NE

Next Generation Meta Ope ystem
D4.2 Advanced NEMO @& laboratory
testing resulfs. Initral version

/t
Document Identification

Status i 4 30/11/2024

Version ' Submission Date 17/12/2024

Related WP D4.2

Related . . PU
Deliverable(s)

Lead Participant < Lead Author Dimitrios Skias (INTRA)

Contributors Reviewers Panagiotis Karkazis
AEGIS, SPACE, (MAG)
ATOS, MAG, ENG,
ESOFT, SU

Ignacio Prusiel (ATOS)

Integration, Validation, API, SDK, Lifecycle Management, Migration Controller, Automation

Disclaimer for Deliverables with dissemination level PUBLIC

This document is issued within the frame and for the purpose of the NEMO project. This project has received funding from the European
Union’s Horizon Europe Framework Programme under Grant Agreement No. 101070118. The opinions expressed and arguments employed
herein do not necessarily reflect the official views of the European Commission.

The dissemination of this document reflects only the author’s view, and the European Commission is not responsible for any use that may be
made of the information it contains. This deliverable is subject to final acceptance by the European Commission.

This document and its content are the property of the NEMO Consortium. The content of all or parts of this document can be used and
distributed provided that the NEMO project and the document are properly referenced.

Each NEMO Partner may use this document in conformity with the NEMO Consortium Grant Agreement provisions.

(*) Dissemination level: (PU) Public, fully open, e.g., web (Deliverables flagged as public will be automatically published in CORDIS project’s
page). (SEN) Sensitive, limited under the conditions of the Grant Agreement. (Classified EU-R) EU RESTRICTED under the Commission
Decision No2015/444. (Classified EU-C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified EU-S) EU
SECRET under the Commission Decision No2015/444.

Document Information

&8s NEMO

List of Contributors

Name ‘ Partner
Enric Pere Pages Montanera ATOS
Rubén Ramiro ATOS
Ignacio Prusiel ATOS
Matija Cankar COM
Dimitrios Skias INTRA «
Panagiotis Karkazis MAG
Astik Samal MAG
Nikos Drosos SPACE
Emmanouil Bakiris SPACE
Antonis Gonos ESOFT
Theodore Zahariadis SYN
Terpsi Velivassaki SYN
Spyros Vantolas AEGI
Hassane Rahich

Document History
Version

Change editors

Changes

0.1 12/09/2024 |INTRA K™) ToC

0.2 03/10/2024 | INTRA ~4 Updates in ToC and initial input

0.3 18/10/2024 Updates in section 1,2 and 4

0.4 25/10/2024 GIS, ESOFT | Updates in section 3 and 4

0.5 08/11/2024 Updates in section 1 and 2

0.6 22/1 TOS, AEGIS, ESOFT | Updates in section 3

0.7 , ATOS, AEGIS, SYN, |Updates in section 4, conclusions and

0.8

introduction of Annex A & B

Document consolidation; Peer-review ready
version

12/2024

INTRA, MAG, ATOS

Document consolidation; Peer-review
comments addressed

0.91 17/12/2024 | INTRA Final version ready
1.0 17/12/2024 | ATOS Format review and submission to EC
Quality Control

Role Who (Partner short name) ‘Approval Date
Deliverable leader D. Skias (INTRA) 17/12/2024
Quality manager R. Valle Soriano (ATOS) 17/12/2024
Project Coordinator E. Pages (ATOS) 17/12/2024
Document name: |D'4"2 Advqnced NEMO platform & laboratory testing results. Page: 2 of 146

nitial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

&8s NEMO

Table of Contents

Document INTOTTATIONc..oiuiiiiiieiire ettt ettt e b s bt et e b ebeeat et e b eaeeneenees 2
TaADIE OF COMEBIES ...ttt ettt b ettt b et s bt e st e e s bt ebe et et e e bt eat et e bt eneensenees 3
LSt OF TADLES. ...ttt ettt sttt bt s e e bt bt et et e bt e et et b st et eees 6
LISt OF FIGUIES ..eevieiiieeiieeiecieste sttt ettt e st e s teesteessa e saessaesseessaesseessaessaenseensaessaenseensesditeenseenseensenns

LISt OF ACTOMYINIS. ..c.utiiiiieiieiieieete et ete et et eteeteesbe e beeseesseesseesseesseesseensaesseessaesseesseeseenseesseens

Executive Summary

I INETOAUCTION 1.ttt sttt et
1.1 Purpose of the document
1.2 Relation to other project Workccooeeveierieriienciinieriecee s
1.3 Structure of the dOCUMENL.......cceriririiererieieereeeeeeeee

2 NEMO Integration, Validation & Verification approach and tools®

2.1.1
2.1.2

2.2.1 OneLab Clusters for NE
2.3 Integration & V&V Methodolo

2.5 NEMO Integrated Platform

2.5.1 Meta-OS functi i
3 NEMO Service Man4ge
3.1 Intent-based % troller
ctur

3.1.1 OVETVECW Sl .. veteneeetettete ettt ettt sttt ae et s bt e e st ebe e b et et enees e ste et et eneeseebesteteneeneenes 38
3.1.2 ettt ettt et n bttt h et h et et e n e et e bt b e Ao Rt en et e h et et en e st ek e b et en e e st ebeeteteneeneens 38

3 % ction with other NEMO COMPONENLScocvvrrirerierieniieriienieerieeseeseeseeeseesseenseens 40
THAL TESULES ...ttt ettt 41

3. Conclusion and roadmapcceeeueeeiieciiriiiiie ettt sereesseesseeaseenns 42
3.2 Plugin & Applications Lifecycle Managerccooceveivrieniieeiienienienee st ere e sveseve e 42
3.2.1 ATCRIEECTUTE ...ttt ettt sttt ettt sb et e e st sb et e b b saeenee e 42
322 LifecyCle MAnagET........ccveviieriieriieiieiteieeie ettt ettt eseeste et eebeeabeesbeenseenseenseesseensennns 43
323 Interaction with other NEMO COMPONENLSc.eecvievierieeriieieeieeieeieeieereeseeveese e 45
32.4 INEHAL TESULES ..ottt 47
3.2.5 Conclusion and roadmapcceeeueeeierciiriienie ettt re e esreesseenseenseenne 48
3.3 Monetization and Consensus-based AcCOUNtaDIlItYcccecuveevireiiriiircieiie e 48

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

Document name: Page: 3 of 146

33.1 OVEIVIEW ettt ettt sttt b ettt e b et e bt s bt e s e et e ebesae et et e ebeeatete bt emeensenees 48

332 ATCRIEECTUTE ...ttt ettt ettt ettt sb et e b s b sbt et e b ebeeseenee e 48

333 Interaction with other NEMO COMPONENLSc.eeovveveeiieiieiieieeieeieeieereeseeseese e 49

334 INEHAL TESUIL. ...ttt st 51

3.3.5 Conclusion and roadmapcceeeueeeieeciiriierieiie ettt ere e re e esreesseesseenseanns 71
3.4 Intent-based SDK/APT ..ottt sttt st

34.1 OVEIVIEW .ttt sttt sttt b et sttt et sttt et sbe et etesbe et e s s

342 ATCRIEECTUTE ...ttt st

343 INitial TESUILS ...

344 Conclusion and Roadmap

4 NEMO scenario-driven verification & results

4.1 NEMO Cluster re@istration...........ccveeveerveerieesreesreenreeseessesssessesnennns
4.1.1 Verification SCENATIOccuevveruermierierierieeienienieeieeneens
4.1.2 RESUILS ..o
4.13 Verification summary checklist

4.2 NEMO workload registration, deployment & provi

4.2.1 Verification scenario, B eneeee oo s emeentente st et et e bt st et e b e be et et e be e st et eneenee

4.2.2 RESUILS ..o B e 89

423 Verification summary Ch@CRIIST M. oeoveeeiieiiiieeieie e 103
4.3 NEMO workload migration ol S B eerieree et eseesre e sresseesenesenessnesnnesnnes 104

4.3.1 VErifICAtiON SCENATIO,. ..ottt e eeeieeeeeeeeeeeeeeeeeeeeeeeaeteeeeeesseaaeeeeeesessanaaseeeesssesnaneeees 104

432 RESUILS ..o B Sttt bt 105
433 Veriﬁc@‘on IS8Tttt ettt ettt sttt 109

4.4 NEMO work i NAZCINENILvevereeererereeireeresreereseresaeseesssesssesssesssesssesssesssesssessnes 109
4.4.1 Proc@Ss diagra...........cooeiriiiriiiiiiinitent ettt 109
442 SCETIATIO .eveetenteteetteterte st et et e st e et e et et e e bt e st e te s bt eat et e nteebe et etesaesaeeneennens 110
443 o RESUIS ..o 111
ification sSUMMAry CheCkliSt..........ccverieriierieiieieieeeee e 118

5 COMEBIISIONS ...euveteitentete ettt ettt sttt ettt e h et e bt e bt e et et e st e e bt e st e st e s bt ea e et e ebesbtem s e bt ebeessenteabeeneensenees 119
0 RETETEIIEESoueeeeeieee ettt a ettt et et s bt bt et e s bt e bt et et e ebe et enaenees 120
7 Annex A — MOCA API & data mMOdelS........coeeeeiiiiniiiiiiiiiieeeee et 121
7.1 MOCA Data MOAELScoouiiuiiiiiiiiiitieieest ettt sttt sttt ee e e 121
7.2 MOCA API ENAPOINES ...eouvieiieiieriieniieriiesiieseesiteseesteesseesseesseesseesseesseesseesseesseessessseessesssasssesssaens 123
7.2.1 GET /api/v1/accounting @VENLScccccverueereereereereeseesseesseesseessaesseesseesseesseesseesseens 123
7.2.2 DELETE /cluster/delete/ {id}ccccoviiriierienieeierie ettt 124
7.2.3 POST /CIUSTET/TEGISIET ...eevveereeeieseieseiesieeeeeeeeseesreseeeseaeseaesesesstesssesseessnessnesssesssensnas 124

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

Document name: Page: 4 of 146

7.2.4 GET /CIUSEEI/TEIIEVE ..ottt ettt ettt st s ee b
7.2.5 GET /Cluster/TetrieVe/ {1}cveveerierierieriereeree e see st e e sre e re e see e esseesseens
7.2.6 PUT, PATCH /cluster/update/{id}cceevuerrieriiirierierie et
7.2.7 POST /nemo_token estimation SETUDc.eecververrereereerreneesrerreseeesenessnessnensnesnnes
7.2.8 GET /nemo_token setup retrieve/{Tegion}........ccccevvverieriervereenieeneeseeseeseeseeeneeens
7.2.9 GET /MeMO_USET 1IN0 ...vieiiiiiiiieiiieciecierieseeree sttt se et e e e saaesseessaessaessaesseens
7.2.10 GET /workload/retrieVe/ {id}coovevierieriirieiiecie e e
7.2.11 GET /workload computations/{id}ccceeuvrerervireciincinieeienieeie e,
8 Annex B — Intent-based API & data models

8.1 NEMO Intent-based APIcccocoriiiiiiiiiiiieeeeeeeeeeteese e Dot

8.2 Intent-API data MOdelScceoueviriiieiiiieee e

8.3 Intent-based API endpoints..........ccceceereerierienienienieseeneesee e
8.3.1 POST /api/v1/auth/login/........cccccceveververcveneerrennnenne,
8.3.2 POST /api/v1/auth/logout/..........cccccveerverreereennnnns
833 POST /api/vl1/cluster/register/
834 GET /api/vl/cluster/retrieve/)
8.3.5 GET /api/v1/cluster/retrieve/ {i
8.3.6 GET, POST /api/v1/intent/....
8.3.7 POST /api/v1/intent/te
8.3.8 GET /api/v1/intent/type
8.3.9 PUT /api/v1/intent/
8.3.10 PUT /api/vl/inte
8.3.11 GET, PgST
8.3.12 i e workload document(s) (POST)
8.3.13 [erload/instance/ ... 142
8.3.14 /workload/instance/{instance _id}/delete/..........ccceevrvvrrcirrvirrcrencrennenen. 143
8.3.15 i/vl/workload/instance/{instance id}/manifests/...........cccceeevrvrrrrrrrrrerrnennn. 143

T /api/v1/workload/upload/...........ccoecieiieriieriierieseeeeeeee et 143

Document name:

D4.2 Advanced NEMO platform & laboratory testing results.

Initial version Page: Sof146

Reference:

D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

&8s NEMO

List of Tables

Table 1: NEMO dev cluster (K8S) 25
Table 2: Staging 1 cluster (K8S) 27
Table 3: Staging 2 Cluster (K3S) 29
Table 4: Production Cluster (k8S) 30
Table 5: The NemoTokenEstimation smart contract details 54
Table 6: The NemoFunds smart contract details 59
Table 7: The InfrastructureOwnerModel smart contract 61
Table 8: The ServiceProviderModel smart contract 66
Table 9: Checklist for cluster registration scenario) 85
Table 10: Checklist for workload registration, deployment and provisioning scenario ___ Errgr! ark not
defined.

Table 11: Test 3 - NEMO workload migration 105
Table 12: Checklist for Test3 - NEMO workload migration 109
Table 13: Checklist for Test4 118
Table 14: MOCA AccountingEvents Data Model 121
Table 15: MOCA ClusterResources Data Model 122
Table 16: MOCA ClusterState Data Model 122
Table 17: MOCA Workload Data Model 122
Table 18: MOCA IPFS Handler Data Model 122
Table 19: MOCA WorkloadComputeTokensEvents Data Mode 123
Table 20: MOCA UserSmartContracts Data Model 123

N

Table 21: MOCA NemoTokenSetup Data Model
Table 22: GET Accounting Events responses
Table 23: DELETE Cluster responses

‘, J 123
124

) 124

Table 24: DELETE Cluster parameters 124
Table 25: REGISTER cluster parameters 125
Table 26: POST Cluster responses 125
Table 27: GET cluster parameters 125
Table 28: GET Clusters responses 125
Table 29: GET Cluster with ID pa 126
Table 30: GET Cluster wi 126
Table 31: PUT, PATC e 126
Table 32: PUT, PATCF nses 126
Table 33: POST RegionfCe 127
Table 34: GET Region Co 127
Table 35: GET Reg ISresponses 127
Table 36: GE ation responses 128
Table 37 orkodds' details responses 128
Ta oad's details parameters 128
Tab ET workload’s details responses 128
Table workload computation details parameters 129
Table 41: GET workload computation details responses 129
Table 42: Data model description: AuthToken 130
Table 43: Data model description: ClusterRegister 130
Table 44: Data model description: Clusterlpfs 130
Table 45: Data model description: Cluster 130
Table 46: Data model description: Context 131
Table 47: Data model description: ExpectationObject 131
Table 48: Data model description: ExpectationTarget 131
Table 49: Data model description: IntentExpectation 131
Table 50: Data model description: Intent 132

Document name:

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version

Page:

6 of 146

Reference:

D4.2 |Disseminotion: |PU

|Version: |l.0

Status:

FINAL

&8s NEMO

Table 51: Data model description: ContextInput 132
Table 52: Data model description: ExpectationObjectInput 132
Table 53: Data model description: ExpectationTargetInput 132
Table 54: Data model description: IntentExpectationlnput 133
Table 55: Data model description: IntentInput 133
Table 56: Data model description: IntentInputAttribute 133
Table 57: Data model description: IntentOutput 133
Table 58: Data model description: TargetTemplate 133
Table 59: Data model description: IntentTemplate 133
Table 60: Data model description: IntentActionInput 134
Table 61: Data model description: IntentTargetUpdate 134
Table 62: Data model description: User 134
Table 63: Data model description: WorkloadDocumentChartMaintainer 4 134
Table 64: Data model description: WorkloadDocumentChartDependency \ 135
Table 65: Data model description: WorkloadDocumentChartMetadata 135
Table 66: Data model description: WorkloadDocumentChart 136
Table 67: Data model description: WorkloadDocumentList 136
Table 68: Data model description: WorkloadDocumentCreate 137
Table 69: Data model description: WorkloadDocumentLifecycleEvent 137
Table 70: Data model description: WorkloadDocumentInstance 137
Table 71: Data model description: WorkloadDocumentUpdate 138
Table 72: Data model description: WorkloadDocumentTemplatelnp 138
Table 73: POST authorization token parameters 138
Table 74: POST authorization logout responses 138
Table 75: POST cluster registration responses 139
Table 76: POST cluster registration parameters \, 139
Table 77: GET cluster retrieve responses 139
Table 78: GET cluster retrieve (id) responses) 139
Table 79: GET cluster retrieve (id) parametérs « 139
Table 80: GET/POST intent responses) 140
Table 81: GET/POST intent parameters 140
Table 82: GET/POST intent responses 140
Table 83: POST create intent respon 140
Table 84: POST create intent par, 140
Table 85: GET intent type‘es 141
Table 86: PUT intent agtionges 141
Table 87: PUT intent a 141
Table 88: PUT intent's ffargen(id) action responses 141
Table 89: PUT intent! % d) action parameters 141
Table 90: GET documents list responses 142
Table 91: G ocuments list parameters 142
Table ridoad document responses 142
Ta (0) kload document parameters 142
Tabl GET workload instances responses 142
Table 95*GET workload instances parameters 142
Table 96: PUT workload instance delete responses 143
Table 97: PUT workload instance delete parameters 143
Table 98: GET workload instance manifests responses 143
Table 99: GET workload instance manifests parameters 143
Table 100: POST workload upload request responses 144
Table 101: POST workload upload request parameters 144
Table 102: GET workload responses 144
Table 103: GET workload parameters 144
Table 104: PUT workload responses 144
Table 105: PUT workload parameters 145
Document name: D.4:2 Advqnced NEMO platform & laboratory testing results. Page: 7 of 146
Initial version
Reference: D4.2 |Disseminction: |PU |Version: | 1.0 Status: FINAL

Table 106: PATCH workload responses

&8s NEMO

Table 107: PATCH workload parameters

Table 108: DELETE workload responses

Table 109: DELETE workload parameters

Table 110: POST workload document instance parameters
Table 111: POST workload document instance responses

145
145
145
145
146
146

Document name: Df‘;Q Advgnced NEMO platform & laboratory testing results. Page: 8 of 146
Initial version
Reference: D4.2 |Dissemination: [PU [Version: [1.0 [Status: [FINAL

&8s NEMO

List of Figures

Figure 1: NEMO code repository in Eclipse Research labs 17
Figure 2: NEMO Structure and Ownership 18
Figure 3: NEMO meta-OS docker registry 19
Figure 4: NEMO gitlab-ci.yml configuration 19
Figure 5: Kubernetes deployment manifest example (intent-based API) 20
Figure 6: Kubernetes ingress manifest example (intent-based API) 21
Figure 7: Image repository and policy configuration files 22
Figure 8: Example of the Deployment manifest 23
Figure 9: Example of MetalLB configuration) 24
Figure 10: Dev cluster nodes \ 24
Figure 11: Dev cluster namespaces ﬂ 26
Figure 12: Staging 1 cluster nodes 27
Figure 13: Staging 1 cluster namespaces 28
Figure 14: Staging 2 cluster nodes 28
Figure 15: Staging 2 cluster namespaces 29
Figure 16: Production cluster namespaces 31
Figure 17: NEMO project phases and main meta-OS version releases 31
Figure 18: Integration testing — Scenario template 32
Figure 19: NEMO Integration testing - Checklist template (E. le) 33
Figure 20: Default namespace 33
Figure 21: Kubernetes-dashboard namespace . Y 33
Figure 22: 12SM namespace ‘, 33
Figure 23: LinkerD namespace 33
Figure 24: NEMO Kernel namespace) 33
Figure 25: NEMO-net namespace N 33
Figure 26: NEMO-PPEF namespace 34
Figure 27: NEMO-sec namespace 34
Figure 28: NEMO-svc namespace 34
Figure 29: NEMO-workloads names, 34
Figure 30: The NEMO high-level ur 35
Figure 31: meta-OS (high-level architecture view) 35
Figure 32: 39
Figure 33: 39
Figure 34: tence Diagram 40
Figure 35:] 43
Figure 36: ej 1€ 43
Figure 37: eployment LCM and Security Controller 45
Figure38: In d API workload management 46
Fi based API intents management 46
Figu : MOCA Resource provisioning 46
Figure nnect to RabbitMQ Error! Bookmark not defined.
Figure 42:)Listen RabbitMQ Exchanges Error! Bookmark not defined.
Figure 43: Searching LCM Repository 47
Figure 44: LCM Dashboard Homepage 47
Figure 45: MOCA diagram 49
Figure 46: The MOCA deployment in the Onelab cluster 49
Figure 47: MOCA integration diagram 50
Figure 48: MOCA API authorization example 50
Figure 49: MOCA API 51
Figure 50: Setup region information through Event Server 52
Figure 51: Logs of inserting cluster information 52

D.4:2 Advqnced NEMO platform & laboratory testing results. Page: 9 of 146
Initial version

Reference: D4.2 |Disseminotion: |PU |Version: |].O Status: FINAL

Document name:

&8s NEMO

Figure 52: Example of the transaction logs of the cluster registration

Figure 53: Example of the transaction logs of the workload registration

Figure 54: Example of the transaction logs of the workload usage fee

Figure 55: Example of the transaction logs of the cluster reward

Figure 56: Example of the transaction logs of the NEMO fee paid by the cluster owner

Figure 57: Example of the transaction logs of the calculation of the workload usage fee

Figure 58: OneLab workload details

Figure 59: RabbitMQ logs of workload deployment

Figure 60: Workload registration to blockchain

Figure 61: User info for workload owner after registration

Figure 62: Accounting event for workload registration

Figure 63: Smart Contracts deployment though Helm chart
Figure 64: Logs of deployment of NemoFunds contracts 4
Figure 65: Registering NEMO OneLab Cluster regional info \

Figure 66: Response for successful registration
Figure 67: MOCA logs of the DApps component calculating the resource usage of a
Figure 68: The accounting events of the workload user
Figure 69: Workload user information

Figure 70: Details of the workload computation events

Figure 71: Cluster owner accounting events

Figure 72: Cluster owner user information

Figure 73: Scaled up deployment

Figure 74: MOCA logs for scaled workload usage

Figure 75: Comparison of workload usage results

Figure 76: The final Intent-based API architecture

Figure 77: State transitions and reporting events foyIntents deliv%ed for fulfilment. [9], supported also in
NEMO

Figure 78: The DeliverComputingWorkload intent definition in NEMO Intent-based API

Figure 79: Kubernetes Service Annotation

Figure 80: Process diagram for cluster rég

Figure 81: Cluster summary view on LCM G

Figure 82: Cluster registration page ondCM G

Figure 83: MOCA Cluster registrati onstration

Figure 84: MOCA Cluster registr;

Figure 85: MOCA sends *ste
Figure 86: Meta Orchestrat,) ster registration request

Figure 87: MOCA rece rchestrator response

Figure 88: Register cl

Figure 89: Update

Figure 90: MOC, g event for cluster registration

Figure 91: Progessdi m for workload registration

Figureg92. ss\diagram for workload deployment (provisioning)
Fi A ontrol sequence diagram - detailed view

Figu . NEMO workload registration through LCM Ul

Figure ‘MO registered workloads

Figure 96.JNEMO workload instance creation (workload deployment process) through LCM Ul
Figure 97: NEMO workload instances and their respective status in LCM Ul

Figure 98: NEMO workload validation

Figure 99: Workload deployment confirmation through RabbitMQ for the newly created workload instance _

Figure 100: Intent-based API endpoint where the scenario starts.

Figure 101: JSON published in RabbitMQ to be consume by MO.

Figure 102: Target cluster without the workload.

Figure 103: Deployment Controller log, receiving the workload petition and deploying it.

Figure 104: Workload already deployed in the cluster selected.

Figure 105: Deployment Controller (MO) final response.

59
61
62
62
62
63
66
66
66
66
67
67
67
68
68

68

69
69
70
70
71
71
71
71
73

74
75
77
80
81
81
82
82
83
83
83
83
84
84
86
87
88
90
90
91
91
91
92
93
93
94
94
94
94

D4.2 Advanced NEMO platform & laboratory testing results.

Document name: o X
Initial version

Page: 10 of 146

Reference: D4.2 |Disseminction: |PU |Version: |].O Status: FINAL

Figure 106:
Figure 107:
Figure 108:
Figure 109:
Figure 110:
Figure 111:
Figure 112:
Figure 113:
Figure 114:
Figure 115:
Figure 116:
Figure 117:
Figure 118:
Figure 119:
Figure 120:
Figure 121:
Figure 122:
Figure 123:
Figure 124:
Figure 125:
Figure 126:
Figure 127:
Figure 128:
Figure 129:
Figure 130:
Figure 131:
Figure 132:
Figure 133:
Figure 134:
Figure 135:
Figure 136:
Figure 137:
Figure 138:
Figure 139:
Figure 140:
Figure 141:
Figure 142:
Figure 143:
Figure 144:
Figure 145:
Figure 146:

Figur,

&8s NEMO

Create workload through Intent-based API with Ingress support

95

Workload Ingress annotations for integrating with Access Control

95

The Onelab KongPlugin resources

95

Workload Access Control service

96

Workload Access Control service details

96

Workload Access Control route

96

Workload Access Control route details

97

Workload oAuth?2.0 plugin

97

Workload oAuth?2.0 plugin details

98

Workload oAuth2.0 plugin (cont'd)

98

NEMO oAuth2.0 plugin test
oAuth2.0plugin test - expired or false token

oAuth2.0 plugin test - success 4
Locust experiments' setup \
Locust request and response statistics for standard oAuth2.0plugin

Locust request and response statistics for simplified oAuth?2.0 plugin
Locust charts for the oAuth2.0 plugin implementations
NEMO workload migration sequence diagram

Intent message reaches MO
Pods currently running in onelab

Workload ID inspection

Availability check

Migration message reaches source cluster’s IB.

Backup status

Restore message reaches target cluster’s

k3s cluster status before migration

k3s cluster status after migration com,

Description of workload in k3s cl,

OnelLab cluster after migratio

Process diagram for worklo

Three queries to obtain network stats collected by CMDT through Linkerd
Expected RabbitMQ message data

Workload — CPU usage

Workload - RAM us

Workload - te
Workload g iCHCY
Workload -‘En mption
Intent-APIl ciency metrics update
Cluste
Clu

rics published to RabbitMQ

99

99
100
101
102
102
103
104
105
106
106
106
107
107
107
107
107
108
108
110
112
113
114
114
114
115
115
116
117
117
117
117

Document name:

D.4:2 Advqnced NEMO platform & laboratory testing results. Page: 1 of 146
Initial version

Reference:

D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

List of Acronyms

&8s NEMO

Abbreviation / Description

acronym

AAA Authentication, Authorization, and Accounting
Al Artificial Intelligence

API Application Programming Interface

CD Continuous Delivery

CFDRL Cybersecure Federated Deep Reinforcement Learning
CLI Command Line Interface

CMDT Cybersecure Microservices’ Digital Twin

CI Continuous Integration

CLI Command-line Interface

CMDT Cybersecure Microservices’ Digital Twin
CNCF Cloud Native Computing Foundation
CPU Central Processing Unit

CRD Custom Resource Definition

DApps Distributed Applications

DLT Distributed Ledger Technology

Dx.y Deliverable number y belonging to WP x
E2E End-to-End

EC European Commission y
FL Federated Learning M\

GDPR General Data ProteCti n

GPU Graphics Processing

IBMC Intent-based Mig troller

IdM

IDS

IPFS

IoT

IT

K8s

‘_v.o cal Area Network
L Life-Cycle Manager
met. Meta-Operating System
ML Machine Learning
mNCC ~ Meta Network Cluster Controller
MO Meta-Orchestrator
MOCA Monetization and Consensus-based Accountability
MQTT Message Queuing Telemetry Transport
NAC NEMO Access Control
0OS Operating System
PPEF PRESS & Policy Enforcement Framework
Document name: ﬁ)}ﬁriilé/c;\r/scijonnced NEMO platform & laboratory testing results. Page: 12 of 146
Reference: D4.2 |Disseminotion: |PU |Version: |].O Status: FINAL

@ NEMO

RAM Random Access Memory
RBAC Role-Based Access Control
RL Reinforcement Learning

SDK Software Development Kit
SEE Secure Execution Environment
TRL Technology Readiness Level
V&V Validation & Verification
WAL Write-Ahead Logging

WP Work Package

YAML Yet Another Markup Language

Document name: Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 13 of 146
Initial version
Reference: D4.2 |Dissemination: [PU [Version: [1.0 [Status: [FINAL

&8s NEMO

Executive Summary

The document presents insights into the first integrated version of the NEMO meta-OS consisting of the
core components, the interfaces and the integration activities to this point. The work also involves the
creation of integration scenarios that guided the integration tests conducted in a laboratory setting,
utilizing the supporting CI/CD environment and tools and verified the system-level technical capacity
of the platform. Moreover, the deliverable provides a detailed presentation of the technical developments
conducted within WP4, detailing the NEMO meta-OS Service Management La technical
advancements and updates, including their associated interactions within NEMO meta-OS.“Bhe final

version of the NEMO meta-OS integrated platform is expected to be presented in D4.3 nced
NEMO Platform & Laboratory Testing Results. Final Version," which will be pro i second
quarter of 2025.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

Document name: Page: 14 of 146

&8s NEMO

1 Introduction

The NEMO meta-OS framework aims to support optimal operation of hyper-distributed applications
implemented as microservices in a highly distributed and diverse environment of cloud-edge and IoT
technologies. Therefore, the associated integration and subsequently the verification and validation of
such activities are not trivial and require a well-designed methodology and execution plan.

In D4.1 [2], a detailed description of the zero-ops CI/CD environment and the associate
guidelines were discussed. This document aims to shed light on the scenario-driven i
validation activities that aim to realise the first integrated version of the NEMO meta-OS
the Validation & Verification methodology that is presented. The main objective of thi

one hand to assure that NEMO specifications on interfaces and data models are cohérent ollowed
by the stemming technical developments and on the on the other to facilitat ccelerated the

necessary integration activities. Q

1.1 Purpose of the document

integration

aricements that fall into the
egration activities that are
document the associated
-OS framework.

The purpose of this document is twofold. First, it presents the tech
NEMO Service Management Layer and second to present in
driven by the NEMO Validation & Verification (V&Y) me
results which led to the production of the first integrated

1.2 Relation to other project work

The integration and testing strategy act as the
strongly connected with all the technica
in this document strongly relates to

iver of the development process. Thus, this document is
3 and WP4). Furthermore, the work presented
ivities, as it considers the technical specifications arising
from the requirements’ elicitation process architectural specifications. In addition, the platform
integrated view and current prototyp@implementations will be applied and tailored to each of the NEMO
trials within WP5. Last, but ast, the document reports technical options and prototype
functionalities, which are mea nd extended by third parties joining the project through the
Open Calls.

is organized as follows.

Section 2 proyi ation on the CI/CD environment of the NEMO meta-OS and on the Onel.ab
facilitiesyth for the integration activities of the first integrated version of the NEMO meta-OS.
,1 nts the high-level architecture view of the first integrated version of the NEMO meta-
OS higlhilighting the key integration activities for each functional layer and describes the components
ly or partially integrated.

Section 3 describes the overview, the architecture, the initial results and the interactions with other
components for the modules that are comprising the Service Management Layer of the NEMO meta-
OS platform, namely the intent-based Migration Controller (IBMC), the Plugin & Application Lifecycle
Manager (LCM), the Monetization and Consensus based Accountability (MOCA) and the Intent-based
SDK/API.

Section 4 sheds light into the integration activities that are conducted and materialized the first
integrated version of the NEMO meta-OS, following the scenario-driven V&V methodology.

Section 5 provides conclusions and insights in view of the final version of the NEMO meta-OS.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

Document name: Page: 15 of 146

&8s NEMO

Finally, Annex A & B provide a detailed description of the Intent-based API and MOCA interfaces and
data models.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: [PU [Version: [1.0 [Status: [FINAL

Document name: Page: 16 of 146

&8s NEMO

2 NEMO Integration, Validation & Verification
approach and tools

The first integrated NEMO meta-OS version that is described in this document capitalizes on the NEMO
CI/CD environment and tools. The associated CI/CD pipeline facilitates the agile integration and
validation approach that the NEMO adopts and is applied throughout the cloud and edge infrastructure
that is available and orchestrated by NEMO meta-OS. The NEMO meta-OS underlying4nfrastructure
resides in OneLab facilities. The following sections shed light both on the source code“tepository
configuration in Eclipse Gitlab and on the OneLab cloud and edge infrastructure tha ovided to
NEMO meta-OS. This environment is essential for conducting and subsequently ing the
integration and validation activities that resulted in the first integrated version of b@ -OS.

2.1 NEMO CI/CD Environment & Tools

2.1.1 Open Source repository

For the NEMO project, the GitLab CI/CD framework has been_se d organized in an Eclipse
Research Labs hosted instance of GitLab. The official GitLab g O is titled “NEMO Project”
and is accessible publicly at . The group
hosts the source code that is related to each thernatlc e eveloprnent as dlctated by the
NEMO meta-OS architecture. Each thematic entity is org subgroup of the NEMO GitLab

group, Figure 1.

& NEMO Project » ==
A im0 0 0
D

N O e e g e bt By ewy | —

s N St

Figure 1: NEMO code repository in Eclipse Research labs

Within each subgroup, the development activities are organized based on the implemented outcomes of
the relevant tasks. Moreover, for each subgroup an owner is assigned as illustrated in the Figure 2 below.

D.4:2 Advqnced NEMO platform & laboratory testing results. Page: 17 of 146
Initial version

Reference: D4.2 |Disseminction: |PU |Version: |].O Status: FINAL

Document name:

https://gitlab.eclipse.org/eclipse-research-labs/nemo-project

o - —
» \
2 et e Bl ‘-u--m- e
—— e .

B L s e d s - g 01— - . e |

» - -
O AN sl SR Nl
B Ve
RS
- e - lvw - V—e . Ceew e
il ¢ L S Swe S b o [o — = e
-y
' MM e L s Ve s L te wew .- W
Soes
VM . p—, aoe
I
2 O A o | it
bk b g s ety thyis oo | B
S Wvanss A - [Sy p— o= .
o
AL A P oo Apyiomnn (At tog oun | 8
SN
VAT S — o e Srodami e |
e b S Seldagfee
—
R A e s Smine S Laseie tiaiame | Sus
P - A e PSSPy — B — ‘e
. e MM e e W e Bt by e
NS Nemvnd AL e ediiliraaciay IO B AR BT A
M et Vs IO i - pserns s | tows
AMD IR ety Bt g
A Srirvisty S Seiuss ettty Mgt g s
e ST M O S N S O - e [s
D o ARSI | S Lttt o | W

Figurgf: MM and Ownership

2.1.2 NEMO Automated Dep, ent and Configuration

The NEMO CI/CD environme on Kubernetes' manifests for the deployment of the NEMO

cture. The documentation that concerns the NEMO CI/CD

integration steps th
within the NEMO re

The NEMO compon

!https://kubernetes.io/
2 https://www.docker.com/

Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 18 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

Document name:

&8s NEMO

@ NEMO Mets O3

L

Py | = ew—s—

© @ Q@ QO O
|
!

Figure 3: NE meta-OS dockg registry

Once a valid dockerfile® exists, a “.gitla
once the dockerfile exists for the NE
in the project root directory. Figure 4 b

¢ must be created in the project root directory. Then
mponent the “ gitlab-ci.yml” file must be created
resents the relevant configuration file that the NEMO

_— N

Figure 4: NEMO gitlab-ci.yml configuration

3 https://docs.docker.com/reference/dockerfile/

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 19 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

Document name:

&8s NEMO

In the above example the NEMO partners have to substitute the <component name> with the name of
their component. This configuration will do the following:

Upload the docker image nemometaos/<component_name>:latest tag every time a commit happens to
the main branch

Upload the docker image nemometaos/<component name>:<tag name> tag every time a new tag is
created.

For example, the creation of tag v0.1.1 on the nemometaos/intent-api uploaded to the docker registry is
nemometaos/intent-api:v0.1.1 image. The version of the component (tag) must be alwaygs ascending
integers.

In order to deploy the NEMO component to Kubernetes orchestrated environment the co e ner
can
cluster.

must provide all the necessary kubernetes configuration files (manifests) and test4th be
deployed and work in the OneLab cluster by using the provided credentials to acc

In order to pull images from the nemometaos account, every namespace in etes has the nemo-
regcred secret that must be used as imagePullSecrets in the component ment manifest as
indicated in the following example.

‘ Figure 5: Kubernetes deployment manifest example (intent-based API)
Moreover, the NEMO meta-OS provided integration guide described the Ingress configuration file that
concerns the communication of the outside world with the deployed component.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

Document name: Page: 20 of 146

&8s NEMO

.1 hane

storutcally crosted cotfCates via CaTT Aaseper Lats Dagcrppt

Your omox C areLt

V Figure 6: Kubernetes ingress manifest example (intent-based API)

Once steps mentioned above has been completed then the developed component is deployed
successf in the Kubernetes orchestrated environment in OnelLab. In NEMO, the Continuous
Deployment part of the pipeline is configured through the FLUX CD* which is a CNCF® adopted open-
source tool that enables GitOps for managing the configuration of a Kubernetes cluster. In a GitOps
pipeline, the desired state of the cluster is stored in a Git repository, and FLUX CD ensures that the
actual cluster state matches the desired state defined in the repository.

4 https://fluxcd.io/
5 https://encf.io/

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

Document name: Page: 21 of 146

&8s NEMO

Once the manifests are created and the component is verified that is working, the manifests must be
transferred to the FLUX CD repository. The repository is structured in folders as follows:

<cluster name> / <kubernetes namespace> / <component_name> / <component_subcomponents>

Each component must be deployed into the respective folder that matched their Kubernetes assigned
namespace. Sub dependencies (e.g. postgres®, redis’ etc) can be also setup as Helm charts®.

To automate the process an ImageRepository & ImagePolicy Custom Resource Definition (CRD) must
be committed alongside the component manifests as indicated by the following examples.

e jebeyanatiry

eyelivicy

%msitory and policy configuration files
uStteside inside the flux-system namespace, and the appropriate

fter that, the Deployment manifest of the component must upsert the
following annotatio ne that defines the newly created docker image as indicated in the
rectangular box ingki

® https://www.postgresql.org/
7 https://redis.io/
8 https://helm/sh/

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |].O Status: FINAL

Document name: Page: 22 of 146

&8s NEMO

Fi : Example of the Deployment manifest

After that, any ascen veksion, that is created from the component repository, will be
pushed to the dock s and set inside the deployment manifest (version bump) as commit
to the repository by

include ofie primary cluster designated for development workloads, two supporting clusters including a

lightweight cluster deployed on Raspberry Pis’ and finally the production cluster optimized for handling
tasks requiring Graphics Processing Unit (GPU) resources.

Each cluster consists of a series of nodes structured to ensure efficient operation. The master node is
responsible for core functionalities such as application scheduling, scaling, and overarching cluster

° https://www.raspberrypi.com/

Document name: D.4:2 Advqnced NEMO platform & laboratory testing results. Page: 23 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

&8s NEMO

management. Worker nodes are dedicated to executing tasks assigned by the master node, which include
deploying containers and hosting applications. In a production environment, multiple worker nodes are
typically utilized to provide redundancy and enhance service availability, thereby ensuring robust and
uninterrupted operations. Additionally, each cluster is configured with a load balancer, which distributes
incoming network traffic across the nodes to ensure optimal resource utilization, fault tolerance, and
high availability of the services.

Figure 9: Example of Metal L. B¥eonfiguratioh

2.2.1.1 NEMO Dev cluster

The development cluster consists of gfic eontrol=plahe node (k8smaster.onelab.eu) and five worker
nodes (k8sworker1-5.onelab.eu), all in a'Ready status. The Kubernetes specified versions ranging from
v1.28.7 to v1.28.15.

NAME STATUS ROLES VERSION
k8smaster.onelab.eu Ready control-plane v1.28.
k8sworkerl.onelab.eu Ready worker v1.28.

k8sworker2.onelab.eu Ready worker v1.28.
k8sworker3.onelab.eu Ready worker v1.28.
k8sworker4.onelab.eu Ready worker v1.28.
k8sworkerS.onelab.eu Ready worker v1.28.

Figure 10: Dev cluster nodes

Node name Specifications ‘ Public TP

CPU: 8 CPU Cores
k8smaster.onelab.eu Master 132.227.122.23
RAM: 16GB

10 https://metallb.universe.tf/

D.4..2 Advgnced NEMO platform & laboratory testing results. Page: 24 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

Document name:

&8s NEMO

Node name Node Specifications Public TP
Type

Storage: 140GB Ephemeral
OS-Image: Ubuntu 22.04.4 LTS
Kernel Version: 5.15.0-116-generic
Container-runtime: containerd://1.6.28
CPU: 16 CPU Cores

RAM: 16GB
Worker | gtorage: 120GB Ephemeral + 150GB Ceph
k8sworkerl.onelab.eu | and 132.227.122.66
Storage OS-Image: Ubuntu 22.04.4 LTS
Kernel Version: 5.15.0-116-generic
Container-runtime: containerd://1.6.28
CPU: 16 CPU Cores
RAM: 16GB
Worker | gtorage: 120GB Ephemeral + 150GB Ceph
k8sworker2.onelab.eu | and 132.227.122.24
Storage OS-Image: Ubuntu 22.04.4 LTS
Kernel Version: 5.15.0-116-generic
Container-runtime: containerd://1.6.28
CPU: 16 CPU Cores
RAM: 16GB
Worker | gtorage: 120GB Ephemeral + 150GB Ceph
k8sworker3.onelab.eu | and 132.227.122.59
Storage OS-Image: Ubuntu 22.04.4 LTS
Kernel Version: 5.15.0-116-generic
Container-runtime: containerd://1.6.28
CPU: 16 CPU Cores
RAM: 16GB
Worker | gtorage: 120GB Ephemeral + 150GB Ceph
k8sworker4.onelab.eu | and . 132.227.122.41
Storage OS-image: Ubuntu 22.04.4 LTS

Kernel Version: 5.15.0-116-generic
Container-runtime: containerd://1.6.28
CPU: 16 CPU Cores

RAM: 16GB RAM

Worker | g¢orage: 120GB Ephemeral + 150GB Ceph
k8sworker5.onelab.eu | and . 132.227.122.47
Storage OS-image: Ubuntu 22.04.4 LTS

Kernel Version: 5.15.0-116-generic

Container-runtime: containerd://1.6.28

Table 1: NEMO dev cluster (K8S)

D.4:2 Advgnced NEMO platform & laboratory testing results. Page: 25 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

Document name:

&8s NEMO

NAME STATUS
argo Active
cert-manager Active
default Active
flux-system Active
ingress-nginx Active
k3s-cluster Active
k3s-onelab Active
kube-flannel Active
kube-node-lease Active
kube-public Active
kube-system Active
kubernetes-dashboard Active
L2sm-system Active
linkerd Active
linkerd-viz Active
metallb-system Active
nemo-al Active
nemo~-demo Active
nemo-kernel Active
nemo-net Active
nemo-ppef Active
nemo-sec Active
nemo-svc Active
nemo-workloads Active
open-cluster-management Active
open-cluster-management-hub Active
raspberrypi Terminating
rasptest Active
reflector Active
rook-ceph Active
test-cluster Terminating

Figure 11: Dev cluster namespaces

2.2.1.2 Staging 1 cluster

The staging cluster (Staging 1) comprises one control-plane node (nemo-s1-master) and three worker
nodes (nemo-sl-workerl, nemo-sl-worker2, and nemo-sl-worker3), all reporting a Ready status,
running Kubernetes versions v1.31.3 (control-plane) and v1.30.7 (workers).

D.4..2 Advqnced NEMO platform & laboratory testing results. Page: 26 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

Document name:

&8s NEMO

NAME STATUS ROLES VERSION
nemo-sl-master Ready control-plane vl.31.3

nemo-sl-workerl Ready worker v1.30.7
nemo-sl-workerZ2 Ready worker v1.30.7
nemo-sl-worker3 Ready worker v1.30.7

Figure 12: Staging 1 cluster nodes

Node Name ‘ Node

Type ‘ Specifications

Public IP

CPU: 8 CPU Cores

RAM: 16GB

Storage: 120GB Ephemeral + 150GB Ceph
nemo-s1-master Master 132.227.122.104
OS Image: Ubuntu 22.04.3 LTS
Kernel Version: 5.15.0-78-generic
Container-runtime: containerd://1.7.12

CPU: 16 CPU Cores

RAM: 16GB
Worker | g¢orage: 120GB Ephemeral + 150GB Ceph
nemo-s1-workerl and 132.227.122.105
Storage OS Image: Ubuntu 22.04.3 LTS
Kernel Version: 5.15.0-78-generic
Container-runtime: containerd://1.7.12
CPU: 16 CPU Cores
RAM: 16GB
Worker | gtorage: 120GB Ephemeral + 150GB Ceph
nemo-s1-worker2 and 132.227.122.106
Storage OS Image: Ubuntu 22.04.3 LTS
Kernel Version: 5.15.0-78-generic
Container-runtime: containerd://1.7.12
CPU: 16 CPU Cores
RAM: 16GB
Worker | gtorage: 120GB Ephemeral + 150GB Ceph
nemo-s1-worker3 and 132.227.122.107
Storage OS Image: Ubuntu 22.04.3 LTS

Kernel Version: 5.15.0-78-generic

Container-runtime: containerd://1.7.12

Table 2: Staging 1 cluster (K8S)

D.4..2 Advgnced NEMO platform & laboratory testing results. Page: 27 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

Document name:

&8s NEMO

NAME STATUS
cert-manager Active
default Active
ingress-nginx Active
kube-flannel Active

kube-node-lease Active
kube-public Active
kube-system Active
kubernetes-dashboard Active
metallb-system Active
rook-ceph Active

Figure 13: Staging 1 cluster namespaces

2.2.1.3 Staging 2 cluster (K3S)

The Staging 2), deployed on Raspberry Pis 4, consists of one comntrol-planemnode (nemo-k3s-master) and
two worker nodes (nemo-k3s-node-1 and nemo-k3s‘mede-2),<alllin a” Ready state and running
Kubernetes version v1.30.6+k3s1.

NAME STATUS ROLES VERSION

nemo-k3s-master Ready control-plane,master v1.30.6+k3s1
nemo-k3s-node-1 Ready worker v1.30.6+k3s1
nemo-k3s-node-2 Ready worker v1.30.6+k3s1

Figure Id: Staging 2 cluster nodes

Node name ‘ Nl
Type

‘ Specifications ‘ Public TP

CPU: 4 CPU Cores

RAM: 8GB

Storage: 64GB External SSD
nemo-k3s-master Master 132.227.122.99
OS Image: Ubuntu 24.10

Kernel Version: 6.11.0-1004-raspi
Container-runtime: containerd://1.7.22-k3s1
CPU: 4 CPU Cores

RAM: 8GB

Worker | gtorage: 1TB External SSD
nemo-k3s-node-2 and 132.227.122.88
Storage OS Image: Ubuntu 24.10

Kernel Version: 6.11.0-1004-raspi

Container-runtime: containerd://1.7.22-k3s1

D.4..2 Advqnced NEMO platform & laboratory testing results. Page: 28 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

Document name:

&8s NEMO

Node name Node Specifications Public TP
Type

CPU: 4 CPU Cores

RAM: 8GB

Worker | gtorage: 64GB External SSD
nemo-k3s-node-3 and 132.227.122.91
Storage OS Image: Ubuntu 24.10

Kernel Version: 6.11.0-1004-raspi

Container-runtime: containerd://1.7.22-k3s1

Table 3: Staging 2 Cluster (K3S)

NAME STATUS
1875c8d8-d599-4869-ba2c-f7c4d1421833 Active
cert-manager Active
default Active
falco Active
flux-system Active
kube-node-lease Active
kube-public Active
kube-system Active
metallb-system Active
nemo-kernel Active
nemo-ppef Active
nemo-sec Active
nemo-svc Active
nemo-workloads Active
open-cluster-management Active
open-cluster-management-agent Active
open-cluster-management-agent-addon Active
reflector Active
rook-ceph Active

Figure 15: Staging 2 cluster namespaces

2.2.1.4 Production cluster (K8S)

The production cluster includes one control-plane node (nemo-prod-master), three worker nodes (nemo-
prod-workerl, nemo-prod-worker2, and nemo-prod-worker3), and one GPU-enabled worker node
(nemo-prod-gpu-worker), all in a Ready state and running Kubernetes version v1.30.7.

D.4..2 Advqnced NEMO platform & laboratory testing results. Page: 29 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

Document name:

&8s NEMO

Node Name Node Specifications Public IP
Type

CPU: 4 CPU Cores
RAM: 8GB
Storage: 80GB Ephemeral

nemo-prod-master | Master 132.227.122.42
OS Image: Ubuntu 22.04.3 LTS
Kernel Version: 5.15.0-78-generic
Container-runtime: containerd://1.7.12
CPU: 8 CPU Cores
RAM: 16GB
Worker
- - St : 250GB Eph 1+ 150GB Ceph
neme plr"d and orage premers P 13222712243
worker Storage OS Image: Ubuntu 22.04.3 LTS
Kernel Version: 5.15.0-78-generic
Container-runtime: containerd://1.7.12
CPU: 8 CPU Cores
RAM: 16GB
nemo-prod- ngker Storage: 120GB Ephemeral + 150GB Ceph | 132.227.122.11
an
worker2 Storage OS Image: Ubuntu 22.04.4 LTS 3
Kernel Version: 5.15.0-78-generic
Container-runtime: containerd://1.7.12
CPU: 8 CPU Cores
RAM: 16GB
Worker .
nemo-prod- d Storage: 120GB Ephemeral + 150GB Ceph 132.227.122.11
an
worker3 Storage OS Image: Ubuntu 22.04.2 LTS 4
Kernel Version: 5.15.0-78-generic
Container-runtime: containerd://1.7.12
CPU: 4 CPU Cores
RAM: 8GB
nemo-prod-gpu- ngker Storage: 120GB Ephemeral + 150GB Ceph | 132.227.122.11
an
worker Storage OS Image: Ubuntu 22.04.4 LTS 5

Kernel Version: 5.15.0-78-generic

Container-runtime: containerd://1.7.12

Table 4: Production Cluster (k8S)

Document name: D.4:2 Advgnced NEMO platform & laboratory testing results. Page: 30 of 146
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

&8s NEMO

NAME STATUS
cert-manager Active
default Active
ingress-nginx Active
kube-flannel Active
kube-node-lease Active

kube-public Active
kube-system Active
kubernetes-dashboard Active
metallb-system Active
rook-ceph Active

Figure 16: Production cluster namespaces

2.3 Integration & V&V Methodology & Plan

NEMO will follow an agile and incremental approach ‘offiteratiomycycles, grouped in 3 Phases, as
depicted in Figure 17.

Phase 1: Baseline (M1-M18). Provides the initial NEMO Proof of Concept. Phase 1 starts with system,
specification of the meta-OS Architecture and decomposition (WP1), design analysis, prototyping
(WP2-WP4), integration, testing and validation of all Key meta-OS components (WP4). The outcome
will be NEMO Ver. A and initial Lifing Labs, validation and the selection of the new consortium
members and new components from Open €all #P to be implemented with Phase 2.

Phase 2: Advance (M19-M30). Al NEMQ components are further developed (WP2-WP4), while
NEMO is expanded with new fundtionality added from the new consortium members accepted via Open
Call #1. Stronger integration with SG nétworks and MANO systems will be realized and validated in
Living Labs). The outdome*will be, NEMO Ver. B and Living Labs validation, along with new AloT
applications and servi¢es“from Open Call #2.

Phase 3: Mature (M30-M36), Focus on validation and optimization, and more realistic field conditions
testing and verifigationynot only from NEMO consortium but also from 3™ parties selected via Open
Call #2, increasing system TRL and preparing NEMO Ver. 1.0, validated in Living Labs. This phase
also strengthens actiyities related to engagement of open-source communities and relevant initiatives,
ensuringlaceessibility, sustainability and availability in open-source platforms.

<
w
=y

MO Phase 1: Baseline M18 phase 2: Advance M30 phase 3: Mature
€

R

cl/co
Proof of

I Concept

NEMO Ver. A

Engage
| Sustain

NEMO Ver. B NEMO Ver 1.0

I
|
I
I
|
I
|
I
I

R T J 0 B I

Project Start

Figure 17: NEMO project phases and main meta-OS version releases

D.4..2 Advqnced NEMO platform & laboratory testing results. Page: 31 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

Document name:

&8s NEMO

It should be underlined that each phase will follow an agile and incremental Continuous Integration/
Continuous Deployment/ Continuous Piloting (CI/CD/CP) approach, as explained in the previous
subsections. The proposed approach allows responding to developments in the state of the art and
emerging technology trends, as well as to continuously improve the results based on experimentation in
the field.

2.3.1.1 NEMO Scenario-driven integration and verification

This section elaborates on the NEMO scenario-driven approach that is adopted by the project as the
foundation of the integration activities that resulted into the first' integrated NEMO platf

The integration tests conducted are scenario-driven and each scenario covers a part of the ration
workflow that are defined and described in section 4. The specified tests might be uished in
bilateral, that is between component A and B, and/or system level cross-cutting ones:

The integration tests that are conducted follow the below presented structure. he scenario is
defined. For this, the Scenario template presented below is used to specify icular test. More
specifically, the Scenario template incorporates details that pertain to t of the tests, the
participating components, the requirements that are addressed, the featur t are tested, the steps that
are needed to be verified and finally the fest setup which provides de integration setting that
facilitates the test.

d in the scenario. Finally,
sessful are reported and fall into the
orkflows are presented in section
Checkpoints.

Then, the results are presented in detail as dictated by the step
the Checklist template is applied describing the successfd
specific integration scenario. The stemming results for all

Objective

Components

Requirements QY
alignment

Features to be

tested

Test setup

Steps 1.
2.
3.

Figure 18: Integration testing — Scenario template

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminotion: |PU |Version: |].O Status: FINAL

Document name: Page: 32 of 146

&8s NEMO

Checklist for Test1

Yes
1 Is a service created? v
2 Is the device registration completed successfully? v
3 Is the device sending its data successfully? v
4 Is the data stored in Database / Registry? v

No

Figure 19: NEMO Integration testing - Checklist template (Example)

2.4 NEMO OneLab infrastructure deployments

Comments

The latest stable releases of the developed NEMO meta-OS componéntsyare deployed in the OneLab
cluster as indicated in the following figures that depict the NEMO depleyments in each namespace.

Higurd20: Default namespace

Figure 25: NEMO-net namespace

Document name: D.4..2 Advgnced NEMO platform & laboratory testing results. Page: 33 of 146
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

Figure 26: NEMO-PPEF namespace

Figure 27: NEMO-sec namespace

L
S
I
r
L T e)
!
K
|
;

Figure28: NEMO-svc namespace

The deployed workloads tesiden aWworkloads’ specific namespace as indicated in the figure below.

i
'

Figure 29: NEMO-workloads namespace

2.5 NEMO Integrated Platform (Ver. 1)

The NEMO meta-OS platform concerns a composition of a big set of technical tools residing in every
functional layer of its architecture spanning from the infrastructure layer to the service management
layer of the platform.

Figure 30 below illustrates the functional view of the NEMO meta-OS architecture which was
introduced in D1.2 [3]. The functional view is segregated in three horizontal layers namely the

D.4..2 Advqnced NEMO platform & laboratory testing results. Page: 34 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

Document name:

&8s NEMO

Infrastructure Management layer, the NEMO Kernel and the NEMO Service Management layer,
including three NEMO cross-cutting functions (verticals) namely, the PPEF, the CFDRL and the
Cybersecurity & Federated Access Control.

. i
o - *
: 3 -
c M 3 G
: 3 . :
i B ,
z £ o
_E } Cytersocrs g .t,
g) Morosenscee :
:" L'_: . 860 ¢ - Digtl Twin 2 :
-
= g -
. - -
e : ; ’ S ; !2

=3 Foderated Meta-Network Cluster Cortrober | =] ?
e g § 2 o
4o = §
= ¥) G CHEIVON T TP

50 EogaCars Nenwers & Fewoures Marmgerrt § 3
Tany Edge / P Edgm Dwvenm Now £dg0 | Camtaw Cloust

Figure 30: The NEMO high- v

The first integrated NEMO meta-OS platform materiali

components.

The continuous lines indicate that t mponents are fully integrated meaning that the
exposed interfaces, the respective data the provided functionality that is included in their
latest stable release has been tested in ihe N OneLab infrastructure and the communication between

the participating modules has bee essfully verified.

o gF
. 5 i
A & i
= . ~ .
H ? PRgn A Apphcations L Rmcyule Marmge et Atosusiehi § g g
= N
2 - L
£ e
§ s rety rcrestaor i %
-:- ~ Cyvonecus ;
- ' tort-Dased 9 iert Sasedt \-"-.".'w‘rfm 4 by
\? — Mgraoon Mgration VPR Teen g ":
.'.-' = Cortrober £ rrirooment C O I g , ’
- { ¢

-
S ® - %
; ; Feoderated Metd Networs Custer Cor § '; i
P B gg
2
Toy Bage / P Fage Devin Naar Datge 7 Conmret Clonat
D Fully mtegrated
~ 1 Partially imegrated
—
Figure 31: The Ist integrated version of NEMO meta-OS (high-level architecture view)
Document name: D4.2 Advanced NEMO platform & laboratory testing results. Page: 35 of 146

Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

&8s NEMO

One the other hand the dashed-line square rectangles indicate that the integration has been partially
achieved. This means that for the particular components the integration within NEMO meta-OS has
been achieved either through integration tests that were conducted in the context of partners premises
or indicates that the integration was limited due to implementation activities that are currently ongoing.

The results of the integration tests that were executed in view of the first release of the NEMO meta-OS
are presented in detail in section 4 of the deliverable. The main goal of the current release is to
demonstrate a good level of system-level coherence, verifying its readiness for the final integration
activities that will be performed to produce the final version of the NEMO meta-OS.

2.5.1 Meta-OS functionality in NEMO v1

This section aims to provide an overview of the conducted integration activities{ and, provided
functionality of the current development state of the NEMO meta-OS components for ea¢h functional
layer of the NEMO meta-OS architecture.

2.5.1.1 NEMO Infrastructure Management

The mNCC is the NEMO components that provides an abstraction layer ofithe undetlying infrastructure
network level. The mNCC delivers network orchestration overseeing néfWwerki€ennectivity management
guaranteeing multi-cluster and multi-domain connectivity. The incofperated connectivity adaptors that
provide for data translation between different network protocols{Moxe specifically, the L2S-M enables
dynamic creation and management of isolated virtual networks'within meta-OS operator clusters, the
5G adaptor, supports deterministic communications through,TSNbridges with 5G LAN solutions and
the SDN-based connectivity adaptor, supports network\ management. Finally, mNCC component
facilitates the monitoring of the communication$ between pods deployed in each cluster’s nodes. The
collected data are communicated through RabbitMQ.

Regarding integration activities, mNCC/0ffered Munctionality is currently being finalized and initial
integration activities with on premise“deployments have been achieved and documented. The latest
development updates of the component are presented in D2.3 [4] that will be submitted on M28.

2.5.1.2 NEMO Kernel

The NEMO components assogiatedwithgthe Kernel layer are the MO, the CMDT, the IBMC and the
SEE as illustrated in thie NEMOmeta-OS8 architecture view figures above. The core functionalities
offered from the NEMIO Kernclieomponents have been presented, demonstrated and documented in the
present document through scenario driven integration activities (section 4). More specifically, the MO
facilitates the workload deployment and migration processes. For the latter the IBMC supports the
workload migration, proeess ensuring efficient resource use, improved scalability, and continuous
service availability during migrations. The CMDT provides enhanced workload monitoring related
measukemenits 1o theplatform, which are being consumed through the RabbitMQ, by the NEMO meta-
OS«€emponents.Finally, the SEE (Kubernetes cluster) which is a solution for creating secure execution
envirenments for critical and dynamic services, ensuring robust, secure, and efficient operations, is
availableiand integrated within NEMO meta-OS ecosystem. The NEMO user (workload provider) can
formulate’a request through the Service Management layer asking for their services to be deployed in
SEE. This is indicated by the proper configuration of workloads’ intents.

2.5.1.3 NEMO Service Management

The NEMO Service Management layer components’ functional updates are presented in detail in section
3 of the present document. More specifically, section 3 provides insights on components’ architecture,
provided functionality offered by the respective modules, their communication interfaces and associated
data models, initial results and plans in view of the final version of the platform.

D.4..2 Advgnced NEMO platform & laboratory testing results. Page: 36 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

Document name:

&8s NEMO

The provided functionality from the NEMO Service Management layer components’ namely, IBMC,
MOCA, LCM and Intent-based API can be considered almost completed. The final releases of these
components will be documented in D4.3 [1], due on M33, which will also describe the final integrated
version of the NEMO meta-OS.

2.5.1.4 NEMO Cross-cutting Functions

With reference to the crosscutting functions, Al is vertically present in the metaOS architecture. The
CFDRL component provides capacity of learning decision-making models capitalizing on the data
collected by the NEMO meta-OS monitoring tool procedures offered by PPEF, CMDT a NCC. The
integration between the monitoring tools and CFDRL has been achieved allowing NEMO wortkload and
cluster-level measurements to be digested by the CFDRL through RabbitMQ. The Al-a ision
making that concern the workload optimal deployment and migration processes wi ted in
view of the final version of the NEMO meta-OS, as it requires the verified integrati e participating
components for these workflows which has been achieved in the framework of this v n (first) and is
documented in section 4. The learning procedure in CFDRL combines two @mentary learning
paradigms: Federated Learning (FL) and Reinforcement Learning (RL). Ingaddi FDRL to address
privacy preservation challenges introduced FREDY (Federated Resilience anced with Differential
Privacy) [5] which integrates Flower with Private Aggregation of % sembles (PATE) [6] to
bolster privacy features. For the first release of the NEMO) e CFDRL component is
considered as partially integrated.

Regarding Security in the NEMO meta-OS is built on the
(NAC) allows the implementation of a comprehen51 a

the perimeter, to external entities. NAC provi
are targeting NEMO meta-OS and offers

4.

The NEMO meta-OS communi layer is based on RabbitMQ, a message broker enabling
communication and synchroniz among distributed systems and applications. It acts as an
intermediary, facilitating se change while offering essential capabilities like message
routing, queuing, an

Finally, the PPEF co e itates service and resource monitoring for the NEMO meta-OS at both
workload and cluste e PPEF concerns the metrics collection from the deployed monitoring
tools, the evalu b en the collected measurements and the intents’ expectation targets and the
communicatio hishinformation within NEMO meta-OS (through RabbitMQ). The integration of the
PPEF withi eta-OS has been achieved and presented in section 4.4.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: FINAL

Document name: Page: 37 of 146

&8s NEMO

3 NEMO Service Management Layer updates

This section reports the latest specifications and design options for the NEMO components of the
Service Management layer in the NEMO architecture. These components provide a middleware between
core NEMO functionality and workloads, but also end users. They support ZeroOps principles and
expose interfaces to external entities (services or users). Moreover, the supported services include
Lifecycle Management and DLT-based accountability of workload or infrastructure usage and

collectively contribute to NEMO openness and adoption by third parties, referring to ication or
infrastructure owners, as well as developing entities.
3.1 Intent-based Migration Controller A %

3.1.1 Overview

The Intent-based Migration Controller (IBMC) serves as a key component withi EMO ecosystem,
it is designed to facilitate the migration of workloads across the IoT, Ed d Cloud Continuum. By

employing intent-based networking concepts, the IBMC ensures ient resource use, improved
scalability, and continuous service availability during migrations. oach enables the IBMC to

interpret and execute high-level migration intents, which supp ility needed to manage the

complexities of the meta-OS environment effectively.
3.1.2 Architecture
Figure 32 illustrates a simplified high-level architecture of thg,components underneath the Development

View of the IBMC.

ibmc-controller: Is in charge of h
communication is performed by ma
correct messages needed for each migrati

g munications with other components. This
ifferent RabbitMQ'' queues and reading/delivering the

Velero'?: Each Velero operation i ined as’'a custom resource using a Kubernetes Custom Resource

Definition (CRD) and is stored in elero also includes controllers responsible for processing these
custom resources to handle b S, s, and related tasks. This allows to backup or restore every
resource in a cluster, with i electively filter by resource type, namespace and/or label.

S3 Storage™: Dedic t re the backups created by Velero, it’s a key element for the migration
process. The S3 buc cated in the main NEMO cluster and every other cluster has access to it to
allow the possibili ving backups from one cluster to another.

04

! http://www.rabbitmg.com/
12 https://velero.io/
13 https://aws.amazon.com/s3/

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |].O Status: FINAL

Document name: Page: 38 of 146

workload between two different clusters is represented,
the migration is triggered.

ibme-controller
|
backp / restore
Velero Controber

K8s api

]
@«» ko

&8s NEMO

N

Figure 32: IBMC Simplified Architecture \

Figure 33 shows a more complete architecture of the IBMC. I

Trigoer *ww

[—‘ WRabbit Vi

the migration process of a

i'sElay communication sequence since

cmsun Message (2) c&u. mz
Rene-controder —J '-— S -controler

) }
0-0

\ etcd

M‘IW tes?one

2 : i e
Backup p Sackp

Velero Controder o Velero

i
-0

2 ks

Figure 33: IBMC Complete Architecture

Document name:

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version

Page:

39 of 146

Reference:

D4.2 |Dissemination: [PU [Version: [1.0

Status:

FINAL

3.1.3 Interaction with other NEMO components

Send intent contanng the workioas 1D
and avadabdty requmement (Step 1)

Workload Migration Sequence Diagram

Reterve workioad sfonmanon (Shepl)

-

AW N =
P
-
=
=
o
£
1=
=~
AR
Q
I
o
—-
%)
oS}
—
=
(¢}
2
<
[oN
(¢}
e
—
Q
<

the intent. If X<Y, the w
5. The MO sends a mess

Deoxde on depioyment or mageation acton (Step J)

Compare chster avarlababty vabue (Sep 4)

Send migraton message to IBVC (Shep §)

Updare workioad status (Sep 7)

migration is triggered.

Creste workioad backup (Siep 6)

&g NEMO

TRy

.y
R 7

3

Resiore backup n tarpet dusier (Step 7)

¢ Intent-API (deployed or not deployed).
cluster, then a migration action is triggered.

itMQ queue to the IBMC containing the workload ID and a

target cluster thag ility requirement.
6. The IBMC t of the workload associated resources and uploads it to the S3
MinlO'* inst in the OneLab main cluster.
7. The IBMC d the resources and restores them in the target cluster. After this, the
d from the source cluster.
8. s a message to the Intent-API updating the workload status, specifying the
it has been deployed.
1 https://min.io/
Document name: I?]ﬁr.iil/ii\r/;:onnced NEMO platform & laboratory testing results. Page: 40 of 146
Reference: D4.2 |Disseminotion: |PU |Version: |].O Status: FINAL

&8s NEMO

3.1.3.1 Meta-Orchestrator (MO)

The meta-Orchestrator (MO) plays a central role in the IBMC's workflow. When the MO receives a
migration intent, it makes a placement decision based on cluster availability. This decision is sent to the
IBMC and contains the target cluster for the migration.

3.1.3.2 Intent-Based API

The Intent-Based API stores all the information related to the workloads deployed. It is responsible of
creating and sending the intents that trigger the migration of a workload.

When a migration is successfully completed, a message from the IBMC is sent to the Intent-Based API
to update the workload status, including the new cluster where it has been deployed.

3.1.4 Initial results

The sections below provide a summary of the results generated through the utilizat@ponent.

3.1.4.1 Standalone results

An initial test of the standalone IBMC component was conducted in t n environment. The
experiment's setup included both OneLab clusters (the main cluster t 3s cluster) with Velero
pre-installed and configured. Both clusters had access to the Min e deployed in the main

cluster. Additionally, a workload was already deployed in the maimcl s part of the preconditions.
To simulate a migration scenario, a migration trigger was ma nt.“This triggered the migration
process, moving the workload from the main cluster to th clustét. Upon completion, the migration
was successful, with the workload fully deployed in the K and’removed from the main cluster.

3.1.4.2 Integration results

An end-to-end test was conducted involvi IntentzBased API, the Meta-Orchestrator and IBMC.
The initial conditions were the same of the prev eriment, with the same objective of migrating a
workload from the main cluster to the

In this experiment, the process starts with ent-Based API posting an intent to RabbitMQ, which
is read by the Meta-Orchestrator. eta-Orchestrator interprets the intent and verifies whether the
workload ID specified in the inte Iready deployed in any cluster. To obtain this information, the
Meta-Orchestrator sends a b the Intent-Based API in order to retrieve the workload's
deployment status.
If the workload is alrea

ed in a cluster, the Meta-Orchestrator compares the availability value
of that cluster to the ied in the intent. If the availability value of the current cluster is lower,
the Meta-Orche ates a migration by posting a message to the RabbitMQ queue corresponding
to the cluster w orkload is currently deployed. This message contains the information detailing

beimigrated (workload ID), the cluster where it is deployed and a new target cluster
e ayailability requirements.

When IBMC controller receives this message, the migration process proceeds as in the initial
resulting in the workload being successfully deployed in the K3s cluster and removed from
the main cluster.

15 https://min.io/

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |].O Status: final

Document name: Page: 41 of 146

&8s NEMO

3.1.5 Conclusion and roadmap

The Intent-Based Migration Controller (IBMC) within the meta-OS framework represents a major leap
forward for the NEMO platform, enabling smooth workload migration across the loT-to-Edge-to-Cloud
continuum while sustaining a dynamic balance within the meta-OS environment.

Looking forward, the IBMC roadmap emphasizes ongoing refinement and adaptation to meet emerging
needs and technological advancements within the meta-OS landscape. Planned enhancements and future
directions are outlined to ensure the IBMC continues to lead in migration capabilities as the meta-
Operating System ecosystem evolves.

3.2 Plugin & Applications Lifecycle Manager

Overview The Plugin & Applications Lifecycle Manager (LCM) is a versatile mechani igned for
unified, just-in-time management of plugins and applications throughout the NEMOecosystem. Serving
as the bridge between NEMO users and the ecosystem, the LCM enables seam eployment of
workloads, such as services, applications, and plugins, within the NEMO envi t. It also supports
over-the-air updates and bug fixes, ensuring the system remains up to date

While workloads are running on the NEMO meta-OS, an event-driy, anism monitors critical
performance-related events. Additionally, a security controller ove urity events, notifies users
of detected anomalies, and implements mitigation measures againsti cyber threats. The LCM’s
user interface will integrate with other NEMO components, g Intent-based API, PPEF,
MOCA and CMDT, to provide a comprehensive and coliesive u i

perience. The interfaces offered
include user profiles, workload management and mon ty monitoring, and historical
analysis tailored to the user's role.

3.2.1 Architecture

The LCM comprises of a set of subc
Controller, Event-based Response, L

The LCM high-level architecture of NE
Figure 35.

n ely the LCM CD, LCM Controller, Security
sitory and LCM Dashboard.

-OS is depicted in the development view diagram in

LCM CD is based on ARGO to manage NEMO workloads provided by NEMO partners
or NEMO Open Call pa‘ici s workloads in S3 bucket container.
LCM Controller is nism that facilitates communication between LCM submodules and

the NEMO ecosyste ndpoints for sending and receiving information.
Security Controller runtime security monitoring of NEMO workloads, notifying both users
and relevant N onents of detected events.

e module is designed to implement automated actions in response to events
input or detected by other NEMO components.

LCM Dashboard serves as the gateway between end-users and the NEMO meta-OS ecosystem,
granting privileged users access to manage their workloads and monitor both performance and security.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 42 of 146

&8s NEMO

] I

Meta-OS Provider Meta-OS Consumer Meta-OS Partner
Lfecycle Manager Dashboard > - Orctwaty Mo
5 Lfecycie Manager Secunty Controfler
§ - . PPEr
2 o —of LM CD P g
- ' -
-) Everd based Response e
- " et MOCA
LCM Controsier
d - CMOT
LCM Repossory

Figure 35: LCM Architecture
3.2.2 Lifecycle Manager

322.1 LCMCD

LCM CD, which corresponds to LCM Contintious Deployment, automates workloads deployment by
ensuring that the state of applications in a Kubernetes ¢luster matches the configurations stored in Git
repositories. Its key strength lies in the déclarativeyapproach to application definition, enabling users to
define Kubernetes manifests in a verston=eontrolled format.

Figure 36 provides a description of the payleadtransmitted while a plugin is being deployed.

Figure 36: Plugin Deployment

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 43 of 146

&8s NEMO

LCM CD is based on ArgoCD tool and provides features like automated synchronization, rollback
options, and support for multi-environment deployments. With its user-friendly web interface and
seamless Kubernetes integration, LCM CD simplifies the deployment lifecycle, enhancing
collaboration, traceability, and overall efficiency.

3.2.2.2 LCM Controller

The LCM Controller contains the logic of the LCM component and interacts with the internal
subcomponents as well as the other NEMO components to retrieve information in real-time,and feed the
user interface while stores meaningful information in the LCM storage for keeping the histosical status
and performance for further analysis. The LCM controller includes functions to subscribe.and‘€ensume
data from relevant RabbitMQ channels, API endpoints to communicate with other components and
functions to store and retrieve data from the storage repository. As the LCM Controller interacts with
the other NEMO components more details on functions and APIs used will be repdrtedyn Section 4.2.3.

3.2.2.3 LCM Repository

LCM Repository uses Elasticsearch'® for storing, searching, and analysingydata provided by various
NEMO components like Intent-based API, PPEF, MOCA and CMDT , Flasticsearch provides fast search
responses and comes with extensive REST APIs for storing and searching the data. Stored data include
the status and lifecycle of the workloads, security events detected, workload performance and resource
usage.

3.2.2.4 Security Controller

The Security Controller caters for security monitoring at runtime regarding NEMO workloads and alerts
both the user and relevant NEMO components|for detected events. This component aims to complement
the security validation checks made befote deployment of workloads into NEMO clusters, such as
scanning processes in the Continuougintegration®™vorkflow or in the images registries, as these
validation checks take place prior to the comntainets’ deployment and even block some deployments as a
result of failing the security assessment. TheySecurity Controller aims to identify security incidents
which take place at containers’ ruritime and’may refer either to events at the system call level or to
vulnerabilities arising from software)dependencies, known vulnerabilities and insufficient security
configurations.

Falco'” framework wias sélectedyas the foundation for the development of the plugin that is available
through Security Controller< Ealco is an open-source, CNCF adopted, runtime security platform that
allows you to detectiand tespond to suspicious behavior within containers and applications. Falco is
deployed in OneEabypremises, as illustrated in section 2.4.

Falco continwously, monitors the deployed containers and generates security auditing events that are
digestethby the Security Controller and are handled by the LCM. The Security Controller is responsible
forfthe filtrationfof security events and subsequently their mapping with deployed workloads that
correspond to a NEMO user.

3.2.2.5 1.CM Visualization

LCM visualization is the main interface of NEMO project providing the necessary interfaces for each
NEMO user role to manage workloads and resources in NEMO meta-OS. The LCM visualizations aim
to provide interfaces for seamless user experience with NEMO ecosystem available to experts and less
experienced users. The target is to provide the relevant information for workloads and resources
lifecycle, usage, and security in a compact format at different levels of detail (workload, resources, user,

16 https://elastic.co/
17 https://www.falcoframework.com/

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 44 of 146

&8s NEMO

system). Indicative screenshots are presented in section 3.2.4 containing the initial results of the LCM
component based on the implementation and integration progress at the current phase.

3.2.3 Interaction with other NEMO components
The LCM component is deployed in the NEMO Onelab infrastructure, as shown in Figure 37.

Figure 37: Onelab deployment LCM and Security Coatiol1CK

The LCM interacts with Intent-based API and MOCA components through relevant API endpoints and
consumes data from PPEF, CMDT and Security Controller throughRabbitMQ exchanges. This section
describes in more detail the functions and data models used to mteract with’other NEMO components.
Figure 38 depicts the data model of the Intent-based API endpoints'which are used for the management
of the workloads.

GET /workload/
{
name: string,
version: string,

}

POST /workload/
{
name: string,
version: string,

schema: {},
typel)stéing (ehart) 4
in#entda Array Vi1,

}

POST /workload/uplead/
{
file: file (tgz helm chart),
name: string,
version: string
}
POST fworkload/{id}/template/
{
release name: string,
namespace: string,
values override:{},
include crds:boolean,
is_upgrade:boolean,
no_hooks:boolean,
ingress_enabled:boolean,
intents: [
{
intent type,
service start time,
service end time,
targets: |
{

D.4..2 Advgnced NEMO platform & laboratory testing results. Page: 45 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name:

&8s NEMO

target name,
target condition,
target value range

}

GET /workload/instance/
{
instance_id: string

}

Figure 38: Intent-based API workload management

Figure 39 presents the data model of the Intent-based API endpoints which are used fox t ement
of the intents.

GET /intent/
{
intent id:string
}
POST /intent/template/
{
instance_id: string,
intent type: string,
service start time: string,
service end time: string,
targets: [
{

string,
; ring

Figure 40 presents the data m CA API for the resources provisioning.

GET /moca/cluster/zet
{
}

POST /moca/clu er
{

ster name: string,

pus: number,
memory: number,
storage: number,
availability: string,
green_energy: string,
cost: string,

cpu_base rate: number,
memory base rate: number

Figure 40: MOCA Resource provisioning

Additionally, the LCM subscribes to RabbitMQ exchanges to retrieve real-time data from PPEF,
Security Controller and CMDT.

In summary, the retrieved information includes cluster usage metrics from PPEF (CPU, RAM, and
storage, etc.), security events identified by the Security Controller (both system-wide and per workload),
and data from CMDT, which currently encompasses the number of workload replicas and network

Df‘;Q Advgnced NEMO platform & laboratory testing results. Page: 46 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name:

&g NEMO

related information including workload’s response times. Finally, data consumed from RabbitMQ or
API endpoints are stored in LCM internal repository for historical overview and detailed analysis.

Figure 41 depicts functions to retrieve data to/from LCM Repository.

GET /cluster/{id}/data/
{
timestamp_ from: string,
timestamp_ to: string,
cluster id: string
}
GET /workload instance/{id}/data
{
timestamp_ from: string,
timestamp_ to: string,
workload id: string
}
GET /workload security events/{id}/data

{
timestamp_ from: string,
timestamp_ to: string,
workload id: string

}

GET /workload CMDT/{id}/data
{
timestamp_ from: string,
timestamp_ to: string,
workload id: string

Figure 41: Searching LCM 0s1t0ry

3.2.4 Initial results
The LCM provides interfaces for differ as Plugin Monitoring, Workload Monitoring,
Intent Management and Resource Pr ing. re 42 illustrates the homepage of LCM dashboard.

Plugin Menitoring Workload Monitoring Intent Management Resource Provisioning
Default Defsult - Default Y Def=ult

Sanage Pluging Manage Workloads m Manage Hesouroes

Figure 42: LCM Dashboard Homepage

Plugin Monitoring offers a CI/CD process and lifecycle monitoring for NEMO plugins and applications.
Currently, the user is able to deploy a plugin and manage already deployed plugins while monitoring
basic lifecycle parameters like versioning and activity are also available.

The Workload Monitoring section includes functionality to manage workloads in their whole lifecycle,
from registering to Intent-based API to deployment and running several instances according to the user
role and credentials. More details on the LCM UI available views are presented in Section 4 which
concerns the NEMO scenario-driven integration and verification results.

D.4:2 Advqnced NEMO platform & laboratory testing results. Page: 47 of 146
Initial version

Reference: D4.2 |Disseminotion: |PU |Version: |].O Status: final

Document name:

&8s NEMO

3.2.5 Conclusion and roadmap

The achievements of LCM component, considering developments that are deployed in OneLab
environment, fully integrated in NEMO meta-OS include:

e Workload management and monitoring

e Resources provisioning and monitoring

¢ Plugin deployment and lifecycle management
e Security/vulnerability scanning and monitoring

Towards the NEMO final version release, our goal is to deliver a comprehensive tool for m: ing and
monitoring workload and resource lifecycle. This tool will consolidate information from yani MO
components into a streamlined format, ensuring a seamless experience for both exp %l—expert
users within the NEMO ecosystem.

3.3 Monetization and Consensus-based Accountability

3.3.1 Overview

The Monetization and Consensus-based Accountability (MOCA) co enables the fair and secure
monetization of the NEMO platform among the different users ' (consumers or providers).
MOCA creates a distributed, tamper-resistant blockchain base between different operators and
verticals to track provenance and enforce secure negotiati tion of resources such as through
dits” - the accountability unit of the

ra

es (clusters, workloads).
e The acco ss takes into consideration the amount of the offered resources, the region
deman, frastructure type to properly calculate the costs and rewards of each user.

33, r%
M mp of the following components:

. vent Server that allows other components and users to retrieve information on the details
of the registered resources (clusters and workloads) and the accounting events.

e The Decentralized Applications (DApps), which contain the accounting logic and store
information like the IPFS links to the cluster configuration files and the NEMO resources’
information.

o The Smart Contracts component (private Quorum blockchain), where DApps are deployed,
and the transactions and calculations take place.

o An IPFS network, where the cluster configuration files are stored. Like Quorum, IPFS offers
immutability to the data and detection of malicious attacks.

=

t

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |].O Status: final

Document name: Page: 48 of 146

&8s NEMO

Since the full description of the sub-components' functionality is provided in deliverable D4.1, the basic
workflow will be presented, briefly. Figure 43 shows the sub-components that are part of the MOCA
component. The Event Server is the main communication interface with the rest of the MOCA
components which is responsible for handling (a) the requests for the cluster registration, (b) the
communication with the /PFS for storing the cluster configuration files and (c) the exposure of the
functionality of the DApps through REST API endpoints. The MOCA in periodic basis computes the
resource usage of the deployed workloads and the usability status of the registered clusters. These
periodic tasks communicate with the DApps and update appropriately the users’ information held by the
Event Server. A closer inspection on the calculation details is delivered in Section 3.3.4 and a full
example of the workflow in Section 4.

MOCA

NEMO Simart

Figure 43%MOCA diagram

3.3.3 Interaction with other NEMO S@mpogtents
The MOCA component is deployedgdn the NEMO OneLab premises, as shown in Figure 44.

Figure 44: The MOCA deployment in the Onelab cluster

Figureg4S demonstrates the interactions of MOCA with the rest of the NEMO components. More
spe€ifically, M@CA integrates directly with the NEMO Intent APl and NEMO RabbitMQ. Other
NEMO€omponents (LCM, PPEF, CMDT) can go through the Intent API, to access the MOCA Event
Server endpoints. The RabbitMQ integration establishes the connection between MOCA and the NEMO
Meta-Orchestrator. During the cluster registration, the two components exchange though the RabbitMQ
the appropriate information to complete the action.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 49 of 146

i
2

Figure 45: MOCA integration diagram

sends a
of Figure 46.

Note: All the endpoints require to be authorized with the use of an authorization heads

The following sections give a more thorough look on the MOCA API and the capabiliti% 4
token provided from the NEMO Access Control plugin, as shown in the demonstra f

Avalabie asrvesrations

ol Aay Lapay

MOCA API authorization example

3.3.3.1 MOCA AP

This section presents A API that is exposed and is available in openAPI format (
). Figure 47, illustrates the relevant contents. The complete

functionality wfhe MOCA API (endpoints and data models) is described in detail in ANNEX

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 50 of 146

https://intent-api.nemo.onelab.eu/moca/api/v1/swagger/
https://intent-api.nemo.onelab.eu/moca/api/v1/swagger/

&g NEMO

NEMO MOCA APt bt

B wrmrting v — — .

v

m Vi— iote —— . - . @

Bl v e opiste e rpscn sume - @

L — e

[R —————— ——

P s < 8|

rwea lshes eVl Sty

BESTH v vman pvtimet bon_sovom —— o — . — -

rewna Ashen Mg refrieve

g s .

e saer o

PN e v o _—— .

el

BN weviamt cotiimm - - .

a o — | -t W - — .

et loed t pevpuleers

Bl e comperarione i vt - - &

~—
: MOCA API

3.3.4 Initial result
MOCA uses various smart contra perform the accounting of the NEMO platform. In first version
four contracts are suppo the (a) NemoTokenEstimation, (b) NemoFunds, (c)
InfrastructureOwnerM&de, ProviderModel. In the following sections, a more thorough
analysis of their fu & e presented to better understand the calculation mechanism.
3.3.4.1 Regional C
The contact N timation is responsible for supplying the costs for all the registered clusters
to NEMO. u be categorized by whether it is in high/low demand, and its usability status in
te available’ resources (CPU, RAM, Network bandwidth, etc.). The contract stores that
in n lows for the retrieval of the details via the MOCA Event Server with the use of the

/nemo~token_estimation_setup endpoint (Figure 48).

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 51 of 146

Figure 48: Setup rggiominformatiqu through Event Server

An example of a successful cluster registering infommation is shown in Figure 49.

Figure 49: Logs of inserting cluster information

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 52 of 146

Table 5 shows the details of the contract.

&8s NEMO

NemoTokenEstimationSetupContract.sol

pragma solidity 70.8.0;

contract NemoTokenEstimationSetupContract ({

address private owner;

struct RegionInfo {
bool isSet;
bool highDemand;
uint256 highDemandCost;
uint256 regionalCpuCosts;

uint256 regionalMemoryCosts;

mapping (string => RegionInfo) public regionalInfoMapping;
modifier onlyOwner () f{

require (msg.sender == owner, "Caller is not owner!");
}
modifier validateRegionInfo (

uint256 regionLength,

uint256 highDemandLength,

uint256 _highDemandCost,

uint256 regionalCpuCostsLength,

uint256 regionalMemoryCostsLength

require (

_regionLength == highDemandLength &&
_regionLength == highDemandCost &&
_regionLength == regionalCpuCostsLength &&
_regionLength == regionalMemoryCostsLength,

"Input array lengths must match"

constructor () {
_owner = msg.sender;

}

function initializeNemoTokenEstimationInfo (
string[] memory region,
bool[] memory highDemand,
uint256[] memory highDemandCost,
uint256[] memory regionalCpuCosts,

uint256[] memory regionalMemoryCosts

public
onlyOwner

validateRegionInfo (

Document name: D.4:2 Advqnced NEMO platform & laboratory testing results. Page: 53 of 146
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |].O Status: final

&8s NEMO

_region.length,
_highDemand.length,
_highDemandCost.length,
_regionalCpuCosts.length,

_regionalMemoryCosts.length

for (uint256 i = 0; i < region.length; i++) {
regionalInfoMapping[region[i]] = RegionInfo ({
isSet: true,
highDemand: highDemand[i],
highDemandCost: highDemandCost[i],
regionalCpuCosts: regionalCpuCosts[i],

regionalMemoryCosts: regionalMemoryCosts([i]

function isRegionSet(string memory region) public view returns (bool) {
RegionInfo memory info = regionalInfoMapping[region];
return info.isSet;
}
function getRegionInfo (
string memory _region
) public view returns (bool, uint256, uint256, uint256) {
RegionInfo storage info = regionallnfoMapping[region];
return (
info.highDemand,
info.highDemandCost,
info.regionalCpuCosts,

info.regionalMemoryCosts

w

he NemoTokenEstimation smart contract details

3342 Han sactions of clusters and workflows
The NemoF; ct is responsible for keeping track of registered clusters and workflows, storing
and i e transactions taking place and tracking the tokens available for every entity. When the

usa workload is computed, the NemoFunds contract makes sure to appropriately change the
balance@f.the actors involved (clusters, workloads, NEMO platform). Then, the changes become known
to the Event Server though the use of events. Table 6 shows the details of the contract.

NemoFunds.sol

pragma solidity 70.8.0;

contract NemoFunds ({
address public owner;
uint256 public nemoTotalBalance;

uint256 public nemoActionsCounter;

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |].O Status: final

Document name: Page: 54 of 146

&8s NEMO

uint256 public nemoRate;

enum TransactionType {
deposit,
withdrawal

}

struct NemoBalanceInfo {
string customerId;
uint256 customerTokens;

TransactionType transactionType;

mapping (uint256 => NemoBalancelInfo) public nemoBalanceActions;
mapping (string => uint256) public customersBalance;

mapping (string => bool) public registeredCustomers;

event CustomerRegistered (
string customerId,
string customerType,
uint256 balance,
uint256 nemoBalanceActionId
) i
event DepositTokens (
string customerId,
uint256 tokens,
uint256 balance,
uint256 nemoBalanceActionId
) i
event WithdrawTokens (
string customerId,
uint256 tokens,
uint256 balance,
uint256 nemoBalanceActionId

)i

modifier onlyOwner () f{
require (msg.sender == owner, "Caller is not the owner");

’

constructor () {
nemoTotalBalance = 10000000000;
nemoActionsCounter = 0;

nemoRate = 20000;

function isCustomerRegistered (
string memory customerId
) public view returns (bool) ({

return registeredCustomers|[customerId];

D4.2 Advanced NEMO platform & laboratory testing results.

Document name: o X
Initial version

Page: 55 of 146

Reference: D4.2 |Disseminction: |PU |Version: |].O Status: final

&8s NEMO

function registerCustomer (
string memory customerlId,
string memory _identifier
) public {
require (
!isCustomerRegistered (customerId),
"The customer is already registered!"

)i

if (
keccak256 (abi.encode(identifier)) ==

keccak256 (abi.encode ("ServiceProvider"))

registerServiceProvider (customerId) ;
} else if (
keccak256 (abi.encode(identifier)) ==

keccak256 (abi.encode ("InfrastructureOwner"))

registerInfrastructureOwner (customerlId);

function registerServiceProvider (string memory customerId) private {
registeredCustomers[customerId] = true;
customersBalance [customerId] = 500000000;
nemoBalanceActions[nemoActionsCounter] = NemoBalanceInfo ({
customerId: customerId,
customerTokens: customersBalance[customerId],
transactionType: TransactionType.deposit

}) i

emit CustomerRegistered (
customerId,
"service",
customersBalance[customerId],
nemoActionsCounter

)i

nemoActionsCounter++;

function registerInfrastructureOwner (string memory customerId) private {

registeredCustomers[customerId] = true;
customersBalance [customerId] = 1000000000;
nemoBalanceActions[nemoActionsCounter] = NemoBalanceInfo ({
customerId: customerId,
customerTokens: customersBalance[customerId],

transactionType: TransactionType.deposit

Document name: D.4:2 Advqnced NEMO platform & laboratory testing results. Page: 56 of 146
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |].O Status: final

&8s NEMO

}) i

emit CustomerRegistered (
customerlId,
"infrastructure",
customersBalance[customerId],
nemoActionsCounter

)i

nemoActionsCounter++;

function depositTokens (string memory customerId,

require (nemoTotalBalance > tokens, "NEMO is o

nemoTotalBalance tokens;

customersBalance[customerId] += tokens;

nemoBalanceActions[nemoActionsCounter]

customerId: customerId,
customerTokens:
transactionType: TransactionType.deposit

}) i

emit DepositTokens (
customerId,
tokens,
customersBalance [customerId],
nemoActionsCounter

)i

nemoActionsCounter++;

function withdrawTokens (string memory customerId,
require (
customersBalance[customerId] > tokens,

"Customer is out of funds!!!"

)i

customersBalance[customerId] tokens;

nemoTotalBalance += tokens;

nemoBalanceActions[nemoActionsCounter]

customerId: customerId,
customerTokens:
transactionType: TransactionType.deposit

}) i

uint256 tokens) public {

ut of funds!!!");

NemoBalanceInfo ({

customersBalance [customerId],

uint256 tokens) public {

NemoBalanceInfo ({

customersBalance [customerId],

Document name: D.4:2 Advqnced NEMO platform & laboratory testing results. Page: 57 of 146
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |].O Status: final

&8s NEMO

emit WithdrawTokens (
customerId,
tokens,
customersBalance[customerId],
nemoActionsCounter

)i

nemoActionsCounter++;

function nemoPayment (string memory customerId) public {
require (
customersBalance [customerId] > nemoRate,

"Customer is out of funds!!!"

)i

uint256 nemoPaymentFee = (customersBalance[customerId] * nemoRate) /
10 ** 8;
customersBalance[customerId] -= nemoPaymentFee;

nemoTotalBalance += nemoPaymentFee;

nemoBalanceActions [nemoActionsCounter] = NemoBalanceInfo ({
customerId: customerId,
customerTokens: customersBalance[customerId],

transactionType: TransactionType.withdrawal

}) i

emit WithdrawTokens (
customerId,
nemoPaymentFee,
customersBalance [customerId],

nemoActionsCounter

)i

nemoActionsCounter++;

function getNemoBalance () public view returns (uint256) {

return nemoTotalBalance;

function makeTransaction (
string memory serviceld,
string memory clusterId,
uint256 tokens

) public {

withdrawTokens (serviceld, tokens);

D4.2 Advanced NEMO platform & laboratory testing results. Page: 58 of 146

Document name: o X
Initial version

Reference: D4.2 |Disseminction: |PU |Version: |].O Status: final

&8s NEMO

depositTokens (clusterId, _tokens);

nemoPayment (clusterId) ;

Table 6: The NemoFunds smart contract details

3.3.4.3 Cluster provision

The contract InfrastructureOwnerModel is responsible for registering the clusters joining NEMO. It
communicates with the NemoFunds contract to complete the registration. The process gprovides the
cluster with 10 tokens as an initialization sum. An example of the result of the registration of the cluster
from the blockchain’s side can be seen in Figure 50, where the transaction logs show the sugeessful
registration of the cluster. The logs show that an event was emitted (the CustomerRegisteredieyent), to
inform the Event Server of the action. It should be noted here that all the arithmetic yalues presented are
normalized (multiplied with a constant variable 10%), since Solidity'®, the programminglanguage for the
smart contacts, cannot handle float values. Therefore, all the values are multipliedywith a big enough
constant to avoid issues with any float numbers.

Figure 50: Bgample of the transaction logs of the cluster registration

A more thorough example ofthowithe'€luster registration is performed will be presented in Section 4 of
the deliverable. Tabley7 shows'the details of the contract.

InfrastructureOwneEMedelisol

pragma solidity 70.8.0;

import "./NemoFunds.sol";

contract InfrastructureOwnerModel ({

NemoFunds public nemoFunds;

struct InfrastructureInfo ({
string cluster name;
uint256 totalCpu;
uint256 totalMemory;
uint256 totalDisk;

string ipfsLink;

18 https://soliditylang.org/

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 59 of 146

&8s NEMO

string availability;
string green energy;
string cost;

uint256 cpu base rate;

uint256 memory base rate;

mapping (string => InfrastructurelInfo) infrastructurelnfo;
constructor (address nemoFundsAddress) {

nemoFunds = NemoFunds (nemoFundsAddress) ;

function register(

string memory clusterId,

InfrastructureInfo memory info
) public {

require (

!'nemoFunds.isCustomerRegistered (clusterId),
"The customer is already registered!"

) i

string memory _identifier = "InfrastructureOwner";
nemoFunds.registerCustomer (clusterId, identifier);
infrastructureInfo[clusterId] = InfrastructureInfo ({
cluster_name: info.cluster_name,
totalCpu: info.totalCpu,
totalMemory: info.totalMemory,
totalDisk: info.totalDisk,
ipfsLink: info.ipfsLink,
availability: info.availability,
green energy: info.green energy,
cost: info.cost,
cpu_base rate: info.cpu base rate,

memory_base_rate: info.memory base_ rate

function getInfrastructurelInfo (

string memory clusterId

public

view

returns (
string memory,
uint256,
uint256,
uint256,
string memory,

string memory,

Document name: D.4:2 Advqnced NEMO platform & laboratory testing results. Page: 60 of 146
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |].O Status: final

&8s NEMO

require (

)i

return (

info

info

info.
info.

info.

info.
info.
info.
info.

info.

string memory,
string memory,
uint256,
uint256

nemoFunds.isCustomerRegistered (clusterId),

"The customer is not registered!"

InfrastructureInfo storage info

cluster name,
totalCpu,

totalMemory,

.totalDisk,

.ipfslink,

availability,
green_energy,
cost,

cpu_base rate,

memory base rate

infrastructureInfo[clusterId];

3.3.44 Workload provision andfusage calculation

Table 7: The YafastructureOwnerModel smart contract

The ServiceProviderModel coftract 1s€sponsible for registering the NEMO workloads joining NEMO
and calculating their impact omithe eluster'resources. It communicates with the NemoFunds contract to
complete the registration andithe'Wemo TokenEstimation to retrieve the costs associated with the regions.
The registration procgss provides the workload with 5 tokens as an initialization sum.

An example tranSactionyis ‘available in Figure 51, where its logs show the emitted event with the

registration’s iffox

Figure 51: Example of the transaction logs of the workload registration

Document name: D.4..2 Advgnced NEMO platform & laboratory testing results. Page: 61 of 146
Initial version
Reference: D4.2 |Dissemination: |Version: |].O Status: final

&8s NEMO

The main function of the contract is to calculate the tokens that will be charged to the workload for the
usage it made in a period, for example, 5 minutes. The next figures show the logs for the usage
calculation, and it will be explained how these reflect on the involved actors (clusters, running
workloads). Figure 52 shows how the balance of the workload was affected. In this simple example, for
its usage of the cluster resources, it was charged 0,00001 tokens.

Figure 52: Example of the transaction logs of the workldadfisage fee

These tokens are credited to the cluster, as shown in Figure 53+

Figute, 53%Bxample of the transaction logs of the cluster reward

Figure 54 shows, thata 0.02% rate is rewarded to the NEMO account from the cluster’s balance to reward
NEMO with a small payment for the services provided.

Figure 54: Example of the transaction logs of the NEMO fee paid by the cluster owner

D.4..2 Advqnced NEMO platform & laboratory testing results. Page: 62 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name:

&8s NEMO

Finally, Figure 55 gives a detailed account on the computation details (how many resources were used
to justify the cost). In this example, the workload was charged 0,00001 tokens for utilizing 5,6
milliecycles of CPU and 0,235 MB RAM for a 5-minute time window that the metrics were collected.

The token calculations are examining the usage of the workload in question against the total resource
usage of the deployment cluster, in order to reflect the real-time pressure on the cluster. Additionally, if
the workload has exceeded the base resource limitations of the region it is assigned to, then that will be
added to the total cost.

A more thorough example of how the workload usage calculation is performed end-to-end through
MOCA will be presented in the next section.

Figure 55: Example of the transaction leg8f the calculation of the workload usage fee

Table 8 shows the details of the contract.

ServiceProviderModel.sol

pragma solidity 70.8.0;
import "./NemoTokenEstimationSetupContract.sol";

import "./NemoFunds.sol";

contract ServiceProviderModel ({
NemoTokenEstimationSetupContract public nemoTokenEstimationSetup;
NemoFunds public nemoFunds;

address public owner;

struct ServiceMetrics {
string serviceld;
string clusterId;
string region;
uint256 cpuUsage;
uint256 memoryUsage;
uint256 clusterCpuUsage;

uint256 clusterMemoryUsage;

event ServiceComputeTokens (
string serviceld,
string clusterId,
uint256 cpu,

uint256 ram,

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 63 of 146

&8s NEMO

uint256 tokens
)i

mapping (string => string[]) public ServiceProviderWorkflows;

constructor (
address nemoTokenEstimationSetupContractAddress,

address nemoFundsAddress

nemoTokenEstimationSetup = NemoTokenEstimationSetupContract (
_nemoTokenEstimationSetupContractAddress
)i

nemoFunds = NemoFunds (nemoFundsAddress) ;

modifier checkRegistration(string memory serviceId) {
require (
!'nemoFunds.isCustomerRegistered (serviceld),

"The customer is already registered!"

modifier checkRegionData (string memory region) {
require (
nemoTokenEstimationSetup.isRegionSet (region),

"Data for region must be set before calling this function."

function register(
string memory servicelId
) public checkRegistration (serviceId) {
string memory _identifier = "ServiceProvider";

nemoFunds.registerCustomer (serviceld, identifier);

function computeCredits (
ServiceMetrics memory metrics
) public checkRegionData(metrics.region) {
require (
nemoFunds.isCustomerRegistered(metrics.clusterId),
"The cluster is not registered!"
) i
require (
nemoFunds.isCustomerRegistered(metrics.serviceld),

"The service is not registered!"

Document name: D.4:2 Advqnced NEMO platform & laboratory testing results. Page: 64 of 146
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |].O Status: final

&8s NEMO

bool _highDemand,
uint256 _highDemandCost,
uint256 regionalCpuCosts,

uint256 _regionalMemoryCosts

) = nemoTokenEstimationSetup.getRegionInfo(metrics.region);

string memory _serviceld = metrics.serviceld;
string memory clusterId = metrics.clusterId;

uint256 tokens = 0;

uint256 cpuTokens;
uint256 cpuUsage = metrics.cpuUsage * 10 ** 3;

uint256 maxCpuUsage = metrics.clusterCpuUsage;

uint256 _ramTokens;
uint256 ramUsage = metrics.memoryUsage * 10 ** 3;

uint256 maxRamUsage = metrics.clusterMemoryUsage;

if (_cpuUsage > regionalCpuCosts) {
_cpuTokens = (_cpuUsage / maxCpuUsage) * 10 **

} else {

_cpuTokens 0;

if (_ramUsage > _regionalMemoryCosts) {

_ramTokens = (_ramUsage / maxRamUsage) * 10 **
} else {

_ramTokens = 0;
}
_tokens = cpuTokens + _ramTokens;

if (_highDemand) {

_tokens += highDemandCost;

_tokens = tokens / 1000;

8;

8;

nemoFunds .makeTransaction(serviceId, clusterId, tokens);

emit ServiceComputeTokens (
_serviceld,
_clusterlId,
_cpuUsage,
_ramUsage,

_tokens

Document name: D.4:2 Advqnced NEMO platform & laboratory testing results. Page: 65 of 146
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |].O Status: final

&8s NEMO

Table 8: The ServiceProviderModel smart contract

3.3.4.5 Accountability Service

In this section we present an example of how MOCA computes the tokens that will be charged for the
resource usage of the deployment cluster end-to-end. For this example, we will use a workload deployed
in the NEMO OneLab cluster (Figure 56).

ech

1-911F7
Ve -Ra 14 re

Figure 56: OneLab workload detai$

This workload is first registered though the Intent-BasedyAPI andiis deployed to the cluster through the
Meta Orchestrator. After the successful deployment an eventyis published in the NEMO RabbitMQ
which is consumed by MOCA. (Figure 57 shows for th€ workload of Figure 56 that the Meta
Orchestrator has sent the payload which informg“of the successful deployment.) Then, MOCA registers
in the appropriate smart contract for the specific workload (for more details refer to section 3.3.4.4
workload provision and usage calculatigh) (Figure 58) and give the owner of the workload five

initialization tokens (Figure 59). Ahe \registration event can also be viewed though the
/moca/api/vl/accounting events endpoint (Eigure)60).

Bigure 57: RabbitMQ logs of workload deployment

Figure 58: Workload registration to blockchain

Figure 59: User info for workload owner after registration

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 66 of 146

&8s NEMO

Figure 60: Accounting event for workload registration

At this point, it should be noted that the smart contracts are already deployed in the blogkchain and ready
to be executed when the right conditions are triggered (for example the registratiofhof\a workload that
was examined before). The deployment of the contracts, at this point of the deyelepment, is performed
with the help of the MOCA Helm chart available here"”. Figure 61 shows the Kubetnetes jobs that are
created to perform the deployment of the contracts and Figure 62 gives amexample’of the logs for the
successful deployment of one of the contracts (in this case NemoFundsys

Figure 61: Smart Contgacts\d@@ployment though Helm chart

Figure 62: Logs of deployment of NemoFunds contracts

19 https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-service-management/monetization-and-

consensus-based-accountability/moca/-/tree/main/bc-network?ref type=heads

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 67 of 146

https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-service-management/monetization-and-consensus-based-accountability/moca/-/tree/main/bc-network?ref_type=heads

&8s NEMO

In this example we are using the region “eu-west-1" of the Onelab cluster, in which we are going to
register the region as high demand and charge a fee of 0.01 tokens and set the base utilization limit as
0.05417 milliseconds for the CPU and 0.2345 MBs for the memory. If these limits are exceeded, the
workload will be charged accordingly (more details on the costing mechanism can be found in section
3.3.4.4 workload provision and usage calculation). Figure 63 and Figure 64 show the successful
registration of the region to the blockchain though MOCA.

nemo token estimation setup

B eene tohen eutination sete senn taban sntisetion seteg create A »

P pmmter o amtent Vype

P i atian |

Figure 63: isterillg NEMO OneLab Cluster regional info

L

[T

~
\\ Figure 64: Response for successful registration

s in'place automatic mechanisms that communicate with the PPEF component to acquire the
age of all the deployed workloads in periodic intervals (e.g. 5 minutes). Figure 65 shows the
CA, which has received from the appropriate smart contract the event with the calculation

resour
logs of
details.

Figure 65: MOCA logs of the DApps component calculating the resource usage of a NEMO workload

Querying the endpoint for the accounting events activity (Figure 66), as the workload owner, we notice
that the events hold information like the type of the transaction (deposit or withdraw), the workload ID

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 68 of 146

&8s NEMO

(customer_id), the tokens the workload was charged depending on its usage (tokens), the state of the
balance for the workload (balance), the ID of the accounting event as it is registered in the smart contract
(balance_action_id) and the timestamp of the registration of the accounting event.

Querying the endpoint available for the u
accordingly for the previous transacti

4
v Figure 67: Workload user information

The de f the amount of resources used and the tokens charged, are also available through the
/moca/api’vl/workload computations endpoint (Figure 68).

D.4:2 Advgnced NEMO platform & laboratory testing results. Page: 69 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name:

&8s NEMO

e e

Figure 68: Details of the workload computation events

If we also query the accounting events as the cluster owner, we can

ents of depositing the
payment to the owner are registered (Figure 69).

-

Figure 69: Cluster owner accounting events

T &oint for the user’s information, we can also check that the balance has been updated
appro ly (Figure 70).

D.4:2 Advgnced NEMO platform & laboratory testing results. Page: 70 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name:

&8s NEMO

Figure 70: Cluster owner user information

Now, we will examine the case of scaling up an already deployed workload from one to three pods
(Figure 71).

Figure 71: Scaled up deployment

Since the deployment has been scaled up, its usage has increased, as well as the tokens it
Figure 72 shows the logs of MOCA when receiving the token computation for the wo

Figure 72: MOCA logs for scaled workload usage
The last two entries in the /moca/api/vi/workload computations endpointShow the computations before
and after the workload scale, respectively. Both the memory and the C v reased and, as a result,
the usage cost has a slight increase, as well (Figure 73).

v Figure 73: Comparison of workload usage results

1 d roadmap

elopments that materialized the first release of MOCA as part of the 1% integrated
the NEMO meta-OS are summarized below.

development of smart contracts that facilitate the accounting process supporting several
business models.

e The integration with the Service Management Layer components as part of the 1% integrated
version of the NEMO meta-OS, namely the Intent-Based API and PPEF

e The development of MOCA to handle the different types of users and the calculations and
updates made in a private blockchain network.

The associated results were presented in this section verified the functional competence of the
component. Although majority of the required functionality and the corresponding integration with the
meta-OS platform has already been achieved, the final release of the MOCA component in view of the
final version of the NEMO meta-OS, concern the following activities:

D.4:2 Advqnced NEMO platform & laboratory testing results. Page: 71 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name:

&8s NEMO

e Finalization of the accounting approach used in the smart contracts, by enriching the
calculations.

e Provision of a management mechanism for adding, updating and deleting smart contracts via
APL

e Enhancements on the provided functionalities to further enrich the information available for the
NEMO users and their resources.

e Integration with the final version of the NEMO meta-OS.

3.4 Intent-based SDK/API

3.4.1 Overview
The NEMO Intent-based Application Programming Interface (IB-API) and Software nt Kit
(SDK) act as the programmatic interface of NEMO to external users and/or servicest It\ex s NEMO
functionality, as delivered by NEMO components, through RESTful calls to t also supports
configuration and for clusters and workloads in a declarative manner as intent-based

orchestration of network and computing loads. The Intent-based API store orkloads and their
instances as API objects, which can be queried and managed via HTTP, Is. The Intent-based API
can be accessed programmatically by NEMO users, as well as graphi iatthe LCM UL

3.4.2 Architecture

The Intent-based API follows a modular architecture for ‘deliveri main capabilities:

e Intent-based management that is consistent for bo rk and computing tasks
e Workload management and discovery
e NEMO functionalities exposure
a
T

The final version of the architecture fea fied design and is depicted in Figure 74.

li
The IB-API services delivering inten chestration include:

e NEMO Intent Manager
e NEMO Intent Validator
e NEMO Intent Collector
The IB-API services resgons'

NEMO Workloa

ad management and delivery include:

e o o o o
17
2
=
<N
[t
&
=
()]
5
o
<
g
an
o
&
o
o
@}
e
o
=
@
=
-t
2]

P

5

. o

o
"z
esl

ollector
functionality exposure is directly offered through the Intent-based API Server,
i STful endpoints for the supported operations.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |].O Status: final

Document name: Page: 72 of 146

L R S uService
NEMO NEMO ‘ JNE”O“
provider ponsumed partne l I
— V- —--—-—-——+ - ——— 4 —— ~
| | | intent-based AP | IR
. > | |
—X- - 2 “1__ creale.get, __| MOCA
Inent-based AP1 Server dolote cluster : ‘
regster, L . |
M. m.m notify user query workioad notity user o —
iNEMO Inteett Manager registor, got interts NEMO Workicad Manager | Access
 I— — e Control
| I OﬂJ | RBAC access
valdate | » valdate 10 workioads
4 intert roport NEMO Rogistry :"—‘ Workioads 1
NEMO intent | 00 I
Vaddator ‘ . ¢
NEMO Intent | i / / [ordoaden |
Collector L/ f
¢ 5 _y
 otecAhub@mectdata 00

3.4.2.1 NEMO Intent Manager

considering increased human inte
architectures. Intent-Driven Mana
interaction of involved stake perators havmg been alleviated from the burden of having
technical awareness of fiet 1 re, their policies, etc. [7]. 3GPP [8] defines an intent as an
expression of the d e system used to describe an intended network or service. In other
words, an intent defi e ’s expectations in a declarative yet concise manner in order for it to be
understandable b ns and machines.

Adopting this EMO we extend intent-driven management to both network and computing
workloads’ t. Within the Intent-based API, the NEMO Intent Manager subcomponent
und : ents’ -both for network and computing- lifecycle management within the NEMO

ubcomponent provides backend logic for the management of the NEMO intents,
follo 3GPP TS 28 312 V18.3.0 (2024-03) [9]. Based on this technical specification, an intent has

e tis typically understandable by humans and also needs to be interpreted by the machine
without any ambiguity.

e [t expresses in a declarative manner on the desired result (“what”) and not the way it will be
achieved (“how”). So, the intent includes metrics and target values, allowing alternative
options to achieve them.

e The expectations expressed by an intent is agnostic to the underlying system implementation,
technology and infrastructure.

Following TS 28.312, the NEMO Intent Manager subcomponent supports state management of the
intents as per their lifecycle, as defined in Figure 75, borrowed from [9].

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 73 of 146

@ NEMO

{ [ry State transitions
. . i 1. Intent creation
feasibl .
e feasible 2. Feasibility check
3. Check feasibility outcomes
4, Intent updated
5. Fulfilment
6. Intent suspe or event
occurs duging fu ent
7. Intent ed
8. Fulfjliment
[10“10' 9. E r fulfillment
e 10, nt ted
Figure 75: State transitions and reporting events for Intents delivered for , supported also in NEMO
So far, five intents have been defined and integrated intoythe Int d , namely:
e Cloud continuum (network-oriented intent)
e Deliver computing workload (computingleriented ifiten
e Secure execution (computing-orientedfintent)
e Federated learning (computing-orientedi
e Energy carbon efficiency (comptiti ntent)
Indicatively, the “Deliver computing intent is depicted in Figure 76.
P
- id: 1

user label: DeliverComputingWorkload
intent preemption capability: 'FALSE'
observation period: 60
intent_expectations:
- id: 1
expectation id: '1'
expectation verb: ENSURE
expectation object:
id: 1
object type: NEMO WORKLOAD
object instance: b6a77b9%a-4cb2-41e9-953b-0a0b569c8cdb
context selectivity: null
object contexts: []
expectation targets:
- id: 1
target_name: cpuUsage
target_condition: IS_LESS_ THAN
target value range: '20'
target contexts: []
- id: 2

D4.2 Advanced NEMO platform & laboratory testing results.

Document name: L : Page: 74 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

&8s NEMO

target name: ramUsage

target_condition: IS_LESS THAN

target value range: '200'

target contexts: []

expectation contexts: []
intent report reference:

id: 1

intent fulfilment report:

id: 1

intent fulfilment info:

fulfilment status: FULFILLED

not fulfilled state: COMPLIANT

not fulfilled reasons: []
expectation_fulfilment results:

- expectation_fulfilment_ info:
fulfilment status: FULFILLED
not fulfilled state: COMPLIANT
not fulfilled reasons: []

expectation_id: 1
target_ fulfilment results:
- target: 1
target_achieved value: '0.307'
target_fulfilment info:
fulfilment status: FULFILLED
not fulfilled state: COMPLIANT
not fulfilled reasons: []
- target: 2
target_achieved value: '1.2'
target_fulfilment info:
fulfilment status: FULFILLED
not fulfilled state: COMPLIANT
not fulfilled reasons: []
intent feasibility check report:

id: 1

feasibility check type: FEASIBLE

infeasibility reason: null

last updated time: '2024-11-05T15:10:07.949361Z"'

intent contexts: []

ure 76: The DeliverComputingWorkload intent definition in NEMO Intent-based API

34.2.2 MO Intent Validator

The NEMO Intent Validator is performing a set of validation checks on intents that are newly defined
or desired to be updated. It interacts with the Intent Manager enhancing its provided functionality
offering validation checks which include:

o Schema validation: This process ensures that data conforms to a defined structure or format,
typically described in a schema. A schema acts as a blueprint, specifying the expected data
types, required fields, and constraints for a dataset. The schema used for intents follows 3GPP
TS 28.312 V18.3.0 specification, so the component ensures that the required fields are provided,
within the acceptable value range, as well as in acceptable combinations (e.g. compatible target
names, intent types and expectation verbs). Schema validation is crucial for maintaining data

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 75 of 146

&8s NEMO

integrity, preventing malformed or unexpected data from causing errors or security
vulnerabilities in applications. By enforcing these rules at an early stage, schema validation
helps streamline data processing and reduces the likelihood of runtime issues.

o [ntent definition updates: There are fields in the defined intents that are allowed to be updated,
such as the period during which the intent will be active or the expectation target value range.
However, such updates are allowed before the intent is activated, i.e. for intent states
“FULFILMENTFAILED”, “TERMINATED” and “ACKNOWLEDGED".

e [ntent operations: Operations on intents can be performed, depending on both the desired intent
action and the “NotFulfilledState” value. Intent operations include “RESUME”, “SUSPEND”,
“TERMINATE”, etc. The “Not_Fulfilled State” field represents the state of the ihtent, while it
is not fulfilled. The attempted action must comply with the state transition schema in Figure 75.

e [ntent expectation updates: Are allowed only for expectations defined f¢r ‘gach jifitent.
Depending on the selected “userLabel” (intent type), the corresponding allowed\expectation
targets are check for validity. For example, “DeliverComputingWorkload*Jsupport targets of
type ram usage and/or cpu usage.

e Additional Feasibility checks: After intent validation, an asynchisonous‘validation step is
performed in order to test the feasibility of the intent in question. R€asons for failure in this step
include “serviceStartTimes” & “serviceEndTimes” out of ordefafid/oreellisions with an already
existing Intent for the given workload.

3.4.2.3 NEMO Intent Collector

The NEMO Intent Collector is a significant modality of‘the, Inténtsbased API which facilitates the
collection of the intent associated measurements governed\by the’PPEF component. More specifically,
the NEMO Intent Collector receives as an inputthesintent rélated measurements that correspond to the
expectation targets that have set by the NEMO user, as they are reported from the PPEF. The
communication with the PPEF is achieved viaja RabbitMQ listener service that is provided by the
NEMO Intent Collector. Then the consufied,information is processed and structured as intent fulfillment
data which correspond to intents expectation targets’ achieved values. Finally, the intent report is
consumed by the NEMO Intent Manager whicl updates the corresponding information in the NEMO
Registry.

3.4.2.4 NEMO Workload M@fagct

The NEMO Workload™“Manager modality is the heart of the Intent-based APl component. Its
functionality concernsithe management and the governance of the NEMO workloads as it is dictated by
the NEMO wuser. Specifically, the NEMO Workload Manager manages the processes for
registration/deregistration,) deployment and migration of workloads, including NEMO annotations,
workflow execdtion, provisioning, logging and notification of external entities. As it is illustrated in
Figure 74, theeNEMO Workload Manager handles the workload requests that are dispatched by the
Intent=basedAPI) The requests can be triggered either from the LCM UI or directly from the Intent-
basedBAPI Server. The workload Manager validates the workload registration and/or deployment
configuration files that are issued through the NEMO Workload Validator (its respective activities are
detailed in'section 3.4.2.5). At the same time, the NEMO Workload Manager facilitates the update of
the workload state in the NEMO registry and responds to workload queries. Once the workload request
is pre-processed the workload’s status changes to “onboarding” and subsequently it’s communicated
through the RabbitMQ message queue to the Meta-Orchestrator (MO). In case the workload validation
process fails, the workload status is changing to rejected and the request is terminated. The MO executes
the requested action and dispatches back the result of the requested activity (acknowledgement
message). The NEMO Workload Manager updates the NEMO Registry accordingly.

Finally, the NEMO workload Manager supports automated provisioning, triggering authorization
requests (RBAC access) for the workload to Access Control component.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 76 of 146

&8s NEMO

3.4.2.5 NEMO Workload Validator

The NEMO Workload Validator’s offered functionality, in the context of the NEMO Workload
Manager, is described above. This section sheds light into the specific validation tests that are performed
by the module. The validation tests are listed below.

1. Helm chart structural validation. The uploaded .7zgz helm chart that corresponds to the
workload upload request triggered by the NEMO user through LCM UI or directly through
the Intent-based API (invokes the /workload/upload/ endpoint; described in Annex B) is
validated by checking the existence of Chart.yaml, values.yaml, templates folder (with
appropriate .tpl .yaml template files) alongside with the contents of Chart.yaml (matching
version and naming scheme during the invocation of the /workload/ POST endpoint). In
addition, all the .yam!/ files pass a syntax check.

2. Helm chart template validation. The uploaded .7gz helm chart is extracte oes a
rendering phase of the templates with the default provided values.yaml. (by usin standard
helm template sub-command)

3. Docker image access validation. For every generated manifest (Deployment, Statefulset,
DaemonSet) the container image of every mentioned image i tedyfor access. Provided
imagePullSecrets are taken into consideration with _additional secrets of type
kubernetes.io/dockerconfigjison or against well-known ositories (e.g. NEMO
repository)

4. Ingress support validation. If the uploaded NEMO rts ingress via the Access
Control component, the validator checks for tﬂ a Kubernetes Service with the

annotations described in the figure below.

Arvatation Type Defaum vatue Descrptuon
nemo euwniess Regqured “rue* Marks the sarvice 3 exposabis
opose via NEMO Ingress
nemo e gress Oprorat I not st & Oefaclls 10 the port of e The assosiated Service port
prvice-port Service marked above
nemo AU INgress-path Dptory r Ingress path 10 axpose
NEMO S INgress -paeh- Dptony “IrplementationSpecic” ngress path Type

tyoe

- x &
\\ﬁ re 77: Kubernetes Service Annotations?°

3.4.3 Initial ses

The Intent- ssociated results stemming from the integration tests that are conducted in view
of t i atéd ‘version of the NEMO framework are documented in section 4.

3.4.4 € onclusion and Roadmap

The implementation of the core functionality that is offered by the Intent-based API in the context of
the 1% integrated NEMO framework is considered completed. The component was integrated with the
rest of the NEMO Service Management Layer components namely, the MOCA, PPEF, LCM and the
Access Control. Moreover, the Intent-based API demonstrated its integration with the NEMO Kernel
and the MO supporting the workload deployment and migration process.

With respect to the next steps, the Intent-based API as part of the 1% integrated version of the NEMO
framework, will be deployed in NEMO pilots’ infrastructures and will be further validated through the

20 https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-service-management/intent-based-

sdk_api/intent-api#exposing-a-workload-document-instance-via-nemo

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 77 of 146

@ NEMO

NEMO pilots’ specific use cases and also via the integration with the NEMO OCI1 offered meta-OS
extensions and OC2 provided NEMO services.

In view of the final version of the NEMO meta-OS framework, the Intent-based API aims to further

enhance its provided functionality where necessary (according also the feedback that will be gained
through the abovementioned activities) improving the quality of its provided services.

Document name: Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 78 of 146
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

&8s NEMO

4 NEMO scenario-driven verification & results

The purpose of this section is to provide insights on the integration tests conducted in the framework of
the integration activities that materialized the 1% integrated version of the NEMO platform. NEMO
integration verification approach that is defined and adopted, as described in section 2.3, establishes the
foundation upon which the integration activities are conducted and documented. Emphasizing on cross-
cutting functions of the NEMO meta-OS, NEMO defined four (4) system-level integration scenarios
that aim to illustrate the technical readiness of the NEMO developed components. These scenarios, as
detailed below, define the context of the integration activities conducted for the realiza of the 1%
integrated version of the NEMO meta-OS. The four (4) scenarios are the following:

* NEMO cluster registration Q b

* NEMO workload registration and provisioning

* NEMO workload scheduling and orchestration @

* NEMO workload lifecycle management

For each of the abovementioned test cases, the respective sce
on that, the resulting process diagram highlights the ste e integration objective in
each case. The scenario-driven process diagrams reflect t ion/evolution of the process that
was described in D1.3 [10]. Finally, the results that are collected for €ach of the steps are detailed and
subsequently the summary checklist, presents tife outcome ofithe conducted tests.

4.1 NEMO Cluster registratio

This section describes the NEMO Clu

ation integration scenario. The Cluster registration
workflow aims to provide technical details process that is followed allowing the NEMO partner
(infrastructure owner/provider) to acgess the NEMO meta-OS service management layer through either
via Intent-API or LCM UI and re a new resource (infrastructure) to be utilized and governed by
the NEMO meta-OS. The as e ﬁ \ce diagram is presented in Figure 78.

3
P

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 79 of 146

@ NEMO
B N

NOWD Farred

Figure 78: Process diagram for cluster:

4.1.1 Verification scenario

Test 1: NEMO Cluster registration

To verify the clusfer “registratioh process in NEMO that facilitates the resource
provisioning triggered,bysthe NEMO partner (resource owner)

Components e LCM y
e Inten d API
‘N&
. bbitMQ
|

Features to be Yeature that this scenario aims to test are the cluster registration process which is
tested initiated by the NEMO partner (cluster provider) through the LCM UI & Intent-based API.

hen, the newly registered cluster is added into the NEMO meta-OS ecosystem by the
MO. The results (status) of this process are then visualized to the user.

Objective

Test setup All the participating components were deployed in the NEMO meta-OS cloud/edge
infrastructure at OneLab (dev cluster 1).

Cluster registration through the LCM UI

Cluster registration through the Intent-based API (realized in MOCA)
Cluster registration message communication to MO

Cluster addition process by MO

Cluster status provisioning to RabbitMQ

Cluster status update visualization in LCM Ul

Steps

R

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 80 of 146

&8s NEMO

4.1.2 Results
This section documents the process that is described in the scenario above step by step.

4.1.2.1 Cluster registration through the LCM Ul

The following figure (Figure 79) depicts the cluster table summary that the NEMO meta-OS governs.
Through this interface the user is able to overview some high-level information that describes each of
the provided infrastructures.

Q Clusters Table

Taartn

L Mave nmonrn P e Mormary Arvons

wd e 2%
P Tesr 02 2 . ‘ =

SIS ek
a1 W Yot 001 ' 4 2

Ty (o " - 1-3u}

O Register Cluster

O\ hame Rt (0 7w

0

Figure 80: Cluster registration page on LCM GUI

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminaﬁon: |PU |Version: |].O Status: final

Document name: Page: 81 of 146

&8s NEMO

4.1.2.2 MOCA operations for cluster registration

When a new cluster comes for registration, the /moca/api/vi/cluster/register endpoint can be used
through the LCM UI. Alternatively, as indicated in the process diagram above, the user can trigger the
associated endpoint directly from the Intent-based API (Figure 81). For both of these cases, the cluster
registration request is executed via the MOCA API provided endpoint that is mentioned above.
The cluster provider needs to provide the specifications of the cluster that is to be added, like its name,
the resources it provides (CPUs, memory, disk), the availability percentage, the green energy percentage
that reflects the amount of energy that used to power the cluster and comes from ren
sources, its cost category and the associated costs for its available resources. Figure 81 ws the
registration payload of a cluster named “k3s-onelab”. Figure 82 shows the response o u
registration to MOCA. The response is the cluster’s id.

P
Areali

VPAIRAONY NT PR VARG PN — R

L e)

.-

Figuge 81: MMluster registration demonstration

- A

b e v

Coe Datan

L it

% ' Figure 82: MOCA Cluster registration response

4123 O cluster registration operation

When MOCA receives a new request performs the necessary validation checks and sends the request to
the NEMO Meta Orchestrator, through the NEMO RabbitMQ, in order to join the cluster with the
NEMO platform. Figure 83 shows this step of the cluster registration workflow.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 82 of 146

&8s NEMO

Figure 83: MOCA sends cluster details to Meta Orchestrator

Figure 84 shows that the Meta Orchestrator has successfully received the cluster’s defails.

Figure 84: Meta Orchestrator receives the cluster registration request

After the request is processed successfully by the Meta Orchestratog itdnformis MOCA again though
the RabbitMQ. Figure 85 shows that MOCA received the Meta Orchestrator validation message for the
successful registration. We can, additionally, see that the clustepwas alsoxegistered in the blockchain.

Figure 85: MOCA receives the Meta Orchdgtratof response

4.1.2.4 MOCA cluster registration to the bloékchain

To register the cluster in the blockchain, MOCA eommunicates with the DApps deployed, specifically
the one responsible for handling the clisteryregistration (see section 3.3.4.3). Figure 86 shows MOCA
calling the contract and successfully registering the cluster, receiving back the appropriate response (the
cluster registration initial tokens).

Figure 86: Register cluster to blockchain

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 83 of 146

&8s NEMO

MOCA, then, appropriately, updates the details of the cluster and the user. Figure 87 shows that the
status of the cluster has been updated, as well as the tokens provided to the cluster.

Figure 87: Updated cluster details v

Finally, Figure 88 shows that the cluster provider can view through t a/api/vl/acounting events
endpoint the event of the registration, and more specifically theydeposi he ten initialization tokens.
It should be noted that the balance field is the total amount of t by a user. Here, the user
owns a number of resources. Every time a user registers e, the registration reward tokens
will be added to his/her total balance.

Saqaan

Vo re lonpence

Figure 88: MOCA accounting event for cluster registration

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 84 of 146

4.1.3 Verification summary checklist

&8s NEMO

Checklist for Cluster registration scenario

Yes | No Comments
1 Is the cluster registered by the user through the LCM UI v Success
2 Is the cluster registered through the Intent-based API (realized in | «/ Success
MOCA)
3 Is the registration process communicated to the MOCA v Succe&
4 | Is the MOCA validation check successfully executed? v SUCCA\
(Y)
5 Is MOCA communicating successfully the request to MO? v éu cesv
6 Is the MO provided functionality successfully executed? v ‘@ss
7 | Is the cluster successfully added to the NEMO meta-OS? v & “.ICCCSS
8 Is the updated status communicated successfully to MOCA through Success
RabbitMQ?
9 Is the new cluster registered to the MOCA operated BC Success
10 | Are the new cluster details available through the MOCW 1 4 Success
11 | Are the information visible to the LCM UI Y |/ | The provisioning of the
accounting events to the
LCM UL Feature to be
available in the final
A version.
12 | Is the updated status visible to the N e) v Success

Tabl CheckM cluster registration scenario

4.2 NEMO work® atwdn, deployment & provisioning

This scenario conce
and the second
corresponding
Figure 89
regi n
pr g

ific operations. The first on is the NEMO workload registration process
EMO workload deployment process. For both of these activities, the
1agrams dictating the integration scenario that is followed are presented in
0, respectively. The former describes the steps necessary for the workload

that is facilitated by the Access Control is illustrated in Figure 91.

Document name: D.4:2 Advqnced NEMO platform & laboratory testing results. Page: 85 of 146
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

&8s NEMO

iagram for workload registration

Figure 89°

hel
<
S |_
©v | O
© | C
=
E.&
o |2
o | O
o | &
8
2 |
(O el
0
g .o
£ c
|9
S5
=
5 =
9
O
)
o
Q
ke]
o3
€
<
S
T |2
=
2 |&
o |2
Z |o
o |£
9 £
O c
c 5l Y
O wnla
5 0|8
AV
N Dl
< =<
[al=la
)
S
o
c
bl
1}
g |o
Elo
ur
m..n..
Q&

Figure 90: Process diagram for workload deployment (provisioning)

Document name:

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version

Page:

87 of 146

Reference:

D4.2 |Dissemination: [PU [Version: [1.0

Status:

final

@ NEMO
:

NEVO Cormener
reurvoed orovee
l ~Mans BP0 W OATRI T
@ Sy Puge Seons basie s of resat
Crecs nten
P— |
-))
Tonen w wwea
- J
Corore o gwest scoem
8
PR e T e P PN TN IR P IR e e s s Rt s taeritarstessdnstenssetecacccanhonanibsndns
{ Toewr w ryent
i le [
|- (Mcrm-

Figure 91: Access contrgl sequence diaém - detailed view

4.2.1 Verification scenario

Test 2: NEMO workload registration and provisioning

Objective
Components é d Registration
LCM
\o Intent-based API
o RabbitMQ
e NEMO Workload deployment
o LCM
o Intent-based API
o CMDT
o RabbitMQ
o Meta-Orchestrator
o CFDRL
o NEMO Access Control
e NEMO Workload provisioning
o Intent-based API

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 88 of 146

Features to be
tested

Test setup

Steps

/,

&8s NEMO

o Access Control

To verify the workload registration, deployment and provisioning process in NEMO, the following
features will be tested:

e Workload Registration

e Workload Deployment

e Workload Provisioning

The feature that this scenario aims to test are the workload registrati
initiated by the NEMO consumer (workload provider) through the L
API. Then, the newly registered workload is requested to be deplo the NEMO
meta-OS ecosystem by the MO. Finaly the workload provisionin 1s triggered
which is facilitated by the Intent-based API and the Access tr ponents. The
results including the workload status are visualized to the user"

-
The associated components are deployed in OneLab fac dev cluster 1 & staging
cluster 2)

process which is
& Intent-based

The steps identified in the associated sequence diagra w below:
1. NEMO workload registration
a. Workload registration by the u rough the LCM UI
b. Execution of workloa ess in Intent-based API
c. Notification of the LC status of the workload registration

a. Workload NEMO user through the LCM GUI
Execution [of workload validation in Intent-based API

c. Com deployment request to the LCM UI

d C e deployment request to the MO

e. Dep eration process triggered by MO

f. Reque uling by the CFDRL component

g ployment operation process executed by MO

h munication and update of the deployment operation status to the Intent-API

ation of the updated status to the LCM UI
g. rklead provisioning
NEMO workload provisioning is triggered by the Intent-based API
. NEMO Access Control workload setup
NEMO Access Control Keycloak plugin functionality
Performance resilience of Kong Plugin

b4

This s n documents the process that is described in the scenario above step by step.

4.2.2.1 Workload registration through LCM GUI

The workload registration process is facilitated by the LCM component and its Ul as it’s described in
section 3.2.4. The LCM component utilizes the Intent-based API provided functionality in order to
realize the NEMO user triggered operations for the workload registration process. Figure 92, presents
the form that corresponds to the workload registration and Figure 93 presents the list of the registered

workloads.

Document name:

D4.2 Advanced NEMO platform & laboratory testing results.

Initial version Page: 89 of 146

Reference:

D4.2 |Disseminction: |PU |Version: |].O Status: final

Intent Management provides the privileged user with the interfaces to create and manage intents. Figure

Figure 92: NEMO workload registration thro

\ N

O Regetered Worklooos
- e . — R e
- o
- e A 4
S— o —
- G —
- N
- o —
— L ——
v o —
- o —
- o —

Figure 93: NEMO registered workloads

94 shows the create workload instance form.

—
w L)
O 1 8
» LN)
® LI
=0 1 8
mo =
"o S
o s
] L
>0 8

Document name:

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version

Page:

90 of 146

Reference:

D4.2 |Dissemination: [PU [Version: [1.0

Status:

final

&8s NEMO

O Create Workioad Instace

SLA0 Yerve wherenes | PRI

SeterCamgutng ot el . _

s vage SRS ThAN - »n

|
FTUage 5 LESS THMAN « bR .

Add Target

m m 0

Figure 94: NEMO workload instance creation (worklo m rocess) through LCM UI

The newly created NEMO workload instance isyvisible in/theworkload instances table in LCM UI
(Figure 95). (*

Q00 0. 0. 0.0 90 0.0

\!ure 95: NEMO workload instances and their respective status in LCM UI

etting validated by the NEMO Workload Validator. Its functionality is described in
sectio 4.2.5 which presents the validation checks that are performed by the validator. Once the tests
uccessfully passed (Figure 96)then the workload upload request is dispatched.

Figure 96: NEMO workload validation

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminotion: |PU |Version: |].O Status: final

Document name: Page: 91 of 146

&8s NEMO

Finally, the NEMO workload instance is deployed in the NEMO meta-OS platform as confirmed by the
acknowledgment message received by the MO. The workload ID matches with the one that is visible in
the LCM UI (Figure 97).

S e L w2
pang e Lad-adwin-1
one Lab-adein-1-sdeis

Figure 97: Workload deployment confirmation through RabbitMQ for thé igwly €teated workload instance

4.2.2.2 Meta-Orchestrator & Deployment Controller

The Meta-Orchestrator (MO) within its architecture ha§ several” subcomponents, including the
Deployment Controller (DC). This component Wiandles communication, processes workload deployment
configuration files, turns them into workloads’{instances, and finally deploys those workloads’ instances
in a selected cluster. The Intent-based APFsendsithe message with the workload to be deployed by the
MO through RabbitMQ in JSON format;, (Bigure 98), and the message body created in the RabbitMQ
queue, (Figure 99). The MO then processes thatpymessage, decoding it to adapt the JSON into a data
structure within the programming languageIt'Checks for metadata like labels and namespaces in the
manifests and assigns defaults if th€yare missing.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 92 of 146

nips//intent-aplnemo. oneiab eu/aplvi/workioad/ 82 /vempiate/

Body

Figure 99: JSON published in RabbitMQ to be consume by MO.

&8s NEMO

Document name: D.4:2 Advgnced NEMO platform & laboratory testing results. Page: 93 of 146
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

&8s NEMO

Figure 100: Target cluster without the workload.

In Figure 100, before the workload deployment we can check that any workload is already deployed.
Once the MO triggers the workload deployment, we can see in Figure 101 the pods of the workload
“echo-server-integration24” deployed in the k3s-onelab as the target cluster chosen.

recommends a specific cluster in direct communication with the MO. The ‘%\

CFDRL which is the product of the inference that stems from Al model th DRI incorporates, was
has the workload ready
luster using the OCM

Figure 103: Deployment Controller (MO) final response.

ontrol provisioning

In de able D4.1 [2], the deployment and integration of the NEMO Access Control with the Intent-
based ere presented. For the integration part, we had developed an API that would receive a
payload with the necessary information to properly set the workload in the Access Control (set the Kong
services, routes and plugins). In this section, we will present the improvements made to the Access
Control workload provisioning to better automate and simplify the workflow.

During the initial creation of a workload, the Intent-based API offers the ability to choose whether to
deploy the workload with an Ingress or not. For this scenario, we will create a workload for a simple
NGINX?*' server (Figure 104).

2! https://nginx.org/

D.4:2 Advqnced NEMO platform & laboratory testing results. Page: 94 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name:

&8s NEMO

.....

ata *

Figure 104: Create workload through Intent-based API with Ingress support

When the workload is successfully created, the Intent-based API produces an Ingiess that holds specific
annotations to integrate with the NEMO Access Control, and enable the oAuth, 2. Oplugin for limiting
access to unauthorized users. Figure 105 shows the annotations added to ghe' Ingtess to specify details
for the services and routes that will be created in the Access Control, (konghg.com/protocols,

konghq.com/http-forwarded etc), as well as the plugins that will be appliedto the deployment workload
(konghgq.com/plugins).

Figute, 10§9Workload Ingress annotations for integrating with Access Control

The oAuth 2.0 configliration (named keycloak-plugin) is deployed in the OneLab cluster as a Kongplugin
[61] resource. Thispallows for the plugin to already be configured and ready to apply to new Ingresses.
Figure 106 shows,thelKong plugins resources available in the OneLab cluster.

nend-onelab-adnin.
nemnc-onelab-adain-2
nend-onelab-adain.2-adntn
vo.27.3 ¥

vi.ie. 7

125

Figure 106: The Onelab KongPlugin resources

D.4..2 Advqnced NEMO platform & laboratory testing results. Page: 95 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name:

&8s NEMO

When the Ingress is successfully deployed to the cluster, the Access Control is automatically updated
with the specifications in the Ingress annotations. Figure 107 and Figure 108 show the Access Control
service that was created and its details, respectively.

neam o D) v

Figure 107: Workload Access Control service

Wy Service: Nemo-sec nginx. B0 - n

[[R——

Figure 108: Workload Access Control service details

Figure 109 agh@Figuse 110 show the Access Control route that was created and its details, respectively.
In beth'the service and the route details, we can see that the name of the workload, its path and its Ingress
host'name haveall been registered successfully.

Figure 109: Workload Access Control route

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 96 of 146

Cont - Ve

Figure 110: Workload Access Contrélggutcidetail§

Finally, Figure 111, Figure 112 and Figure 113 present the'oAuth2.0 plugin and its details.

Pigure 111: Workload oAuth2.0 plugin

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 97 of 146

keycloak-plugn n

Corurtogr

Figure 112: Workload oAuth2.0 plugin{ctails

Figure 113: Workload oAuth2.0 plugin (cont'd)

Now that’the NEMO Access Control has been configured properly, we can test how the access to the
workload works. In order to access the protected resource, all the requests should provide an
authorization header with a Bearer token from the NEMO Identity Management component. The
0Auth2.0 plugin is configured to test the provided token and, depending on its validity, deny or grant
access. In Figure 114, the request provides no authorization header, therefore the user is denied access.

D.4..2 Advgnced NEMO platform & laboratory testing results. Page: 98 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name:

o SIIPA L T ORI PG e e

ratry

Wart swthmet loaf e Ralied (431

Figure 114: NEMO oAuth2.0 plugin test

In Figure 115, even if the token is provided, it could have expired, be

&8s NEMO

y

~
gd with or come from an

unknown source. The plugin, again, denies access to the NGINX E?

oy TP W STUCATL NN aR e

ety

B ~rir

Bowrw oy A O

oy

oy

DNEE SutheatLiatass Zalies (ant

e e

DA B a] SAA LIS APP B)

W 115: oAuth2.0plugin test - expired or false token

Finallygi t%n valid, the user can view the resource, in this case the welcome page of the NGINX
r

S¢€ U

).

Document name: o -
Initial version

D4.2 Advanced NEMO platform & laboratory testing results.

Page: 99 of 146

Reference: D4.2 |Dissemination: [PU

|Version: | 1.0 Status: final

&8s NEMO

;0 uthMtest - success

4.2.2.4 NEMO Access Control plugin r

The plugin, in order to reduce the tifie.needed to validate the provided token, instead of using an HTTP
request to connect to the NEMO I anagement component, it connects directly to its database to
g

perform the user token valid
e

Figure

performance

This decision has ¢ e code of the Identity Management component for the token
introspection”. The o is study indicated that the Identity Management component performs
several checks whic ecessary for the project use cases. These can add significantly to the
plugin response ti larly under load-testing scenarios. Therefore, the oAuth2.0 implementation
onnection performs only the necessary checks to verify the token, user, realm

o increase the overall system performance and redundancy and avoid security risks
that stem, from directly connecting to the Identity Management database, the latter has been configured
with streamping replication (WAL). Under this framework, the plugin does not directly connect to the
master instantiation of the database itself but, instead, it connects to a ready-only live replica.
Additionally, the database user used by the plugin has been configured with restricted access to the
tables that are strictly necessary for the token introspection.

We will now present the performance of the plugin when it directly connects to the database, versus
when it uses requests to perform the token validation. To conduct the performance tests, we are using

22

https://github.com/keycloak/keycloak/blob/83f8622d15d9a3559ee6d99a4c57033190a5392d/services/src/main/java/org/keycl
oak/protocol/oidc/endpoints/TokenIntrospectionEndpoint.java#L.72

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |].O Status: final

Document name: Page: 100 of 146

&8s NEMO

Locust®, an open-source tool, which gives information on metrics, like the percentiles of the response
times, the number of requests, minimum, max and average request times. For both experiments we will
use the same setup parameters (Figure 117): (a) the max number of users will reach 20, the users will
increase every one second and (b) each experiment will last 5 minutes. Each request will be executed
randomly between the span of 1 and 5 seconds. The first run will use the implementation of the o Auth2.0
plugin that make a direct connection to the database (standard oAuth2.0 plugin), while in the second
one we will apply to the same Ingress the version of the plugin which makes requests to the Identity
Management API (simplified oAuth2.0 plugin).

Start new load test

Biourc{ LI Rocust experiments' setup

Figure 118 and Figure 119 present the request and response statistics of Locust for the standard plugin.
In the request statistics, table, we can see the total number of requests, the average, minimum and max
times of the requésts, Ifwe compare the two averages, we can see that the average request time of the
simplified pluginiis approximately four times larger than the standard implementation. The percentiles,
also, in thefresponse statistics table, show that the simplified version has greater response times in
comparison.

23

D.4..2 Advgnced NEMO platform & laboratory testing results. Page: 101 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name:

https://locust.io/

&8s NEMO

Locust Test Report

Dy ‘4
Tar got Mcat

S rgt

Reques! Statistics

Response Time Statistics

Figure 118: Locust request and response statistics for standardf@@u/: Oplugin

Locust Test Report

gt

Request Statistics

Response Time Statistics

Bigure 119: Locust request and response statistics for simplified o4uth2.0 plugin

Figure 120 compares side by side the two runs. If we compare the response times, we can see that in the
first run,‘the plugin requires less time to stabilize the response times when the number of users have
peaked for the experiment. During the first execution the response times were almost half of the second
one. Finally, the deviation of the 50th and 95th percentiles in the first run has a smaller deviation,
meaning that the majority of the users will experience a stable experience.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 102 of 146

4.2.3 Verification summary checklist

Checklist for Test2: NEMO workload registration, deployment and provisioning

Figure 120: Locust charts for the oAuth2.0 plugin impler

P\

ta

&8s NEMO

w " No Comments
) N
1 NEMO workload registration by the user thgh v Success
LCM UI .
2 NEMO workload registration thz@h tWased APl &/ Success
\
3 | Notification of the LCM UI abo atus of the workload = +/ Success
registration
4 | Execution of workload VaHon in Intent-based API v Success
5 | NEMO workload de e NEMO user through «/ Success
LCM UI ®
6 Communi tMloy?nent acknowledgement to Success
LCM UI
7 Commuwwve deployment request to the MO v Success
8 CFDWent recommendation to MO ~/ Simulated step
Vo .
aiD%Moperation process executed by the MO v Success
A <
\'Communication and update of the deployment operation «/ Success
Wus to the Intent-based API
11 Nisualization of the updated status to the LCM UI v Success
12 = NEMO workload provisioning triggered by the Intent-based =« Success
API
13 ' NEMO Access Control workload setup process v Success
14 NEMO Access Control Keycloak plugin functionality «/ Success
executed
15 ' Performance resilience of the Kong Plugin v Success
Table 10: Checklist for workload registration, deployment and provisioning scenario
Document name: D.4:2 Advgnced NEMO platform & laboratory testing results. Page: 103 of 146
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

&8s NEMO

4.3 NEMO workload migration

This integration scenario aims to illustrate the workload migration process. The process is facilitated by
the Intent-based API, the MO and the Intent-based Migration Controller (IBMC). Figure 121, depicts
the steps executed to complete the task.

Workioad Migration Sequence Diagram

e S e i o

Send mient Contawwny) the worioas ID
ard avalatity roguremect Sep 9)

Revewve workdoxd rdomaton (Sienl)

-
Decide on deployment of mgeston scton (Swe J) |
Compame cunler avatabelty value [Swp 4)

—_—

S rugr #8on mesaane 0 IV (Sap)

Croate wirkiosd backup {Siep 4)

Resiore Dachug 0 Lt Sunler (Sep T

|
|
|
|
|
|

l Update workdoad status (Shep 7)
..................... = e
Figure 121: NE oWation sequence diagram

4.3.1 Verification scenario

Test 3: NEMO workload migration

Objective e of this task is to validate the NEMO workload migration process.

Components

) MinIO

Features to be | The NEMO workload migration process is triggered by the CFDRL component once its
tested inference states that it is preferable for the workload’s optimal operation to be moved from
cluster A to cluster B. Once the request is communicated to the Meta-Orchestrator
component then the workload migration is executed.

Test setup All the participating components were deployed in the NEMO meta-OS cloud/edge
infrastructure at OneLab (dev cluster 1 and staging cluster 1).

Steps 1. Intent-API publishes a workload intent with an availability requirement.
2. MO retrieves workload status from the Intent-API.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 104 of 146

&8s NEMO

3. If the workload is already deployed in any cluster, then a migration action is
triggered.

4. Check cluster availability.

5. MO sends a message to the IBMC containing the workload ID and the target
cluster.

6. IBMC backs up the workload resources and uploads them MinlO.

7. IBMC restores the resources in the target cluster. After the resources get restored,
the workload is removed from the source cluster.

8. The IBMC sends a message to the Intent-API updating the workload status,
specifying the cluster where it has been deployed.

Table 11: Test 3 - NEMO workload migration

4.3.2 Results

The section below presents the steps that concern the execution of the workload tion‘integration
workflow.

43.2.1 Stepl Q

An intent is published by the Intent-Based API in RabbitM(Q and reaches,t eta-Orchestrator:

N\

Awaiting message..

Received message:
intent_type: Availability
target_condition: IS_EQUAL_TO
target_value_range: 99.9
instance_id: 518baBca-386a-48cl1-935b~13e939b77db6

nt message reaches MO

4322 Step2&3

The Meta-Orchestrator sends a qu ack to’the Intent-Based API to retrieve a json with the workload

status. As shown in the followin, snippet, the workload appears to be already deployed in oneLab
cluster, hence a migratiMl lace:

{
"id": 6,

"instance id": "a3177d01-863d-415b-a998-180c87113z50",
"workload document id": 9,

"release name": "migration-workload",
"status": "deployed",

"manifests": [],

"cluster name": onelab

}

This can be verified in the oneLab cluster by executing kubectl get pods —--context onelab.
The list of pods shows the workload running:

D.4:2 Advqnced NEMO platform & laboratory testing results. Page: 105 of 146
Initial version

Reference: D4.2 |Disseminction: |PU |Version: |].O Status: final

Document name:

velero-684ccd?

When kubect1 describe pod migration-workload is executed, the workload ID can be found in the

“labels” metadata:

Namo

Namospace
Priority:
Service Account
Node

Start Tise
Labels

Ller-5cBedThece
cl~favll

STATUS
Sdddchcvfd-q Running
funning (374 aco)
Running
Running

Running

3 (J2i% ago)

TEUS9FBUIT-5)Ins
Sqnn3 Running

Tdhvd Running

Running

Figure 123: Pods currently running in onelab

sigration-workload

nemo~kernel

e

default

k@sworkerS. onelab.eu/192.168.111 . 144

Thu, 05 Dec 2024 15:07:2)1 +8100

neno . ou/workload=a3il77d0]1-863d-U150-a998~-186¢c871132560

Annotations k8s.vl.cni . cncf. lo/network-status

({
name”: “cbre,

etht,

interface
’

“ips* {

*10.204.5.13"
],

*Bac®: “aa:75:48:66:02:39",
*default™: true,
dns”: {},
gateway: [
“10.244 .5 .1"
]

3

Status Running

prkload ID inspection

4323 Step4

The MO proceeds to check its internal da , which contains the availability information of every
cluster. The availability value specified in the intent is compared with the one from the cluster where
the workload is currently deploy seen in the Figure 125, the availability of the OneLab cluster
(90%) is lower than the one r). This will trigger the migration of the workload to a more
suitable cluster. In this &8s one.

Figure 125: Availability check

4324 Step5&6

The MO sends a message via RabbitMQ to the IBMC containing the source and target clusters for the
migration and the workload to be migrated. When the message reaches the IBMC, the migration process
begins with the backup of the workload’s resources, which is stored in the OneLab’ MinlO instance.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
D4.2 |Dissemination: |PU

Document name: Page: 106 of 146

Reference:

|Version: | 1.0 Status: final

&8s NEMO

Awaiting message...
Received a message:
sourceCluster: onelab
targetCluster: onelab-k3s
migrationAction: backup
workload: a3177de1-863d-U15b-a998-180c87113250

Backup is still in progress. Waiting.

Backup completed succesfully

Awaiting message..

Figure 126: Migration message reaches source cluster’s IBMC instance

The backup status can be checked at any moment by executing velero get backup - -kernel.

Figure 127: Backup status

Once the backup is completed, a message is sent to the target cl rder to continue with the

migration process.

4325 Step7

The IBMC instance running in the target cluste receiv ge from the source cluster and
proceeds to restore the workload resources.

Awalting message
Received a message
backupName: onelab-backup202d1265144728
sourceCluster: onelab
targetCluster: onelab-k3s
migrationAction: restore
workload: a3177d01-863d-4l15b-a998~180c87113250

Restore is still in progress. Waiting

§sage reaches target cluster’s IBMC instance

tronelab-k3s is executed before the migration, it can be observed that the

Ifkubectl get pods
i ¢ cluster:

workload doesn’

‘NAHE READY STATUS RESTARTS

ibnc-b9c8cc886-2mn20 1/1 Running e
velero-7954d57¢cdc-2g9%bq 1/1 Running 6

Figure 129: k3s cluster status before migration

Once the restore is completed, the workload is correctly deployed:

NANME READY STATUS RESTARTS AGE
ibnc-b9c8ccBB6-2mn24 1/1 Runnino 2] 28d

migration-workload 1/1 Running e 14m
velero~7958057cdc~2g 1/1 Runnin 2] 29d

Figure 130: k3s cluster status after migration completion

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |].O Status: final

Document name: Page: 107 of 146

&8s NEMO

nigration-workload

Service Account

Node

Stare imeo
Labels J Load 7 5 i~180c87113250
chup-namse
estore-na K S pstor 1547a8
Annotations s.vl.¢ 10/

"oane* "<bhro®,

interfa “atha,
5 4g*
Ba:00:fe",
“gatemay”
*10.2%4

H
Running

STAY
Running
Runn

luster-age-agent
so-metrica-5865

Figure 132: Ong migration

43.2.6 Step8

When the migration is successfully ¢ eted, essage is sent to the Intent-Based API updating the
workload status:

L

SourceCluster: onelab

TargetCluster: onelab-k3s
WorkloadID: a3177d01-863d-415b-a998-180c871132z50

Status: migrated

&

D.4:2 Advqnced NEMO platform & laboratory testing results. Page: 108 of 146
Initial version

Reference: D4.2 |Disseminction: |PU |Version: |].O Status: final

Document name:

&8s NEMO

4.3.3 Verification summary checklist

Checklist for Test3: NEMO workload migration

Yes | No Comments
1 The CFDRL issues the workload migration request to the MO v Success
2 Intent-API publishes a workload intent with an availability | «/ Success
requirement. \
3 MO retrieves workload status from the Intent-API. v Succ,
_J
4 If the workload is already deployed in any cluster, then a migration | «/ ugces
action is triggered.
-
5 Check cluster availability. v ® uccess
. N — 4
6 MO sends a message to the IBMC containing the workload ID and Success
the target cluster.

7 IBMC backs up the workload resources and uploads them MiM Success

8 IBMC restores the resources in the target cluster\pAfter Success
resources get resotred, the workload is removed from e
cluster.
9 The IBMC sends a message to the In API updath{g the Success
workload status, specifying the cluster Xhe t has be,n deployed.
Table 12: Cheéklistor MMO workload migration
4.4 NEMO workload lifecycle ement
NEMO incorporates the concept nts for the declarative description of requirements for workload
execution and operation withi . Intent management processes are integrated by design in

NEMO operations. Onée load is registered by the NEMO user through the LCM Ul
neerspecified the intents that define the required operation for the NEMO

workload the monit ss starts. The monitoring process concerns both the cluster and the

thers) characteristics of a workload are also collected via the CMDT component.
i documented in D2.3 [4] in full detail. The collected information is visualized through
I and is available to the NEMO user (workload provider). This particular scenario concerns

As indicated in the process diagram below, this information is captured by the Intent-based API (which
is notified by the PPEF in advance) and is communicated to the LCM component.

4.4.1 Process diagram

The process diagram presented below summarizes the NEMO workload lifecycle management that
concerns the workload monitoring and management of the asset by the NEMO user. The NEMO
components that provide cluster level and workload level measurements are included in the relevant
scenario. The collected information is communicated through the RabbitMQ and the Intent-based API
to the LCM UI where they are visualized to the NEMO user.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminction: |PU |Version: |].O Status: final

Document name: Page: 109 of 146

PRESS A Polcy
Erlorcamont

ot ionts e wokicas
.................... e T =
rherts
monacnng
P —
Matcs
roNaerng
Provide et repen:
‘V':lulu :
porsal evern
B S —
Viscalzo :
<«
aater
monioning
V-

4.4.2 Verification

Test 4: NEMO workload lifecycle management

Objective W To verify the workload lifecycle management process in NEMO covering all the steps
dentified.
Components e LCM
e Intent-API
e PPEF
e CMDT
e RabbitMQ

Features to be | This integration scenario aims to validate the workload lifecycle management. The NEMO
tested workload intents and complementary measurements that concern the resources’ consumption and
the resulting performance and liveness of a workload are collected by the PPEF and the CMDT

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 110 of 146

&8s NEMO

components. From there they are communicated through the RabbitMQ to the LCM UI where there
are visualized to the NEMO user.

Test setup The associated components are deployed in OneLab facilities at NEMO dev cluster 1

Steps 1.
2.

balh e

AR RORY

The CFDRL component which is undergoes its final stages of development.

The NEMO user accesses the LCM Ul

NEMO workload monitoring collects metrics that correspond to the NEMO workload
(PPEF)

The collected workload metrics are communicated to the Intent-API

The NEMO Cluster monitoring collects measurements that conce e NEMO meta-OS
operated clusters (PPEF)

The collected cluster metrics are communicated to the RabbitM

NEMO workload complementary monitoring (CMDT) Q%

The collected metrics are communicated to the Rabbit M

The LCM aggregates the collected metrics and visualiz m e NEMO user
The PPEF report intent violations to the Intent-based

4.4.3 Results

*

This section documents the process that is described in the sce \ by step.

4.4.3.1 NEMO workload monitoring — CMDT

The CMDT collects network traffic characteristiessand obsgrves Kubernetes pod history. This is done
through querying Kubernetes API, and Thanos/Prometheus. More detailed description of CMDT
functionalities is available in D2.3 [4].

The Figure 134 illustrates how part of in atign is obtained through Prometheus to gain insight into

network traffic characteristics, whic
response rate per minute sorted b
query provides the summary,
connections, and the th@ t

ere c ted by Linkerd** service. The first query concerns pod’s
HETP status code (5xx server side error, 2xx success), the second
aximum response latency for 99%, 95%, 75%, and 50% of
g @ est rate per minute.

R
P

24 https://linkerd.io/

Document name:

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version

Page: 111 of 146

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Figure 134: Three queries to obtain netw@rk traffic stats collected by CMDT through Linkerd

The CMDT instances then fuse data from, different parts of monitoring infrastructure and produce per-
pod summary message sent through RabbitMQ to/ether services (Figure 135) that contains pod’s history,
pod labels and traffic measurements i.e. request/response rate per minute, and latency.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 112 of 146

&8s NEMO

Figure 135: Expected RabbitMQ message data model

4.4.3.2 NEM@wotkload monitoring — PPEF
In the following paragraphs the workload monitoring associated results are presented.
Computing workload intent

The PPEF collects the computing workload intent measurements (CPU and RAM) by querying the
deployed ‘®ionitoring tool (Thanos®’). The detailed description of the PPEF architecture and provided
functionality is included in D3.2 [11]. The Figure 136 below illustrates CPU measurement collection
and Figure 137 the RAM measurement collection.

25 https://thanos.io/

D.4..2 Advgnced NEMO platform & laboratory testing results. Page: 113 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name:

&8s NEMO

Figure 136: Workload — CPU usage

Figure 137: Workload - RAM usage

EnergyEfficiency intent

The Figure 138 below depicts the Green Energy ConsumptionpRate (the containers of the deployment
“demo-nginx” are consuming approximately 1,23jjoules pewSecond averaged over the last 5 minutes).

Thanos - Query

»

Figure 138: Workload - Energy consumption rate

NEMOwiorkload) Energy Efficiency shows that the service consumes 40k Joules for every second of
CPU time as illustrated in the collected query below (Figure 139).

D.4..2 Advgnced NEMO platform & laboratory testing results. Page: 114 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name:

Thanos - Query

Figure 139: Workload - Energy efficiency
Energy consumption

The Energy consumption of a particular workflow is depicted in Figure 14

D.4:2 Advqnced NEMO platform & laboratory testing results. Page: 115 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name:

4433 NEMO Cl

The Figure 142, Fi
by the PPEF

RabbitMQ. %

@ NEMO

Pt P tend -2t nerno ot e st/ v tent Tnat_faitied _state »COMPLAN TR Mfiled _siste»DEGRADED

> 339088 i2v1-9¢ a3 1
e ! mell
Arg » oapfrartyt2ficin
...... _GREAaTER AN
¢ vl gl *A0000*
- ;]
srge > el recfyConsung
! i 1L 1Ay
Iar) ange wis)
n
c nase: greeninetgyComaumpt tonSete
! 15 _GREATEN_ THAN
e » ange ‘o0
" n
Fi API EnergyEfficiency metrics update
onjering

and Figure 144 below summarize the cluster level metrics that are collected

ent for CPU, RAM and Disk storage respectively and communicated to the

. D4.2 Advanced NEMO platform & laboratory testing results. X
Document name: Initial version Page: 116 of 146
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

&8s NEMO

Thanos - Query

Figure 142: Cluster RAM usage

Thanos - Query

Figute 1438€ 1uster ¢PU usage

Figure 144: Cluster Disk usage

4.4.3.4 & luster metrics to RabbitMQ

Figure 145 below presents the cluster level metrics communication to the RabbitMQ from the PPEF
component.

Figure 145: cluster metrics published to RabbitMQ

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 117 of 146

&8s NEMO

4.4.4 Verification summary checklist

Checklist for Test4: NEMO workload lifecycle management

Yes | No Comments
NEMO workload monitoring collects metrics that | «/ Success
correspond to the NEMO workload (PPEF)
The collected workload metrics are communicated to the | «/ Success
Intent-API ‘
The NEMO Cluster monitoring collects measurements that | </ Succe \
concern the NEMO meta-OS operated clusters (PPEF) p &l
5 | The collected cluster metrics are communicated to the | «/ esv
RabbitMQ
6 | NEMO workload complementary monitoring (CMDT) v J chess
7 | The collected metrics are communicated to the Rabbit MQ ‘» ‘ Success
8 | The LCM aggregates the collected metrics and visuali «/ | The LCM UI view that
them to the NEMO user corresponds to this aspect
‘ is under development
Table 13: Checklist for ‘

@Q

Document name: Df1:2 Advqnced NEMO platform & laboratory testing results. Page: 118 of 146
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

&g NEMO

5 Conclusions

This deliverable provided insights on the scenario-driven integration activities that produced the first
integrated NEMO meta-OS. In addition, the NEMO meta-OS cloud/edge infrastructure established in
OneLab facilities that supported the integration activities along with the CI/CD environment and
configuration was presented in detail.

Moreover, the NEMO meta-OS components that belong into the NEMO Service Management Layer
namely, the Intent-based API, the IBMC, the LCM and the MOCA were described presenting their
provided functionalities, the updated architectures, the interfaces and data models and initialisesults.

Finally, the document provided a comprehensive description of the integration steps tha wed
as part of end-to-end scenarios that reflected the technical capacity of the first integratio n of the

NEMO meta-OS.

The verification results will feed enhancements in the development of the NEMOteta-OS components
for the next integration cycle that will produce the final version of the N \% -OS platform and
will be documented in D4.3 “Advanced NEMO platform & laboratory te resulfs. Final version”.

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Disseminotion: |PU |Version: |].O Status: final

Document name: Page: 119 of 146

&8s NEMO

6 References

[1] NEMO, "D4.3 - Advanced NEMO platform & laboratory testing results. Final version,"
HORIZON - 101070118 - NEMO Deliverable Report, 2025.

[2] NEMO, "D4.1 - Integration guidelines & initial NEMO WP4 integration," HORIZON -
101070118 - NEMO Deliverable Report, 2023.

[3] NEMO, "D1.2 - NEMO meta-architecture, components and benchmarking. Initial<¥ersion,"
HORIZON - 101070118 - NEMO Deliverable Report, 2023.

[4] NEMO, "D2.3 - Enhancing NEMO Underlying Technology. Final versiony)' ZON -
101070118 - NEMO Deliverable Report, 2024.

[5] Z. Anastasakis, T.-H. Velivassaki, A. Voulkidis, S. Bourou, K. Psy; D. Skias and T.
Zahariadis, "FREDY: Federated Resilience Enhanced with Differe Pri ," Future Internet,
vol. 15, no. 9, 2023.
[6] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow alwar, "Semi-supervised
Knowledge Transfer for Deep Learning from Private Traj tayharxiv.
[7] S. Mwanje, A. Banerjee, J. Goerge, A. Abdelkade an P. Szilagyi, T. Subramanya, J.
g

Goser and T. Foth, "Intent-Driven Network and Serv ent: Definitions, Modeling and
Implementation," ITU Journal on Future volving, Technologies, vol. 3, no. 3, 2022.

[8] R. Xu, M. Scott and S. Mwanje, "Enabling intelligence and autonomation for 5G Advanced
Networks," 3GPP, 2023. [Online]. ila ttps://www.3gpp.org/technologies/intent.

[91 3GPP,"3GPP TS 28.312 V18.3. 3)is Technical Specification Group Services and System
Aspects - Management and orchestrat tent driven management services for mobile networks
(Release 18)," 3GPP, 2024.

[10] NEMO, "D1.3 - NEM
HORIZON - 1010g01

[11] NEMO, "D3. N
Report, 2024.

itecture, components and benchmarking. Final version,"
iverable Report, 2024.

el.Initial version," HORIZON - 101070118 - NEMO Deliverable

D4.2 Advanced NEMO platform & laboratory testing results.

Document name: o X
Initial version

Page: 120 of 146

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

&8s NEMO

/ Annex A — MOCA API & data models

The MOCA API swagger page (OpenApi) is online available in this location (https://intent-
api.nemo.onelab.eu/moca/api/v1/swagger/)

7.1 MOCA Data models

MOCA allows for the exposure of the cluster registration process, as well as management of resource
and accounting details. This section will provide the API documentation and the data els used by

MOCA.

Attribute Data type

id String
type String The type of t ounting event
. . The id of kl
customer_id String cido r (workloads,
— lusters)
The kens that were deposited
tokens number .
r withdrawn
kens that the customer
balance number
currently has left
balance action id ¢ id to retrieve the accounting event
- - from the blockchain
timestamp

tingEvents Data Model

Attribute Description
id The id of the Cluster

o . The name of the Cluster that will be
cluster_nam String
- deployed
cpus Integer The number of CPUs of the Cluster
Integer The RAM of the Cluster in GB
Integer The disk storage of the Cluster in GB
Strin The percentage of time that the cluster
& is up (99.9%, 99%, 90%)
The percentage of RES powering the
green_energy String cluster.

(0%,20%,40%,60%,80%,100%)

The cost type of a cluster (low cost,

t trin :
cos String high performance)
The CPU cost of the cluster by the CPU
cpu_base rate number . o
capacity of the cluster (in milliseconds)
Document name: D4.2 Advanced NEMO platform & laboratory testing results. Page: 121 of 146

Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

&8s NEMO

The memory cost of the cluster by the
memory_base rate number memory capacity of the cluster (in
MBs)
timestamp String
balance number The NEMO tokens of the cluster

Table 15: MOCA ClusterResources Data Model

Attribute Data type Description
The id of the Cluste

The status of the
Cl

cluster_resources String

status Array

timestamp String

Table 16: MOCA ClusterState Data Model

Attribute

Data type Description

id ¢'1d of the workload
. e of the cluster the workload
cluster_name String .
- is deployed to
status i The status of the deployment of the
Cluster
The number of CPUs of the

pus © Application
memory er The RAM of the Application in MB
storage mber The space of the volume in GB

timestamp @ tring

balance number The NEMO tokens of the workload

user Integer The id of the Workload User

Table 17: MOCA Workload Data Model

Data type Description

String The id of the ClusterState

. . . The CID of the Cluster config stored

link cid String . &

- in IPFS
ipfs_link String The link to retrieve the Cluster config
timestamp String
Table 18: MOCA IPFS Handler Data Model
Document name: D4.2 Advanced NEMO platform & laboratory testing results. Page: 122 of 146

Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

@ NEMO

Attribute | Data type ‘ Description
id String
user_id String The id of the user
workload id String The id of 'the Workload the
- computation took place for
cluster id String The id of the cluster
cpu String The cpu used by the load
ram Array The ram used by the
tokens Array The NEMO tokens that arged

to the ad

timestamp String

Table 19: MOCA WorkloadComputeTokensEvents

Attribute Data type
username String ‘\ The user’s username

balance number

The balance of the user

The names of the smart contracts

smart contracts Arra
— related to a user

A

Table 20#MOC A UserSmartContracts Data Model

Description

region

high demand

number

number

number

Table 21: MOCA NemoTokenSetup Data Model

7.2 CA API endpoints

7.2.1 GET /api/vl/accounting_events
Returns all the accounting events related to a user (GET).

Responses

HTTP Code ‘ Description Schema Type Data Model
400 Provided data is invalid or malformed

401 Invalid credentials

403 Invalid permissions

Df1:2 Advgnced NEMO platform & laboratory testing results. Page: 123 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name:

@ NEMO

201 The accounting events of a user Object ‘AccountingEvents ‘

Table 22: GET Accounting Events responses

7.2.2 DELETE /cluster/delete/{id}

Delete a cluster based on its ID (DELETE).
Responses
HTTP Code Description Schema Type Data Model
The cluster has been deleted
400 Provided data is invalid or

malformed "
401 Invalid credentials
403 Invalid permissions %

Table 23: DELETE Cluster responses

Parameters

Attribute Parameter Type Description Required Data type
id path The cluster id \ /T string

Table 24: DEEETE Cluster pkmeters

7.2.3 POST /cluster/register

Register a cluster in NEMO meta IS POS

Parameters

Attribute Parameter Type Description Required Data type

cluster_name -n‘\ The cluster name | True string

cpus ‘ch The cluster # of|True integer
cpus

memo dy The cluster # of|True float
memory

stora body The cluster total|True float
storage capacity

availability body The cluster | True string
availability %

green_energy body The cluster RES|True string

powered %

cost body The cost category | True string
of the cluster

cpu_base body The cpu base cost|True float
for the cluster

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 124 of 146

&8s NEMO

memory_base rate |body The memory base | True float
cost for the cluster

Table 25: REGISTER cluster parameters

Responses

HTTP Code Descripon ~ Schema Type Data Model
400 Provided data is invalid or malformed

401 Invalid credentials

403 Invalid permissions

406 The smart contract rolled back (declined) the transaction

201 The Cluster ID ﬂ
Table 26: POST Cluster responses Q

Retrieve all the clusters’ details related to a user (GET).

7.2.4 GET /cluster/retrieve

Parameters

Attribute Parameter Type Description Required Data type

id string
cluster name body True string
cpus body - of cpus True integer
memory body | r # of memory True float
storage body ster total storage capacity True float
availability body he cluster availability % True string
green_energy be cluster RES powered % True string
cost The cost category of the cluster True string
cpu_base The cpu base cost for the cluster True float
memory_base The memory base cost for the cluster | True float
timestamp body Timestamp False string

Table 27: GET cluster parameters

Responses
HTTP Code Description Schema Type

Data Model

201 The details of all records Object ClusterResources
400 Provided data is invalid or malformed

401 Invalid credentials

403 Invalid permissions

Table 28: GET Clusters responses

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 125 of 146

@ NEMO

7.2.5 GET /cluster/retrieve/{id}

Retrieve a cluster’s details related to a user (GET).

Parameters

Attribute Parameter Type Description Required ‘ Data type

id path The cluster id True stri

Table 29: GET Cluster with ID parameters

Responses

HTTP Code Description Schema Type Data Model

The details of selected records Object \ClusterResources
400 Provided data is invalid or malformed
401 Invalid credentials
403 Invalid permissions
Table 30: GET Cluster with ns)

7.2.6 PUT, PATCH /cluster/update/{id}

Update a cluster’s attributes (PUT, PAT.

Parameters

Attribute Parameter Type Description Required Data type

data body | ster attributes True UpdateClusterResources

Responses

HTTP Description Schema Data Model
Type

UpdateClusterResources
400 Provided data is invalid or malformed
401 Invalid credentials
403 Invalid permissions
406 The smart contract rolled back (declined) the
transaction

Table 32: PUT, PATCH Cluster responses

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 126 of 146

@ NEMO

7.2.7 POST /nemo_token estimation_setup

Setup the region costs for that will be used in the workload usage calculation (POST).

Responses
HTTP Description Schema Type | Data Model
Code
201 The generated transaction hash Object TransactionHash
400 Provided data is invalid or malformed
401 Invalid credentials
403 Invalid permissions \
406 The smart contract rolled back (declined) the
transaction

Table 33: POST Region Costs responses

7.2.8 GET /nemo_token setup retrieve/{region}

Retrieve the information on the region costs (GET).

Parameters
Attribute Parameter Type ‘ Description Required Data type

string

Responses

HTTP Description Schema Data Model
Code Type

NemoTokenSetupRetrieveRegion

400 r ata 1s invalid or malformed
401

alid permissions

he smart contract rolled back (declined)
the transaction

406

Table 35: GET Region Costs responses

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 127 of 146

@ NEMO

7.2.9 GET /nemo_user_info
Retrieve the information of a logged in user (GET).

Responses

HTTP Code Description Schema Type ‘ Data Model
201 The information of the user Object NemoUserInfo
400 Provided data is invalid or malformed

401 Invalid credentials

403 Invalid permissions

Table 36: GET user information responses

7.2.10 GET /workload/retrieve Q

Retrieve all the details of the workloads related to a user (GET). Q
Responses
HTTP Code Description Schema Type ‘ Data Model
201 The details of all records ‘k jec Workload
400 Provided data is invalid or malfq rmed%
401 Invalid credentials y
403 Invalid permissions A)
Tabl warkoads' details responses

7.2.11 GET /workload/retrieve/{id}

Retrieve the details of a workléad basec fon its ID (GET).

Parameters

Attribute Parameter Type Description Required Data type
The workload id string

Table 38: GET workoad's details parameters

Responses

HTTP Code Description Schema Type Data Model
201 The details of all records Object Workload
400 Provided data is invalid or malformed

401 Invalid credentials

403 Invalid permissions

Table 39: GET workload’s details responses

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 128 of 146

&8s NEMO

7.2.12 GET /workload computations/{id}

Retrieve all the events of a workload that show its resource usage details (GET).

Parameters

Attribute Parameter Type Description Required Data type
id path The workload id True string

Table 40: GET workload computation details parameters

Responses
HTTP Code | Description Schema Type Data Model
The details of all records

okensEvents

400 Provided data is invalid or malformed
401 Invalid credentials
403 Invalid permissions

Df‘;Q Advgnced NEMO platform & laboratory testing results. Page: 129 of 146
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name:

&8s NEMO

8 Annex B - Intent-based API & data models

8.1 NEMO Intent-based API

The Intent-based API Server allows for exposure of NEMO functionalities, as well as management of
intents and workloads. The APl is available online at https://intent-api.nemo.onelab.eu/api/vl/swagger/.

8.2 Intent-API data models

Attribute ‘ Data type Description

username String
password String
token String
Table 42: Data model description: AuthToke
Attribute Data type Description | Comments
cluster_name String
cpus Integer
memory Integer
storage Integer

Attribute
link id
ipfs_link

‘ Data type

The ID of the cluster
String The name of the cluster resource
Integer The number of the CPUs
memory Integer The RAM of the cluster in GB
storage Integer The storage of the cluster in GB
endpoint String The endpoint of the Cluster
ipfs ClusterIpfs

Table 45: Data model description: Cluster

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
D4.2 |Dissemination: |PU

Document name: Page: 130 of 146

Reference: [Version: [1.0 [Status: [final

https://intent-api.nemo.onelab.eu/api/v1/swagger/

@ NEMO

Attribute | Data type ‘ Description
id Integer

context_attribute String

context _condition String

context value range String

Table 46: Data model description: Context

Attribute Data type Description
id

Integer

It describes the ¢ m‘ object type
which can be s d by a specific

object type String ton of MnS
object_instance String
context_selectivity String among the stated

object contexts

Attribute Data type Description
id

target name tring
target condition String
target value range String
target contexts Array

le 48: Data model description: ExpectationTarget

Attribute Data type Description

Integer
A unique identifier of the
String intentExpectation within the
intent
expectation_verb String
expectation_object ExpectationObject
expectation_targets Array
expectation_contexts Array

Table 49: Data model description: IntentExpectation

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 131 of 146

@ NEMO

Attribute | Data type | Description

id Integer

user_label String assignabley name of th ftent,
intent_preemption_capability String

observation_period Integer In seconds
intent_expectations Array

intent_report reference String

intent_contexts Array A ®

Table 50: Data model description: Intent

Attribute

Data type Description

context_attribute

context _condition String

context value range String

Attribute

It describes the expectation object type which
can be supported by a specific intent handling
function of MnS producer.

object type

object_instance

How to select among the stated

ntext selectivi .
context_selectivity expectationContexts

object contexts

able 52: Data model description: ExpectationObjectInput

Attribute Data type Description
String
String
String

target contexts Array

Table 53: Data model description: ExpectationTargetInput

Attribute | Data type | Description
L . A unique identifier of the
tat . . s .
expectation_id String intentExpectation within the intent
expectation_verb String

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 132 of 146

@ NEMO

expectation_object ExpectationObjectInput
expectation_targets Array
expectation_contexts Array

Table 54: Data model description: IntentExpectationInput

Attribute | Data type | Description
user label String A user—frlenflly (and user,assignable)
- name of the intent.
. . H t 1
context_selectivity String ;oW 10 8¢ ect amo ted
- intentContexts A

intent preemption_capability String

observation_period Integer In seconds

intent_expectations Array

intent_contexts Array

Table 55: Data model description: Inten

N\

Attribute Data type

intent IntentInput

Attribute

intent

Attribute | Description

target name

String
String

Table 58: Data model description: TargetTemplate

Attribute Data type Description Comments

instance_id String NEMO Workload instance ID "uuid'
intent_type String Intent userLabels

service_start_time String Optional 'date-time’'
service _end_time String Optional 'date-time’'
targets Array Expectation targets

instance_id String NEMO Workload instance 1D "'uuid'

Table 59: Data model description: IntentTemplate

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 133 of 146

@ NEMO

Attribute ‘ Data type ‘ Description

action String Action to perform

Table 60: Data model description: IntentActionInput

Attribute Data type Description
target id Integer
target value range String
Table 61: Data model description: IntentTargetUpdate %

Attribute Data type Description Comments

id Integer

username String

email String 'email’'
first name String

last name String

Table 62: Dafa model description: User

Attribute Data type Description Comments
yp p

Integer
name String The maintainers name (required)
email The maintainers email (optional) | 'email’
A url for the maintainer|, .,
url . uri
(optional)
chart er

63: Data model description: WorkloadDocumentChartMaintainer

Attribute Data type Description

Integer
String The name of the chart

name

version String A SemVer 2 version string

The repository URL or alias ("repo-name")

repository String (optional)

A yaml path that resolves to a boolean, used for
condition String enabling/disabling charts (e.g.
subchart]1.enabled) (optional)

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 134 of 146

&8s NEMO

Tags can be used to group charts for
tags Array enabling/disabling together
. ImportValues holds the mapping of source
import_values Array values to parent key to be imported.
alias Strin Alias to be used for the chart. Useful when you
& have to add the same chart multiple times
chart Integer

Table 64: Data model description: WorkloadDocumentChartDependency

Attribute Data type Description

id Integer

container registries Object The mapped container y€gistric
manifests Array The default generate \%
values Object

resource_mappings Object

memory_requests Integer

memory_limits Integer

cpu_requests Integer]

cpu_limits Integer Tota)@PU limits (in milli cpus)

Table 65: Data model de : WorkloadDocumentChartMetadata

Attribute Description Comments
p

id Integer
maintainers Array
dependencies Array
metadata mentChartMetadata
. . The chart API version
api_version .
(required)
y The name of the chart
name ing .
(required)
v String A SemVer 2 version string
. A SemVer range of compatible
kube version String &e P
- Kubernetes versions (optional)
_ . A single-sent ription
description String smg © S.en ence‘ descriptio
of this project (optional)
type String The type of the chart (optional)
A list of keywords about this
k A . .
cywords ray project (optional)
. The URL of this projects home|, .
home String . proj "uri'
page (optional)
. D4.2 Advanced NEMO platform & laboratory testing results. X
Document name: Initial version Page: 135 of 146
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

&8s NEMO

A list of URLSs to source code

Sourees Array for this project (optional)
A URL to an SVG or PNG
icon String image to be used as an icon|'uri'
(optional)
The version of the app that this
. . contains (optional). Needn't be
app_version String SemVer. Quotes
recommended.
d ted Boolean Whether this chart s
cprecate oolea deprecated (optional, boolean)
annofations Object A list of annotations key

name (optional)

Attribute

Table 66: Data model description: WorkloadDocumentChay

Data type

‘ Description

| Comments

id Integer
user User
chart WorkloadDocumentChart
created String 'date-time’'
modified String 'date-time’'
name String The workload document name
version String A SemVer 2 version string
schema Object The document schema
intents Array ’ List of supported intents
type String The workload document type
status The workload document status
ingress_support Whether the worl'doad document
- can be exposed via NEMO
enabled If the workload document is
enabled
rej T String Rejection reason
Table 67: Data model description: WorkloadDocumentList
Attribute | Data type | Description
id Integer
status String The workload document status
user Integer The NEMO user
name String The workload document name
version String A SemVer 2 version string
Document name: I?]ﬁr.iil/?/cé\r/;i:onnced NEMO platform & laboratory testing results. Page: 136 of 146
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

&8s NEMO

schema Object The document schema

type String The workload document type

intents Array List of supported intents

ingress_support |Boolean | Whether the workload document can be exposed via NEMO

Table 68: Data model description: WorkloadDocumentCreate

Attribute

Data type | Description ‘ Comments

id Integer

type String Lifecycle event type

deployment_cluster String The NEMO deployment cluster \
migration_from_cluster String The NEMO migration from cluster \
migration_to_cluster String The NEMO migration to clustey

timestamp String ‘ 'date-time’'

Attribute Comments

id Integer

lifecycle events Array

created String 'date-time’'
modified String 'date-time’'
instance_id String NEM })vorkload document instance identifier |'uuid'
release_name String document instance release name

status String orkload document instance status

lifecycle metadata | cle metadata associated with the instance

e NEMO cluster name that the instance resides in
Whether the instance should be exposed via NEMO

Ingress metadata

cluster_name

ingress_enabled

ingress_metadat

The workload document

workload de
LN

Table 70: Data model description: WorkloadDocumentInstance

Attribute | Data type |Description

name String The workload document name
version String A SemVer 2 version string
schema Object The document schema

type String The workload document type
status String The workload document status
user Integer The NEMO user

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 137 of 146

@ NEMO

intents Array List of supported intents

ingress_support |Boolean | Whether the workload document can be exposed via NEMO

Table 71: Data model description: WorkloadDocumentUpdate

Attribute | Data type | Description
release_name String The release name
values_override Object values.yaml override
include crds Boolean Include CRDS
is_upgrade Boolean If its upgrade
namespace String Namespace to associate with \
no_hooks Boolean No hooks flag \
ingress_enabled Boolean Expose workload instance via
cluster name String Target cluster override

Table 72: Data model description: WorkloadDocumen nput

8.3 Intent-based API endpoints

8.3.1 POST /api/v1/auth/login/
Create a new auth token for the user (POST)

Parameters
Attribute Parameter Type | Description Required Data type
AuthToken

Responses

' Description Schema Type Data Model
AuthToken

Table 74: POST authorization logout responses

performed in asynchronous manner. (POST)

Responses
HTTP Code Description Schema Type Data Model
204 No Content
401 Invalid credentials
403 Forbidden from performing this action
404 Resource not found

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 138 of 146

@ NEMO

Table 75: POST cluster registration responses

Parameters

Attribute Parameter Type Description Required Data type

data body True ClusterRegister

Table 76: POST cluster registration parameters

8.3.4 GET /api/vl/cluster/retrieve/
Retrieve cluster details from MOCA component (GET)

Responses

'HTTP Code Descripon ~ SchemaType DataModel
201 Created [\ =

400 Provided data is invalid or malformed

401 Invalid credentials

403 Forbidden from performing this action

404 Resource not found

Table 77: GET cluster retrieve resf

8.3.5 GET /api/vl/cluster/retrieve/{id}/

HTTP Code Description Schema Type Data Model
Object list Cluster

400 Provided data is invalid o
401 Invalid credentia &
403 Forbidden bett

404

Table 78: GET cluster retrieve (id) responses
Parameters

Attribute Parameter Type Description Required Data type

D14
N

Table 79: GET cluster retrieve (id) parameter

8.3.6 GET, POST /api/vl/intent/

Responses
HTTP Code Description Schema Type Data Model
200 Object list Cluster
400 Provided data is invalid or malformed
401 Invalid credentials
403 Forbidden from performing this action

Df‘;Q Advgnced NEMO platform & laboratory testing results. Page: 139 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name:

404 ‘ Resource not found ‘ ‘ ‘

Table 80: GET/POST intent responses

Parameters
Attribute ‘ Parameter Type = Description ‘ Required Data type
user_label query user_label False String
object_instance query object_instance False String
fulfilment status query fulfilment status False String
not_fulfilled state query not_fulfilled state False String
intent_id query intent _id False String‘
data body True Inte@t bute
Table 81: GET/POST intent parameters

O

Responses

HTTP Code Description Schema Type Data Model

Object list

Table 82: GET/POST inte nse:

8.3.7 POST /api/v1/intent/template/
Creates an Intent with the given template/{PO

Responses
HTTP Code Description Schema Type Data Model
201 Object IntentOutput
400 Provided da s invalidor malformed
401 Invalid credentia
403 Forb ‘ tom performing this action
404 R \% ot found

Table 83: POST create intent responses

Parameters
Attribute Parameter Type Description Required Data type
data body True IntentTemplate

Table 84: POST create intent parameters
8.3.8 GET /api/vl/intent/types/
Lists the valid intent types (GET)

Responses

HTTP Code ‘Description Schema Type Data Model
201 Object IntentOutput

Df‘;Q Advgnced NEMO platform & laboratory testing results. Page: 140 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name:

@ NEMO

400 Provided data is invalid or malformed
401 Invalid credentials

403 Forbidden from performing this action
404 Resource not found

Table 85: GET intent types responses

8.3.9 PUT /api/vl/intent/{id}/action/
Perform an action to a given Intent (PUT)

Responses
HTTP Code ‘ Description Schema Type Data Model

Table 86: PUT intent action responses
Parameters

Attribute Parameter Type Description Required Data type

path

data body

Table 87: PUT intent acti

8.3.10 PUT /api/v1/intent/{id}/target/

Intent has to be in a valid state. It is best to use this inja rest api tool, e.g. postman and send data via
““application/yaml™" in order to derive data types betters/(PUT)

Responses
HTTP Code Description Schema Type Data Model
200 Ok
400 Provided dat aisi valid'or malformed

401 Invalid credentia
403 For bidden tor performing this action
404

ResQuirca fot found

Table 88: PUT intent's target (id) action responses

Parameters

Attribute Parameter Type Description Required Data type
id
data body True IntentTargetUpdate

path True

Table 89: PUT intent's target (id) action parameters

8.3.11 GET, POST /api/v1/workload/
List or Create a new workload document(s) (GET)
Responses
HTTP Code Description Schema Type Data Model

Df‘;Q Advgnced NEMO platform & laboratory testing results. Page: 141 of 146
Initial version

Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name:

@ NEMO

200 Ok

400 Provided data is invalid or malformed
401 Invalid credentials

403 Forbidden from performing this action
404 Resource not found

Table 90: GET workload documents list responses

Parameters

Attribute | Parameter Type Description Required Data type

name query name False String . ’
version query version False String ‘ ;
data body True WorkloadD, entCreate

Table 91: GET workload documents list parameters 6

8.3.12 List or Create a new workload document(s) (POST) (|

Responses
HTTP Code Description Schema Type Data Model
Object list oadDocumentList

Parameters
Attribute | Parameter Type Description | Required Data type
name query namey,. False String
version query ersion iy’ False String
data body i True WorkloadDocumentCreate

® ¢ T workload document parameters
8.3.13 GET /api/ w stance/

Lists all the workloac ments instances (GET)
Responses
HTTP Code Description ‘ Schema Type Data Model

WorkloadDocumentCreate

Table 94: GET workload instances responses

Parameters

Attribute Parameter Type Description Required |Data type
release name query release name False String
cluster name query cluster name False String
workload document query workload document False String
status query status False String

Table 95: GET workload instances parameters

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 142 of 146

@ NEMO

8.3.14 PUT /api/vl/workload/instance/{instance id}/delete/

Propagate a workload document instance deletion request for a deployed workload instance to the MO.
(PUT)

Responses

HTTP Code Description Schema Type Data Model
200 Object list WorkloadDocumentInstance

Table 96: PUT workload instance delete responses
Parameters

Attribute Parameter Type Description Required Data type

instance_id path True |

Table 97: PUT workload instance delete parameters
8.3.15 GET /api/vl/workload/instance/{instance id}/manifests/ Q

Fetch workload instance manifests in a single **.yaml"" format. (GET),

Responses
HTTP Code Description Schema Type Data Model

Parameters
Attribute Parameter Type Description ‘ Required Data type
instance id |path True
instance id |path The Workload/Document instance uuid True String
Table T workload instance manifests parameters

8.3.16 POST /ap1/V1/ or

The following must

e The helm ch acked as ".tgz'" (by running helm package).

e The hel t have a matchlng (name, version) palr with the associated workload
documy Im chart must have a valid structure, files " *Chart.yaml™ ", ** values.yaml" "
and plates’" are mandatory.

chart must be able to render (via helm template) without any errors.
chart underlying containers images must exist and be reachable by NEMO Intent API
ither public or private registries with appropriate imagePullSecrets).

If everything is OK, the helm chart is uploaded to the NEMO S3 Helm Repository. After successful
upload, the Workload Document is set to **“status=onboarding™ " for further validation. After successful
validation, the Workload Document is set to **status=accepted " or " status=rejected” " if validation
has failed. RabbitMQ is notified as per README.md (POST)

Responses
HTTP Code Description Schema Type Data Model
200 Kubernetes Manifests Object list
400 Provided data is invalid or malformed

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 143 of 146

@ NEMO

401 Invalid credentials
403 Forbidden from performing this action
404 Resource not found

Table 100: POST workload upload request responses

Parameters

Attribute |Parameter Type Description Required Data type

file formData Packaged helm chart in **".tgz" " extension
name formData Workload Name to associate with True
version | formData Workload Version to associate with True .
Table 101: POST workload upload request parameters Q
8.3.16.1 GET, PUT, PATCH, DELETE /api/v1/workload/{id}/ QJ
Update & Delete operations are only allowed when a workload documentsiin s=pending’"" and

the same user if performing the operation. (GET)

Responses
HTTP Code Description
201 Created -
400 Provided data is invalid or malformed
401 Invalid credentials y
403 Forbidden from performing

Resource not found

Parameters

Attribute | Parameter ~ Description Required | Data type

data
data

True WorkloadDocumentUpdate

True WorkloadDocumentUpdate

Table 103: GET workload parameters

Upd ‘ Delete operations are only allowed when a workload document is in " “status=pending” " and
the sameser if performing the operation. (PUT)

Responses

HTTP Code Description ‘ Schema Type Data Model
200 Object WorkloadDocumentList

Table 104: PUT workload responses

Parameters

Attribute | Parameter | Description Required | Data type
Type

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 144 of 146

@ NEMO

id path A unique integer value identifying| True

this Workload Document.
data body True WorkloadDocumentUpdate
data body True WorkloadDocumentUpdate

Table 105: PUT workload parameters

Update & Delete methods are only allowed when a workload document is in "' status=pending' " and
the same user if performing the operation. (PATCH)

Responses
HTTP Code Description ‘ Schema Type Data Model
WorkloadDocumentUp:Q

)

Table 106: PATCH workload responses

Parameters

Data type
Type
path

Attribute Parameter | Description Required

id A unique integer value identifying

this Workload Document.

data body
data body

WorkloadDocumentUpdate
WorkloadDocumentUpdate

Table 107: PAMCH workload parameters

Update & Delete operations are only allowed n a warkload document is in " status=pending’ " and
the same user if performing the operatigfi. (DEL

Responses
HTTP Code ‘ Description ‘ Schema Type Data Model
j WorkloadDocumentUpdate

Parameters

Attribute | Parameter ‘Description Required | Data type
Type

A unique integer value identifying|True

this Workload Document.

True WorkloadDocumentUpdate

True WorkloadDocumentUpdate

Table 109: DELETE workload parameters

8.3.16.2 POST /api/vl/workload/{id}/template/

Set header "“Accept'"" to " application/json’ " or *application/yaml’"" (default). This action creates a
workload document instance with a unique NEMO workload identifier (" ‘instance id'""). RabbitMQ is
notified as per README.md (POST)

Parameters

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 145 of 146

&8s NEMO

Attribute | Parameter Type Description Required Data type

id path True

data body True WorkloadDocumentTemplatelnput

Table 110: POST workload document instance parameters

Responses
HTTP Code Description Schema Type Data Model
201 Created
400 Provided data is invalid or malformed
401 Invalid credentials
403 Forbidden from performing this action
404 Resource not found

Table 111: POST workload document instance response Q

D4.2 Advanced NEMO platform & laboratory testing results.
Initial version
Reference: D4.2 |Dissemination: |PU |Version: |].O Status: final

Document name: Page: 146 of 146

