/

Clears the token associated with the user. (POST)

Responses

HTTP Code Description Schema Type Data Model

201

Object AuthToken

Table 74: POST authorization logout responses

8.3.3 POST /api/v1/cluster/register/

This endpoint writes a message to the rabbitmq topic that MOCA component listens to. This is
performed in asynchronous manner. (POST)

Responses

HTTP Code Description Schema Type Data Model

204 No Content

401 Invalid credentials

403 Forbidden from performing this action

404 Resource not found

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 139 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Table 75: POST cluster registration responses

Parameters

Attribute Parameter Type Description Required Data type

data body

True ClusterRegister

Table 76: POST cluster registration parameters

8.3.4 GET /api/v1/cluster/retrieve/

Retrieve cluster details from MOCA component (GET)

Responses

HTTP Code Description Schema Type Data Model

201 Created

400 Provided data is invalid or malformed

401 Invalid credentials

403 Forbidden from performing this action

404 Resource not found

Table 77: GET cluster retrieve responses

8.3.5 GET /api/v1/cluster/retrieve/{id}/

Retrieve a single cluster details from MOCA component (GET)

Responses

HTTP Code Description Schema Type Data Model

200

Object list Cluster

400 Provided data is invalid or malformed

401 Invalid credentials

403 Forbidden from performing this action

404 Resource not found

Table 78: GET cluster retrieve (id) responses

Parameters

Attribute Parameter Type Description Required Data type

id path

True

Table 79: GET cluster retrieve (id) parameter

8.3.6 GET, POST /api/v1/intent/

Responses

HTTP Code Description Schema Type Data Model

200

Object list Cluster

400 Provided data is invalid or malformed

401 Invalid credentials

403 Forbidden from performing this action

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 140 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

404 Resource not found

Table 80: GET/POST intent responses

Parameters

Attribute Parameter Type Description Required Data type

user_label query user_label False String

object_instance query object_instance False String

fulfilment_status query fulfilment_status False String

not_fulfilled_state query not_fulfilled_state False String

intent_id query intent_id False String

data body

True IntentInputAttribute

Table 81: GET/POST intent parameters

Responses

HTTP Code Description Schema Type Data Model

200

Object list Intent

Table 82: GET/POST intent responses

8.3.7 POST /api/v1/intent/template/

Creates an Intent with the given template (POST)

Responses

HTTP Code Description Schema Type Data Model

201

Object IntentOutput

400 Provided data is invalid or malformed

401 Invalid credentials

403 Forbidden from performing this action

404 Resource not found

Table 83: POST create intent responses

Parameters

Attribute Parameter Type Description Required Data type

data body

True IntentTemplate

Table 84: POST create intent parameters

8.3.8 GET /api/v1/intent/types/

Lists the valid intent types (GET)

Responses

HTTP Code Description Schema Type Data Model

201

Object IntentOutput

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 141 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

400 Provided data is invalid or malformed

401 Invalid credentials

403 Forbidden from performing this action

404 Resource not found

Table 85: GET intent types responses

8.3.9 PUT /api/v1/intent/{id}/action/

Perform an action to a given Intent (PUT)

Responses

HTTP Code Description Schema Type Data Model

200

Table 86: PUT intent action responses

Parameters

Attribute Parameter Type Description Required Data type

id path

True

data body

True IntentActionInput

Table 87: PUT intent action request

8.3.10 PUT /api/v1/intent/{id}/target/

Intent has to be in a valid state. It is best to use this in a rest api tool, e.g. postman and send data via
``application/yaml`` in order to derive data types better. (PUT)

Responses

HTTP Code Description Schema Type Data Model

200 Ok

400 Provided data is invalid or malformed

401 Invalid credentials

403 Forbidden from performing this action

404 Resource not found

Table 88: PUT intent's target (id) action responses

Parameters

Attribute Parameter Type Description Required Data type

id path

True

data body

True IntentTargetUpdate

Table 89: PUT intent's target (id) action parameters

8.3.11 GET, POST /api/v1/workload/

List or Create a new workload document(s) (GET)

Responses

HTTP Code Description Schema Type Data Model

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 142 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

200 Ok

400 Provided data is invalid or malformed

401 Invalid credentials

403 Forbidden from performing this action

404 Resource not found

Table 90: GET workload documents list responses

Parameters

Attribute Parameter Type Description Required Data type

name query name False String

version query version False String

data body

True WorkloadDocumentCreate

Table 91: GET workload documents list parameters

8.3.12 List or Create a new workload document(s) (POST)

Responses

HTTP Code Description Schema Type Data Model

200

Object list WorkloadDocumentList

Table 92: POST workload document responses

Parameters

Attribute Parameter Type Description Required Data type

name query name False String

version query version False String

data body

True WorkloadDocumentCreate

Table 93: POST workload document parameters

8.3.13 GET /api/v1/workload/instance/

Lists all the workload documents instances (GET)

Responses

HTTP Code Description Schema Type Data Model

201

Object WorkloadDocumentCreate

Table 94: GET workload instances responses

Parameters

Attribute Parameter Type Description Required Data type

release_name query release_name False String

cluster_name query cluster_name False String

workload_document query workload_document False String

status query status False String

Table 95: GET workload instances parameters

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 143 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

8.3.14 PUT /api/v1/workload/instance/{instance_id}/delete/

Propagate a workload document instance deletion request for a deployed workload instance to the MO.
(PUT)

Responses

HTTP Code Description Schema Type Data Model

200

Object list WorkloadDocumentInstance

Table 96: PUT workload instance delete responses

Parameters

Attribute Parameter Type Description Required Data type

instance_id path

True

Table 97: PUT workload instance delete parameters

8.3.15 GET /api/v1/workload/instance/{instance_id}/manifests/

Fetch workload instance manifests in a single ``.yaml`` format. (GET)

Responses

HTTP Code Description Schema Type Data Model

200

Table 98: GET workload instance manifests responses

Parameters

Attribute Parameter Type Description Required Data type

instance_id path

True

instance_id path The Workload Document instance uuid True String

Table 99: GET workload instance manifests parameters

8.3.16 POST /api/v1/workload/upload/

The following must apply:

¥ The helm chart must be packed as ```.tgz``` (by running helm package).
¥ The helm chart must have a matching (name, version) pair with the associated workload

document. - The helm chart must have a valid structure, files ```Chart.yaml```, ```values.yaml```
and folder ```templates``` are mandatory.

¥ The helm chart must be able to render (via helm template) without any errors.
¥ The helm chart underlying containers images must exist and be reachable by NEMO Intent API

(either public or private registries with appropriate imagePullSecrets).

If everything is OK, the helm chart is uploaded to the NEMO S3 Helm Repository. After successful
upload, the Workload Document is set to ```status=onboarding``` for further validation. After successful
validation, the Workload Document is set to ```status=accepted``` or ```status=rejected``` if validation
has failed. RabbitMQ is notified as per README.md (POST)

Responses

HTTP Code Description Schema Type Data Model

200 Kubernetes Manifests Object list

400 Provided data is invalid or malformed

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 144 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

401 Invalid credentials

403 Forbidden from performing this action

404 Resource not found

Table 100: POST workload upload request responses

Parameters

Attribute Parameter Type Description Required Data type

file formData Packaged helm chart in ```.tgz``` extension True file

name formData Workload Name to associate with True String

version formData Workload Version to associate with True String

Table 101: POST workload upload request parameters

8.3.16.1 GET, PUT, PATCH, DELETE /api/v1/workload/{id}/

Update & Delete operations are only allowed when a workload document is in ```status=pending``` and
the same user if performing the operation. (GET)

Responses

HTTP Code Description Schema Type Data Model

201 Created

400 Provided data is invalid or malformed

401 Invalid credentials

403 Forbidden from performing this action

404 Resource not found

Table 102: GET workload responses

Parameters

Attribute Parameter
Type

Description Required Data type

id path A unique integer value identifying
this Workload Document.

True

data body

True WorkloadDocumentUpdate

data body

True WorkloadDocumentUpdate

Table 103: GET workload parameters

Update & Delete operations are only allowed when a workload document is in ```status=pending``` and
the same user if performing the operation. (PUT)

Responses

HTTP Code Description Schema Type Data Model

200

Object WorkloadDocumentList

Table 104: PUT workload responses

Parameters

Attribute Parameter
Type

Description Required Data type

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 145 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

id path A unique integer value identifying
this Workload Document.

True

data body

True WorkloadDocumentUpdate

data body

True WorkloadDocumentUpdate

Table 105: PUT workload parameters

Update & Delete methods are only allowed when a workload document is in ```status=pending``` and
the same user if performing the operation. (PATCH)

Responses

HTTP Code Description Schema Type Data Model

200

Object WorkloadDocumentUpdate

Table 106: PATCH workload responses

Parameters

Attribute Parameter
Type

Description Required Data type

id path A unique integer value identifying
this Workload Document.

True

data body

True WorkloadDocumentUpdate

data body

True WorkloadDocumentUpdate

Table 107: PATCH workload parameters

Update & Delete operations are only allowed when a workload document is in ```status=pending``` and
the same user if performing the operation. (DELETE)

Responses

HTTP Code Description Schema Type Data Model

200

Object WorkloadDocumentUpdate

Table 108: DELETE workload responses

Parameters

Attribute Parameter
Type

Description Required Data type

id path A unique integer value identifying
this Workload Document.

True

data body

True WorkloadDocumentUpdate

data body

True WorkloadDocumentUpdate

Table 109: DELETE workload parameters

8.3.16.2 POST /api/v1/workload/{id}/template/

Set header ```Accept``` to ```application/json``` or ```application/yaml``` (default). This action creates a
workload document instance with a unique NEMO workload identifier (```instance_id```). RabbitMQ is
notified as per README.md (POST)

Parameters

Document name:
D4.2 Advanced NEMO platform & laboratory testing results.

Initial version
Page: 146 of 146

Reference: D4.2 Dissemination: PU Version: 1.0 Status: final

Attribute Parameter Type Description Required Data type

id path

True

data body

True WorkloadDocumentTemplateInput

Table 110: POST workload document instance parameters

Responses

HTTP Code Description Schema Type Data Model

201 Created

400 Provided data is invalid or malformed

401 Invalid credentials

403 Forbidden from performing this action

404 Resource not found

Table 111: POST workload document instance responses

