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Executive Summary 

This document provides the final advancements and integration results within Work Package 3 (WP3) 

of the NEMO project, focusing on a functional, secure, and scalable multi-cluster management system.  

D3.3 aligns with the stages of the Software Development Life Cycle (SDLC), D3.1: Introducing NEMO 

Kernel [1] is related to planning, analysis, and design, D3.2: NEMO Kernel Initial Version development 

and some integrations, and finally [2], D3.3: NEMO Kernel Final Version refactoring and improving 

developments, adding functionalities, and closing integrations. 

To fully understand this last stage, it is important to have read the D3.1 and D3.2 previously to align 

with the last milestone that affects WP3, the MS9: NEMO Components (Version 1.0), where the D2.3 

[3] and D3.3 are the proofs of this final version. 

The main achievements in this deliverable are listed below: 

• A demonstration of the Secure Execution Environment (SEE) component in the end stage, 

providing a highly secure context where resources can be used and deployed. These 

advancements ensure strong isolation and integrity inside NEMO. 

• The PPEF (Privacy & Policy Enforcement Framework) component has been fully integrated 

and has broadened the NEMO infrastructure, retrieving the platform's monitoring and 

observability roles; this last point is related to SLAs and SLOs. 

• The Cybersecurity and Digital Identity Attestation component solidifies the deployment of 

cybersecurity measures, including robust authentication and access finalizing with CNNAP, 

providing an extra step of protection from development until deployment and runtime. 

• The meta-Orchestrator (MO) is a functional component for managing resources across IoT, 

Edge, and Cloud environments. It is designed for scalability using ML feedback from the 

Cybersecure Federated Deep Reinforcement Learning (CFDRL) component and efficiently the 

resource management of the NEMO platform. 

• To achieve a final integration of each component with the NEMO platform and its components.  

 

D3.3 concludes WP3 by showcasing/demonstrating/presenting a solid and compact NEMO Kernel 

Space that now offers a smart and easy multi-cluster control, paving the way for future developments. 

This final deliverable highlights the definition of new functionalities from each component and their 

integration within the NEMO ecosystem, leading/resulting in a mature and advanced platform. 
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1 Introduction 

Deliverable D3.3 concludes the reporting of the work conducted within the scope of WP3, consolidating 

and validating important steps taken since the release of D3.2, whose objective aims to demonstrate the 

latest updates and explain how each component contributes to NEMO in various aspects. 

1.1 Purpose of the document 

D3.3 describes the last features, tools, and integrations developed to achieve a secure, efficient, and 

integrated system within the NEMO. 

The deliverable sets the final stage for gathering all the development efforts and validating the 

components involving much more the integration and the testing parts to ensure a robust and mature 

version of the NEMO Kernel, to contribute to the project's goals of advancing cloud-native computing. 

Moreover, this document will validate all the job-done evaluations of the KPIs related to each of the 

four WP3 components. 

1.2 Relation to other project work  

This last D3.3: NEMO Kernel Final Version represents an incremental iteration to D3.1 and D3.2 within 

the WP3. In addition, it is tightly connected with WP2. Particularly, D3.3 shares the main goals, structure 

and milestone (MS9) objectives within the project with D2.3 Enhancing NEMO Underlying 

Technology. 

Integrations and WP3 components functionalities are related to WP4, and the results demonstrated in 

D4.3 Advanced NEMO platform & laboratory testing results [5] at MS10  NEMO Integrated (Version 

1.0). The work reported in D3.3 also relates to WP4 and the integration activities. 

1.3 Structure of the document 

This document is structured in a modular format, allowing the reader to see the progress and 

contributions from each task within WP3. It starts with an executive summary and introduction that 

describes the purpose and context. The following first four sections are related to the WP tasks: 

Section 2 describes the architecture and evaluation of the Secure Execution Environment; Section 3 

covers the Privacy and Policy Enforcement Framework, which is the main monitoring part of the project. 

Section 4 includes Cybersecurity and digital Identity Attestation, security measures, and subcomponents 

related to NEMO's safety and security. Section 5 introduces the meta-Orchestrator, its subcomponents, 

and architecture, going into deeper detail with the integration logic. 

Section 6 extends this document to the far edge and deals with secure firmware updates. Section 7 

explains the validation of each component with key performance indicators and finalizes the general 

conclusion and technical annexes. 
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2 Micro-services Secure Execution Environment  

Modern cloud environments, characterized by increased scale and complexity, face significant 

cybersecurity challenges, making it crucial to enhance security and isolation. The rapid growth of cloud 

services has led to a proliferation of vulnerabilities, underscoring the need for robust data protection and 

application integrity measures that safeguard user privacy. 

The first component of the NEMO Kernel, the Micro-services Secure Execution Environment (SEE) 

tackles precisely these challenges and provides a set of enhancements for cloud infrastructures regarding 

isolation, integrity, and flexibility. 

2.1 Overview 

Currently, the industry standard for cloud service execution is Kubernetes1, which was originally 

developed by Google and in 2024 became open-source, which is the de facto standard for container-

based cloud infrastructures. It can orchestrate thousands to millions of containers in a cluster and 

manages relevant aspects like networks or file storage as well. 

For these reasons Kubernetes was selected as the backend infrastructure to be used for NEMO, with it 

orchestrating the services and components at the lowest level. It is, therefore, of uttermost importance 

to provide the necessary adaptation and integration points, so that other components, such as the meta-

Orchestrator, can utilize the computing infrastructure. 

Kubernetes is designed to provide isolation using containerization, an approach with little overhead and 

high flexibility. However, this approach is not sufficient for privacy focused workloads or the execution 

of highly sensitive services. Also, it is developed for spatially homogenous datacenters, which is an 

assumption that is not necessarily true in NEMO anymore. 

For these reasons, the SEE was developed – a collection of enhancements for Kubernetes to provide the 

necessary infrastructure for the meta-OS. The SEE on the one hand provides an interface between the 

computing infrastructure and the high-level services, but also provides enhancements for Kubernetes, 

that are focused on enhancing the security and integrity of the workloads.  

2.2 Architecture and Approach 

Several limitations have been identified with the current capabilities of Kubernetes and the SEE has 

been built as a collection of extensions for Kubernetes. Luckily, Kubernetes is designed in an extensible 

way, providing open APIs that are built upon for achieving higher isolation and security for the NEMO 

services. This resulted in the SEE architecture, Figure 1, which consists of the following modules: 

• The Unikernel runtime for Kubernetes registers as a new runtime in a cluster and provides the 

capability to execute highly isolated applications-specific virtual machines in a cluster, 

leveraging the existing orchestration functionalities. 

• The migration extension utilizes the Kubernetes API for fine-grained Pod & Deployment 

migration. The extension itself is running as a service in the cluster itself, which is a common 

pattern for infrastructure related services. 

• The SEE interface serves as a connector between other NEMO components and Kubernetes as 

well as the previously mentioned components. The default interface within NEMO components 

is AMQP v0.9.1 so this component provides an interface layer between the Kubernetes API, 

our other components and any other potential NEMO component, but is specifically meant to 

interface with the meta-Orchestrator. 

 
1 Kubernetes: https://kubernetes.io/docs/home/ 

https://kubernetes.io/docs/home/
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• To reduce the trust requirements for the underlying infrastructure, as well as for enhanced 

integrity, we have evaluated the new area of confidential computing and have developed 

guidelines and best practices for utilizing confidential computing in NEMO clusters. 

 

 

 

Figure 1: Architecture of the Secure Execution Environment extension collection for Kubernetes. 

2.2.1 Unikernel Runtime for Kubernetes 

Kubernetes, as well as the most well-known container engine Docker, does not start containers 

themselves. Instead, Figure 2, Docker is a high-level interface to build container images for forwarding 

requests to the container manager. In the case of Kubernetes, every node is running a daemon as node 

manager. That daemon provides high-level tasks like health monitoring but also forwards container 

spawning requests to the container manager. 

 

Figure 2: Unikernel integration in Kubernetes. 
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Multiple container managers such as Podman2 and cri-o3 exist, however as OneLab is using containerd 

as container manager, the implementation of the SEE focusses on this one. Containerd is an open-source 

project, which is more-or-less a spinoff of the original Docker project and designed to fulfil the 

requirements of Docker and to the standards of the Open Container Initiative (OCI)4. 

While containerd evolved as result of Docker redesign, cri-o has its roots in the Kubernetes community 

and is focused to solve the community requirements. Podman is a RedHat project and is realized a library 

and is not depending on a daemon running in the background. containerd manages the network interfaces 

and uses an OCI-compliant container spawner to create and to start a container. Unlike cri-o, containerd 

uses an additional abstraction layer between container spawner and container manager called container 

runtime shim. 

To use the unikernel Hermit as a container replacement with strong isolation and small overhead, the 

container spawner runh5 was extended for containerd and a new container runtime shim6 was developed 

for the NEMO project. Several base images were also written, that include all necessary tools to start a 

unikernel. Namely these are the hypervisor QEMU7 and the daemon virtiofsd8 to provide local file 

system access. A user has only to extend these base images with their application to build a suitable 

image, as is shown in Figure 3. In that Figure, a simple webserver “httpd” is provided as unikernel 

image, as well as the loader hermit-loader to start the unikernel in the VM. This image uses the Alpine-

based base image hermit_env_alpine. Alpine Linux is a security-oriented, lightweight Linux 

distribution. By using Alpine as Linux distribution, the image size is clearly smaller (~21 MiB) in 

contrast to Ubuntu distribution (~81 MiB). 

 

Figure 3: Example of a Dockerfile to build a container image of a simple webserver as a Hermit unikernel 

 

The container spawner runh interprets the command line of the container image and checks if the 

command is starting a unikernel. If so, the command will be executed within a virtual machine, 

otherwise, the command will be started as a common Linux container. 

The container spawner runh must be registered to containerd. Per default, containerd is using the 

spawner runc, which is designed to spawn Linux container. The following lines extend the configuration 

file /etc/containerd/config.toml to support runh, see Figure 4. 

 
2 https://github.com/containers/podman  
3 https://github.com/cri-o/cri-o  
4 https://opencontainers.org/  
5 https://github.com/hermit-os/runh  
6 https://github.com/hermit-os/containerd-runh-shim  
7 https://www.qemu.org/  
8 https://gitlab.com/virtio-fs/virtiofsd  

FROM ghcr.io/hermit-os/hermit_env_alpine:latest 

COPY hermit-loader-x86_64 hermit/hermit-loader 

COPY httpd hermit/httpd 

CMD ["/hermit/httpd"] 

https://github.com/containers/podman
https://github.com/cri-o/cri-o
https://opencontainers.org/
https://github.com/hermit-os/runh
https://github.com/hermit-os/containerd-runh-shim
https://www.qemu.org/
https://gitlab.com/virtio-fs/virtiofsd
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Figure 4: Unikernel runtime configuration for runh 

After this configuration, containerd can use runh besides the default spawner runc, but Kubernetes still 

must be informed about this change. This can be done via the runtime selection mechanism, which is 

based on the resources RuntimeClass9. To announce the spawner runh, the resource can be registered 

by applying the following file with the tool kubectl, see Figure 5: 

 

Figure 5: Registration YAML of the container runtime runh with Kubernetes. 

After the registration of the new runtime class, Kubernetes will still use the default spawner runc and by 

adding the runtime class to the deployment the new spawner runh will be used. The following 

specification defines a deployment, which contains a simple webserver. The webserver is listening on 

port 9975 and the container image is publicly available at GitHub repository ghcr.io/hermit-

os/httpd:latest. The annotation runtimeClassName: runh shows Kubernetes should use runh to spawn 

the container. To expose the deployment, a service must be registered. In this example, see Figure 6, the 

service acts also as load balancer and forward the request to deployment. 

 
9 https://kubernetes.io/docs/concepts/containers/runtime-class/  

[plugins."io.containerd.grpc.v1.cri".containerd.runtimes] 

  [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runh] 

    base_runtime_spec = "" 

    container_annotations = [] 

    privileged_without_host_devices = true 

    runtime_path = "" 

    runtime_root = "" 

    runtime_type = "io.containerd.runh.v2" 

    pod_annotations = ["io.hermitcontainers.*"] 

   

    [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runh.options] 

[apiVersion: node.k8s.io/v1 

kind: RuntimeClass 

metadata: 

  name: runh 

handler: runh 

https://kubernetes.io/docs/concepts/containers/runtime-class/
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Figure 6: Deployment YAML of an example Unikernel service 

After starting the service, the running processes are seeable on the Kubernetes cluster. Figure 7 shows 

two running container shims. One is the shim for the spawner runc (process id 3205162), which spawned 

a NodeJS webserver in common Linux container, while the other shim (process id 2059994) spawned a 

unikernel, which is running within the hypervisor QEMU. 

 

kind: Service 

apiVersion: v1 

metadata: 

  name: hermit-httpd-service 

  namespace: hermit 

spec: 

  type: LoadBalancer 

  ports: 

    - name: hermit-httpd 

      port: 9975 

      targetPort: 9975 

  selector: 

    app: hermit-httpd-app 

--- 

apiVersion: apps/v1 

kind: Deployment 

metadata: 

  name: hermit-httpd-app 

  namespace: hermit 

spec: 

  replicas: 1 

  selector: 

    matchLabels: 

      app: hermit-httpd-app 

  template: 

    metadata: 

      labels: 

        app: hermit-httpd-app 

    spec: 

      runtimeClassName: runh 

      containers: 

      - name: hermit-httpd 

        image: ghcr.io/hermit-os/httpd:latest 

        ports: 

        - containerPort: 9975 
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Figure 7: List of running pods in a Kubernetes Cluster. In the middle it can be seen that a Unikernel is running as 

a Pod. 

2.2.2 Secure Pod Attestation and Deployment Leveraging Trusted Execution Environments 

Confidential Containers (CoCo10) is a new way to run containers in a secure environment that protects 

both data and applications, even from the infrastructure provider.  

To achieve usage protection, workloads (pods deployed in Kubernetes) are isolated via CoCo, so that 

neither the cluster nor infrastructure admins can access or manipulate the workloads and the data within, 

providing data in use protection. Moreover, it also integrates with advanced security hardware features 

like TEEs (Trusted Execution Environment), allowing it to run sensitive applications in an isolated 

environment. 

CoCo uses Kata Containers11 runtimes as runtime, leveraging hardware capabilities to add an extra layer 

of encryption and attestation, where attestation is one of the main components of CoCo. Before 

deploying a workload as a confidential container, attestation is used as a method to ensure that the TEE 

in which the container is to be deployed in a secure and trusted environment. 

We are using a TDX12 server as TEE. TDX allows us to create TDs (Trusted Domains), which are virtual 

and protected hypervisor environments. Trusted domains are used to isolate resources and workloads, 

allowing only trusted components to access them. This ensures the confidentiality and integrity of data 

even if there are intruders in the system. 

On our server we have used an Ubuntu version 24.04 and Kubernetes version 1.29.9. To enable TDX, 

the Intel guide13 has been used. 

In order to install CoCo, we have followed the instructions outlined in the quickstart guide14, installing 

version 11 of the Operator and CC runtime. After completing the CoCo installation, it was necessary to 

set up Trustee15. To do this, we have used cluster mode, which deploys the services as Docker 

containers. 

To finish the installation, it is necessary to modify the kernel_params in the file 

/opt/kata/share/defaults/kata-containers/configuration-qemu-tdx.toml to point to the IP of the KBS 

container where we have deployed the cluster: 

kernel_params = “agent.aa_kbc_params=cc_kbc::<KBS_URI>:8080” 

Figure 8: Kernel Parameters for KBS Integration. 

Regarding the general architecture of CoCo, we have two main elements: the TEE and the attestation 

module. 

 
10 CoCo: https://confidentialcontainers.org/ 
11 Kata Containers: https://katacontainers.io/ 
12 Intel TDX: https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html 
13 https://github.com/canonical/tdx 
14 https://github.com/confidential-containers/confidential-containers/blob/main/quickstart.md 
15 https://github.com/confidential-containers/trustee 

https://confidentialcontainers.org/
https://katacontainers.io/
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://github.com/canonical/tdx
https://github.com/confidential-containers/confidential-containers/blob/main/quickstart.md
https://github.com/confidential-containers/trustee
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The TEE is where the pod is deployed and on which the attestation module collects the necessary 

hardware measurements to verify that the environment is reliable. The attestation module consists of 

numerous services that connect to each other to verify the TEE to deploy the container on it. 

In CoCo, the Trustee project provides attestation capability and key management engine. In addition, 

this project allows us to encrypt and sign the container image to be deployed, so that only the trusted 

environment can decrypt it. 

 

 

Figure 9. KBS Architecture 

 

Figure 9 represents the general architecture deployed for the CoCo testing environment. The green 

squares are those provided by Trustee for the attestation process. The other main components are: 

- TEE: Environment in which pods are deployed using confidential containers. 

- Skopeo: Tool used to encrypt the image of the container. When an image is being encrypted, an 

attestation agent provides the secrets to skopeo, skopeo sends those secrets to the Keyprovider 

and finally, it registers them in the KBS16. 

- CoCo Keyprovider: It is responsible for providing the secrets to the KBS. Each time an image 

is encrypted, the private key is stored inside the KBS container. 

- KBS (Key Broker Service): Service that communicates with the TEE and with the Attestation 

Service. If the Attestation Service confirms to the KBS that the environment is trusted, it is 

responsible for providing the private keys to the TEE to deploy the pod. 

- RVPS Client: Tool to send the reference values to the RVPS.  These reference values must be 

values that are known by the client, because the attestation service will perform the attestation 

based on the reference values that are injected into the RVPS. If no reference values are inserted 

into the RVPS, the attestation process will not have against which to compare the evidence 

provided by the enclave, and it will use a predefined reference value. 

- RVPS (Reference Value Provider Service): Manages the reference values to verify the TEE 

evidence. Those reference values are sent to the AS to compare them with the evidence. 

 
16 https://github.com/confidential-containers/trustee/blob/main/kbs/docs/cluster.md 

https://github.com/confidential-containers/trustee/blob/main/kbs/docs/cluster.md
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- AS (Attestation Service): Performs the attestation process. Responsible for collecting evidence 

and confirming that it is correct. The Attestation Service uses PCCS (Provisioning Certificate 

Caching Service) and QGSD (Quote Generation Service Daemon) to generate quotes describing 

the enclave status and validate the environment. 

2.2.2.1 State of the art 

Increasing usage of microservices-based architectures and cloud-native environments has created the 

need to build solutions to provide confidentiality of data in processing. For this purpose, different 

solutions have been used, such as the TEE technology that facilitates the execution of applications in 

trusted enclaves safely. In this situation, CoCo presents an innovative approach for confidentiality at the 

container level, making it more suitable for cloud environments. 

CoCo is designed to integrate with cloud environments such as Kubernetes, thus simplifying the 

deployment of architecture. It is also vendor-neutral, allowing deployment in multi-cloud, on-premises, 

or hybrid environments. Unlike other alternatives such as Microsoft Azure Confidential Computing17 or 

IBM Hyper Protect Services18, which are dependent on certain vendors19. This therefore makes CoCo a 

technology that addresses both flexibility and security issues. 

For the NEMO project, CoCo has proven to be one of the most robust tools to address confidentiality 

issues without neglecting the importance of scalability and integration with modern workflows. 

Resulting from the investigations and experiences when working confidential computing technologies, 

we have developed a setup and best-practice guide for CoCo, which can be found in 10.1 Guidelines for 

TDX and Confidential Containers Technology. 

2.2.3 Pod & Deployment Migration 

Concept 

The Micro-services Secure Execution Environment (SEE) supports fine grained workload migration at 

runtime across cluster nodes. This is achieved by the SEE Migration component. The Migration 

component is designed as a migration extension for Kubernetes and abstracts the in-cluster workload 

migration of SEE micro-services in pod and / or deployment level. Kubernetes is designed around the 

assumption of homogeneous clusters, such as computing centers. However, with edge and far-edge 

computing as new paradigms, this assumption does not hold anymore. Clusters could be geographically 

distributed which makes careful positioning of services necessary, so that applications can benefit from 

low latencies and high bandwidths.  

The Migration component is part of the SEE and integrated as a separate interface (Migration interface) 

in the SEE interface. The Migration component is a service that accepts migration requests through the 

SEE interface in order to migrate container workloads between different nodes based on decisions of 

the meta-Orchestrator (e.g., shift load from node on region A to node on region B).  

Implementation of the Migration Service 

The migration component is implemented as a separate Kubernetes Service, representing the Migration 

endpoint, backed by a migration daemon deployed as a separate pod. The Migration daemon is 

implemented as a Python Flask application that exposes two separate endpoints (known as Flask app 

routes) that serve requests from the front-end Kubernetes Migration Service endpoint: 

 
17Azure Confidential Computing: https://azure.microsoft.com/en-us/solutions/confidential-compute 
18 IBM Cloud Hyper Protect Crypto Services: https://www.ibm.com/products/hyper-protect-crypto 
19Vendor Lock-In in Confidential Computing: https://medium.com/%40safelishare/building-multi-cloud-

confidential-computing-the-danger-of-data-lock-in-cfe14893ddb3 

https://azure.microsoft.com/en-us/solutions/confidential-compute
https://www.ibm.com/products/hyper-protect-crypto
https://medium.com/%40safelishare/building-multi-cloud-confidential-computing-the-danger-of-data-lock-in-cfe14893ddb3
https://medium.com/%40safelishare/building-multi-cloud-confidential-computing-the-danger-of-data-lock-in-cfe14893ddb3
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• /health endpoint: An http GET method that simply returns “status: UP” if the migration daemon is 

up and running 

• /migrate endpoint: An http POST method that accepts a migration request (JSON format) and calls 

the Migration functions that perform the actual migration. The method returns a JSON with a 

breakdown of the migration duration in milliseconds as follows: 

– Total migration time: The total time elapsed since the Migration Service received a Migration 

Request until the migration was completed. 

– Eviction time: The time elapsed since the Migration Service received a Migration Request until 

the workload was evicted from the source node. 

– Boot time: The time elapsed since the Migration Service received a Migration Request unti the 

workload was up and running in the target node. 

– Downtime: The time elapsed while the workload was not running in any node (e.g see method 

3 below). 

Migration functions: migration is performed using the Kubernetes API. The migration daemon program 

imports the Kubernetes Python Client in order to perform calls to the Kubernetes Control Plane. The 

migration is based on the Node Labeling / NodeSelector functionality of Kubernetes and covers three 

different cases - implemented as three different functions as shown in the following table: 

 

Migration scenario Migration component function 

Deployment Migration patch_depl_node_selector 

Single POD Migration (new POD name / no 

downtime)  

 patch_keeppod_node_selector 

Single POD Migration (same POD name / 

downtime)  

patch_pod_node_selector 

 

The reason for the distinction between the second and the third case is that each POD has a unique and 

immutable name in a Kubernetes cluster. In order to move it from one node to another without downtime 

it is required to first start the POD in the target node and then evict the POD from the old node. As two 

POD objects with the same name cannot co-exist in the same Kubernetes namespace these two different 

options are both implemented in the current version of the migration component. 

Upon receiving a migration request the first step is to set a key/value label on the target node using the 

patch_node method of the k8s CoreV1Api client library. We call this label: target label. Depending on 

the migration scenario the 3 different functionalities are implemented as follows: 

a) Deployment Migration: The patch_namespaced_deployment method of the k8s AppsV1Api 

client library is used in order to directly add the target label in the NodeSelector field of the 

Deployment Configuration. This step will trigger the Kubernetes Control Plane to migrate the 

Deployment pods to the required target node in order to satisfy the NodeSelector field. No 

downtime is involved in this case as Kubernetes terminates the old deployment pods after the 

new PODs are in “Running” state. 

b) Single POD migration (no downtime): The daemon reads the running POD configuration 

using the read_namespaced_pod method of the CoreV1Api k8s client library. It starts a new 

POD named as <old_pod_name>-migr using the same configuration as the old (still) running 

POD with the additional NodeSelector field changed to match the target label. The Kubernetes 

Control Plane schedules the new POD to the desired target node. The migration script watches 

the new POD state using the Kubernetes client Library watch method. When the new POD state 

is changed to Running, the daemon evicts the old POD from the old node. As a result, there is 

no downtime. 
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c) Single POD migration (downtime): The target pod is evicted from the node where it is 

currently running using the delete_namespaced_pod method of the CoreV1Api k8s client 

library. The daemon then starts watching for events related to the deleted POD. When the 

DELETED event for the old POD is published the daemon deploys a new POD (with the same 

name as the old one) on the target node by adding target label in the Pod NodeSelector field as 

in the a) and b) cases. 

Credentials: The migration daemon performs actions that change the cluster configuration (e.g., PODSs, 

deployments, nodes). In order for the Kubernetes client Library to successfully make the related method 

calls the daemon pod is related with the “see-migration” Kubernetes Service Account. This is a service 

account that is binded with the “cluster-admin” Kubernetes cluster role and grants the required 

permission to the migration daemon.  

SEE Interface: Migration 

The SEE Interface accepts and forwards migration requests to the Migration Service. The migration 

requests are read from YAML files, converted to JSON objects by the SEE interface and sent as HTTP 

requests to the migration service.  

Usage: A migration request can be sent using the see-ctl program as follows in Figure 10 : 

go run cmd/see-ctl/main.go do migrate -f migration-req.yaml 

Figure 10: Migration request using the see-ctl program 

where the migration-req.yaml is the YAML configuration describing the migration info as follows: 

 

 

Figure 11: Deployment migration request 

 

 

Figure 12: Single pod migration request 

 

Demonstration 
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Table 1 and presents a breakdown of the migration time for the 3 different scenarios described above 

using as example workload a nginx server. The image is already present in the target nodes, i.e. the time 

for pulling the image from the network is not included. Note the downtime in the 3rd case as a result of 

first evicting the pod from the source node before creating the new one in the target node - the boot time 

includes the downtime. The downtime is dominated by the eviction time of the old pod. Also note that 

the boot time is affected by: 

– the workload itself, e.g. for different images the boot times may vary. 

– the Kubernetes Control Plane decision overhead. 

Table 1: Migration time breakdown for an example micro-service (nginx). 

 

Figure 13, Figure 14 and Figure 15 demonstrate the Migration Component functionality in all 3 cases, 

using the SEE Migration Interface. Figures also include the migration-pod logs showing the migration 

times breakdown, which is later encapsulated in the daemon response. 

 

Figure 13: Deployment migration demo. 

 

Scenario Total  Boot Eviction Downtime 

Deployment (2 replicas) 7921ms 5694ms 7919ms 0ms 

Pod (new name) 5402ms 3688ms 5402ms 0ms 

Pod (same name) 6111ms 6111ms 2939ms 3171ms 
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Figure 14: Single pod migration (no downtime) demo. 

 

 

Figure 15: Single pod migration (with downtime) demo. 
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2.2.4 meta-Orchestrator integration 

The SEE interface is the software component for interacting with the SEE via AMQP. As depicted in 

Figure 1, it is used by other components to interact with the other SEE components. The main points of 

interaction are retrieving both node and pod metrics as well as performing actions with the SEE, see 

Figure 16. 

Retrieving metrics  

The SEE interface retrieves both node and pod metrics from Kubernetes and publishes them to an AMQP 

exchange as shown in Figure 17. 

 

 

Figure 16: AMQP messages for pod metrics 

 

 

Figure 17: AMQP messages for pod metrics 

 

This part examines how to retrieve node metrics from the cluster as an example. Retrieving pod metrics 

would work very similarly. We use the RabbitMQ management interface for demonstrating 

communicating with the SEE interface while software components use appropriate AMQP libraries. 

First, we look for the relevant SEE interface exchanges: 

 

Figure 18: RabbitMQ exchanges for SEE metrics 

These exchanges make node and pod metrics available as single messages per node and per pod. This 

allows consumers to natively select which nodes and pods they are interested in, leveraging the 

appropriate AMQP primitives for offloading this routing and filtering to the AMQP server. 
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To receive metrics, we add a new queue called “my.test.queue” to receive arbitrary messages on: 

 

Figure 19: Creation of a new RabbitMQ queue for message retrieval. 

For messages to arrive on this queue, we create a binding to forward messages from the exchange to the 

receiving queue. The routing key specifies which messages we are interested in. For pod metrics, the 

routing key is “<namespace>.<pod_name>”. If we were interested in the metrics for all pods in the 

default namespace for example, we would specify “default.*” as the routing key for the binding. For 

node metrics, the routing key is the node name. In this example, we bind all messages from the node 

metrics queue to our receiver queue. 

 

Figure 20: Binding a RabbitMQ message queue to the exchange. 

The SEE interface periodically publishes metric messages to the exchanges. Once a new message that 

matches our binding has been published to the exchange, we can get the message from our receiver 

queue: 

 

Figure 21: Receiving resource metrics via RabbitMQ 
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Perform an action in the SEE 

The SEE interface can be driven by an AMQP RPC API as shown in Figure 22. 

 

 

Figure 22: AMQP flow for resource configuration. 

Walking through the process using the RabbitMQ management interface similarly to how we have done 

it for the metrics. First, we look for the relevant RPC queues: 

 

Figure 23: RabbitMQ queues relevant for resource configuration. 

We see four RPC queues, Figure 23: one for creating resources, one for applying changes to resources, 

one for deleting resources, and one for migrating resources using SEE’s migration component. Now, an 

NGINX pod can be created by publishing a message to the nemo.see.create RPC queue: 

 

Figure 24: Creation of a NGINX Pod via the SEE interface in the RabbitMQ web-ui 

In Figure 24 two properties are very important for RPC messages: the “reply_to” property and the 

“correlation_id” property. The “reply_to” property tells the SEE interface where to send the response to 

this RPC message. Its value should be a callback queue which is set up before by the RPC caller. This 

callback queue should usually be a non-durable queue with an AMQP-server-generated name to avoid 
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collisions for these one-off responses. In our case, we reused the test queue from the previous section 

strictly for demonstration purposes. The other important property is the correlation ID. This ID is 

included in the response again so the caller can be sure the response corresponds to their request. The 

correlation ID can be any sufficiently random string, but we recommend UUIDv7. 

Once we have sent the request, SEE interface will perform the corresponding action and send a reply to 

the referenced callback queue. So, in Figure 25, the response from our test queue is: 

 

Figure 25: SEE-Interface response of the NGINX pod creation in the RabbitMQ web UI. 

In this case the response is empty, which means success. When trying to create the same, now existing, 

pod again, we receive an error, Figure 26: 

 

Figure 26: SEE-Interface failure response when deploying a pod via the RabbitMQ web UI. 
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2.3 Evaluation 

2.3.1 Unikernel image size overhead 

To investigate the claim of Unikernels having a low overhead compared to containers, we take a look at 

the image sizes and their composition in the cloud use case. 

The Unikernel Hermit that is selected in NEMO is deployed in Kubernetes as a regular layered Docker 

image. This image contains the Kernel and the Kernel’s bootloader, but also a minimal userspace 

installation and an instance of the VM hypervisor QEMU. It is the latter that can be considered overhead 

when comparing containers and Unikernels, therefore we try to quantify this. The Hermit project 

provides two base images with this setup20, one based on the widespread Ubuntu image (Figure 27) and 

another one based on the lightweight Alpine Linux image (Figure 28). When investigating the content 

of these files, we can see that both base images still remain rather small, but the QEMU installation 

induces an overhead of 142MiB/81MiB. 

 

Figure 27: Ubuntu based baseimage for Hermit containers. 

 

 

Figure 28: Alpine Linux based base image for Hermit containers. 

However, as Kubernetes is reusing layers of the Dockerfile, this only has to be considered once per host, 

independently of the amount of Unikernels running on that machine. The variable parts are the loader 

binary and the actual application. Figure 29 shows a resulting image along the disk usage of each layer. 

We can see that the Unikernel parts can provide a webserver in less than 5 MiB. As a comparison, the 

small nginx:alpine image21 is shown in Figure 30. Skipping QEMU, the image size is smaller overall, 

but the plain webserver is more than 7 times the size than the one in the unikernel image. 

 

 
20 https://github.com/orgs/hermit-os/packages?repo_name=runh  
21 https://hub.docker.com/layers/library/nginx/alpine/images/sha256-799a9c761078cbbd04bdef1f357874145511 

4a29c55988e697bfceb97fa14682  

https://github.com/orgs/hermit-os/packages?repo_name=runh
https://hub.docker.com/layers/library/nginx/alpine/images/sha256-799a9c761078cbbd04bdef1f3578741455114a29c55988e697bfceb97fa14682
https://hub.docker.com/layers/library/nginx/alpine/images/sha256-799a9c761078cbbd04bdef1f3578741455114a29c55988e697bfceb97fa14682
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Figure 29: Image composition of a Hermit container based on the Alpine Linux baseimage. 

 

 

Figure 30: Image composition of the nginx-alpine container. 

This result is indicative, that Unikernels can provide very small application images. The comparison 

looks different for different servers, and only a small example is shown here. But it is to be expected, 

that with larger applications, the overhead of bundling QEMU is outweighed by the small image size of 

the application. 

2.3.2 Secure pod attestation 

On our server we have used an Ubuntu version 24.04 and Kubernetes version 1.29.9. To enable TDX, 

the Intel guide has been used and in order to install CoCo, we have followed the instructions outlined in 

the quickstart guide, installing the version 11 of the Operator and CC runtime. After completing the 

CoCo installation, it was necessary to set up Trustee. To do this, we have used the cluster mode, which 

deploys the services as Docker containers22. 

To finish the installation, it is necessary to modify the kernel_params, see Figure 31, in the file 

/opt/kata/share/defaults/kata-containers/configuration-qemu-tdx.toml to point to the IP of the KBS 

container where we have deployed the cluster: 

kernel_params = “agent.aa_kbc_params=cc_kbc::<KBS_URI>:8080” 

Figure 31: Kernel Parameters for KBS Integration. 

 

In the following section startup time and cluster resource consumption will be considered for the 

measures. 

2.3.2.1 Startup time and resource consumption 

The time it takes to deploy the pod in CoCo is counted from the time the command to start the pod is 

executed until its status is “Running”. 

Figure 32 corresponds to the first log found when a pod is deployed. 

 
22 https://github.com/confidential-containers/guest-components/tree/main/attestation-agent/coco_keyprovider 

https://github.com/confidential-containers/guest-components/tree/main/attestation-agent/coco_keyprovider
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[2024-10-16T11:26:04Z INFO kbs::http::attest] Auth API called. 

Figure 32: Authentication Request. 

This log confirms that the KBS has received a request. This marks the start of an authentication process 

to verify the identity of the requestor. If the attestation process is successful, the KBS will provide the 

private key to decrypt the image(s) of the pod container to be deployed. Figure 33 corresponds to the 

last log. 

 

[2024-10-16T11:26:07Z INFO  actix_web::middleware::logger] 172.18.0.1 "GET 
/kbs/v0/resource/default/image-kek/2b5353ec-709a-4254-a311-f8ec8f2bff40 
HTTP/1.1" 200 530 "-" "attestation-agent-kbs-client/0.1.0" 0.005777 

Figure 33: Key Retrieval. 

Therefore, the time it takes to confirm that the TEE is trusted and provides the secrets to the host to 

deploy the pod is around 3 seconds. Although once the host has the private key to decrypt the container 

image, k8s takes about 5-10 seconds to deploy the pod. 

The pods deployed to enable the execution of CoCo consume a total of 150MiB of memory and 3m of 

CPU, with overall memory and CPU consumption being controlled. 

 

 

Figure 34. CoCo Resource Consumption. 

2.3.2.2 Deployment testing 

Two different scenarios were successfully demonstrated. These are the details of those scenarios: 

Successful pod deployment using CoCo 

For this purpose, the image of the container containing the pod to be deployed has been encrypted. These 

keys have been stored in the KBS correctly using skopeo and CoCo Keyprovider. Therefore, if the 

attestation process is successful, the KBS will be able to find the private key associated to the public 

key of the encrypted image and will provide it to the TEE to decrypt the image and deploy the pod. The 

Figure 35 depicts the different characteristics of the pod deployed using CoCo. Providing us with 

information about the runtime used (kata-qemu-tdx), which the one used for Intel TDX, the encrypted 

image used and the state of the pod, among others. 
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Figure 35. Description of the successful pod. 

 

Unsuccessful pod deployment using CoCo 

In this case, we encrypt the container image but do not store the secrets in KBS. Therefore, KBS is not 

able to find the private key and cannot provide it to the TEE to unlock the container image. 

On Figure 36, the error message is “failed to create container task: failed to create shim task: failed to 

handle layer: failed to get decrypt key”. The container is trying to deploy an encrypted image, but it fails 

because it cannot find the private key to decrypt it. It also gives us information about the runtime being 

used, the image and image ID, the last state, etc. 
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Figure 36. Description of the unsuccessful pod. 

2.3.2.3 Custom images 

Finally, a pod has been successfully deployed using a custom image, following the same deployment 

steps as before. In the image, there are several pre-installed packages, enabling the container to function 

as a SDN network controller or as a switch while also interacting with the Kubernetes API. 

During the image encryption process, an issue has been encountered: two encrypted layers corresponded 

to identical plaintext layer, preventing decryption. This issue is documented in a pull request on the 

Confidential Containers GitHub repository [1]. 

Finally, CoCo offers us a good and easy-to-install way to protect workloads in cloud environments, by 

incorporating attestation mechanisms, key management and encryption technologies. Our 

implementation leverages TDX to create TDs, offering isolation and protection to make the environment 

even more reliable. The deployment process has demonstrated scalability, robustness, and efficiency, 

requiring minimal resources. Moreover, its integration with Kubernetes and support for custom images 

makes it a very versatile solution. All this makes CoCo a flexible and independent solution for 

organizations to protect their data without compromising performance or scalability. 

2.4 Unikernel Deployment via SEE-Interface 

As mentioned previously, the SEE-Interface itself runs as a pod in Kubernetes. Thus, first, there is a 

need to deploy the prebuild image via the components.yaml that is offered in the project’s repository23.  

Figure 37 shows the successfully deployed the SEE interface to the OneLab cluster: 

 
23 https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-kernel/secure-execution-environment/see-

interface/-/blob/main/components.yaml 

https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-kernel/secure-execution-environment/see-interface/-/blob/main/components.yaml
https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-kernel/secure-execution-environment/see-interface/-/blob/main/components.yaml
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Figure 37: Deployment of the SEE-Interface itself in the OneLab Kubernetes. 

To demonstrate the process of deploying a safe unikernel via the SEE-Interface, define the service in a 

deployment YAML file for Kubernetes, as represented in Figure 38. The service is a simple webserver 

that is executed as a unikernel. The main difference between a unikernel and a normal container-based 

pod in the deployment yamls is the runtimeClassName field. It must be set to the Unikernel runtime 

runh. Additionally, the nodeSelector field is set, as not all nodes in the OneLab test cluster have this 

runtime installed. 

kind: Service 

apiVersion: v1 

metadata: 

  name: hermit-httpd-service 

  namespace: hermit 

spec: 

  type: LoadBalancer 

  ports: 

    - name: http 

      port: 9975 

      targetPort: 9975 

  selector: 

    app: hermit-httpd-app 

--- 

apiVersion: apps/v1 

kind: Deployment 

metadata: 

  name: hermit-httpd-app 

  namespace: hermit 

spec: 
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  replicas: 1 

  selector: 

    matchLabels: 

      app: hermit-httpd-app 

  template: 

    metadata: 

      labels: 

        app: hermit-httpd-app 

    spec: 

      runtimeClassName: runh 

      containers: 

      - name: hermit-httpd 

        image: ghcr.io/hermit-os/httpd:latest 

        imagePullPolicy: Always 

        ports: 

        - containerPort: 9975 

      nodeSelector: 

        runtime: runh 

Figure 38: Deployment YAML for a Unikernel based webservice 

 

Finally, the pod is deployed, and the service is available via a browser, see below: 

 

 

Figure 39: Successfully deployed Unikernel -based webservice. 

2.5 Conclusion 

The outcomes of task 3.1 provide several promising enhancements for classical cloud infrastructures. 

These are for once the Unikernel extension for Kubernetes, providing means of deploying highly 

specialized and well-isolated application images also on cloud scale. The migration extension allows 

fine-grained pod and deployment migration, which is relevant for locally distributed clusters to provide 

careful service placement, e.g., depending on latency or the CO2 level in the local power-grid. Last, an 

investigation was conducted into the use of confidential computing technologies and provided a setup 

and integration guide for the project and beyond, to allow trustful cloud infrastructures in NEMO. In 

combination with the underlying Kubernetes, these extensions form the Secure Execution Environment 

for service execution in the NEMO kernel. All components’ development is complete, and they are 

successfully deployed in the OneLab cluster. 



 
 

 

 
Document name: D3.3 Nemo Kernel Final Version Page:   36 of 83 

Reference: D3.3 Dissemination:  PU Version: 1.1 Status: Final 

 

  

3 Privacy & Policy Enforcement Framework  

3.1 Overview 

The ultimate objective of NEMO meta-OS concerns the optimal management of hyper-distributed 

services over AIoT-Edge-Cloud continuum. This requires the appropriate definition of Service Level 

Objectives that would drive and, at the same time, safeguard the optimal operation of the deployed 

applications. NEMO meta-OS adopts an intent-based approach that drives the management of the 

NEMO stakeholders’ application requirements and defines their optimal lifecycle management. The 

Privacy & Policy Enforcement Framework (PPEF) component materializes the NEMO meta-OS intent-

based approach supporting the governance of workloads that adhere to high-performance and high-

energy efficiency operations as manifested by the NEMO stakeholders.  

The PPEF that was introduced in D3.1 and further evolved as described in D3.2 introduces the 

mechanism that safeguards the compliance and enforcement of different aspects of the application life 

cycle concerning security, privacy, cost, performance, and environmental impact aspects. D4.2 

“Advanced NEMO platform & laboratory testing results. Initial version” [4] which was submitted in 

M27 and documented the first integrated NEMO meta-OS framework already incorporated, as part of 

the end-to-end integration scenarios that presented functional examples of the PPEF highlighting its role 

within the NEMO framework. This document's final version of the PPEF is detailed, providing the latest 

technical and functional updates and new insights. For the sake of completeness, technical information 

that were already presented in past deliverables might also be included here.  

3.2 Architecture and Approach 

In D3.2, section 3.2, the PPEF concept is introduced illustrating the high-level architecture and 

functional aspects of the tool that concerns the NEMO workload policies and the intents’ enforcement 

and management activities. The present document incorporates the final specifications of the component 

describing the latest updates adopted by the component.  

Moreover, in D3.2 a list of SLOs that are incorporated by the NEMO meta-OS are defined. These SLOs 

concern both the NEMO governed clusters and the NEMO hosted workloads and are defined by the 

NEMO provider during the registration of a cluster (infrastructure) or of a workload (application). These 

SLOs cover both static and dynamic information that describe an asset supported by NEMO. This 

section summarizes the intent/expectation/target list supported by the PPEF component that corresponds 

to dynamic properties which are monitored by the PPEF in the context of NEMO meta-OS.    
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Figure 40: The PPEF architecture. 

The PPEF is vertically oriented in the NEMO meta-OS architecture, implying both direct and indirect 

interfacing and interaction with core NEMO meta-OS components, including the intent-based API, the 

meta-Orchestrator, the CFDRL, and the Monetization and Consensus-based Accountability (MOCA).  

3.3 NEMO workload monitoring 

3.3.1 Intents and Expectations 

NEMO was inspired by the 3GPP specification24 #28.312 which covers the intent-driven management 

of services for mobile networks and has been adapted to suit the project's needs. In principle, an intent 

specifies the expectations, including requirements, goals and constraints for a specific service or 

workflow. The intent may provide information on a particular objective and related details. It is typically 

understandable by humans and needs to be interpreted by the machine without any ambiguity, focusing 

more on describing the "What" needs to be achieved but less on "How" those outcomes should be 

achieved, expressing the metrics that need to be achieved. 

 
24 https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3554 

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3554
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Figure 41: Intent Expectations. 

As indicated in Figure 41, an Intent consists of a set of Expectations (Intent Expectations) which describe 

the requirements, goals, and context to be achieved. For a given expectation the desired characteristics 

of the service are the expectation targets to be achieved. The expectation targets are associated with 

metrics that measure the corresponding values. 

In view of the final version of the PPEF significant implementation enhancements and corresponding 

code refactoring was necessary to optimize the operation of the component. In the context of the 

workload scheduling that is governed by the CFDRL component, workload migration and workload 

scaling (scale out) actions might be triggered. The latter introduced some added complexity to the PPEF 

logic that concerns the calculation of the Computing Workload monitoring which was addressed in the 

finalized PPEF.  

The PPEF has defined six types of intents which correspond to the desired application behaviour that 

NEMO service provider assigns in business terms for a NEMO meta-OS hosted application (workload). 

Specifically, the NEMO meta-OS workload intents are the Computing Workload Intent, the 

EnergyCarbonEfficiency Intent, the Security Intent, the FederatedLearning Intent, the Machine 

Learning Intent and the Network Intent. The associated expectations that are mapped to the 

abovementioned intents are listed in tabulated format below in Table 2, Table 3, Table 4, Table 5, Table 

6, and Table 7. 

 

Table 2: Computing Workload Intent. 

 

Table 3: Energy Carbon Efficiency Intent. 

Expectation Description Target Value Range 

CPU usage Usage in seconds Integer value 

RAM usage Bytes in memory occupied  Integer value 

Expectation Description Target Value Range 

Energy Consumption rate Joules per second (avg in 5’) Integer value 

Energy Efficiency  Joules for every second of CPU 

time 

Integer value 

Energy Consumption Total Joules consumed  Integer value 
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Table 4: Security Intent. 

 

Table 5: Federated Learning Intent. 

 

Table 6: Machine Learning Intent. 

 

Table 7: Network Intent. 

 

The PPEF is responsible for the intent-based NEMO workload monitoring which is governed by the 

Policy Agent Controller (PAC) module which is the heart and mind of the PPEF environment. The PAC 

facilitates the management of the monitoring process of the NEMO workloads, which is driven by the 

intents of the NEMO user. More specifically, the PAC internally realizes two modules which tackle 

distinct aspects of the NEMO workload’s intent monitoring lifecycle, Figure 42.  

 

Figure 42: PPEF PAC internal modules. 

The Intent Validator is a new feature that is introduced for the final version of the PPEF component in 

NEMO meta-OS. The target value that is assigned by the NEMO meta-OS service provider which 

corresponds to an expectation/target attribute is validated through a validation filter. This ensures that 

the monitoring thresholds correspond to the infrastructure specifications and are aligned with the Target 

Value Range of each intent/expectation.   

Expectation Description Target Value Range 

Federated Learning FL environment requirement Yes/No 

Expectation Description Target Value Range 

Security SEE requirement Yes/No 

Expectation Description Target Value Range 

Machine Learning ML environment required  Yes/No 

vRAM vRAM capacity in GB 

requirement 

Integer value 

Expectation Description Target Value Range 

Secure AccessList descriptor IP 

UL Capacity Uplink capacity for 5G slice IP, portNumber and portType 

DL Capacity Downlink capacity for 5G slice IP, portNumber and portType 



 
 

 

 
Document name: D3.3 Nemo Kernel Final Version Page:   40 of 83 

Reference: D3.3 Dissemination:  PU Version: 1.1 Status: Final 

 

  

The Intent Collector is responsible for collecting the intents that are associated with a NEMO workload 

through the Intent-based API and thus triggering the monitoring process.  

The Intent Evaluator interfaces with the Monitoring API and collects the metrics corresponding with 

the intents defined for a particular NEMO workload. Then, it evaluates whether the metrics satisfy the 

targets set by the NEMO client. Subsequently, the updated values that have been collected are stored in 

the PPEF database and communicated through RabbitMQ to either the meta-Orchestrator or mNCC.  

The PAC interfaces internally with the PRESS manager, the PPEF Analytics Engine and a database. In 

addition, it interfaces with the main communication channel of the NEMO meta-OS, RabbitMQ, 

enabling it to communicate its service monitoring analysis, metrics, and alerts to the meta-Orchestrator, 

CFDRL, MOCA, and mNCC components. 

3.4 NEMO Cluster monitoring 

PPEF is responsible for deploying monitoring tools which are responsible for collecting the cluster 

resource consumption measurements from the NEMO incorporated infrastructure that fall into the AIoT, 

Edge and Cloud continuum. The PPEF monitoring the CPU, RAM and HD resource consumption from 

each environment that is managed by the NEMO meta-OS, see Table 8. 

Table 8: Cluster registration KPIs 

3.5 PPEF interactions and interfaces 

This section provides a high-level description of the interactions that concern the PPEF component 

within NEMO meta-OS. The integration results that correspond to the listed interactions are presented 

in D4.2 and will be further updated in D4.3. The latter will also include relevant integration activities 

that concern the 3rd parties that are introduced to the NEMO project through Open Call 1 and 2. 

3.5.1 Intent-based API  

The PPEF component interfaces with the Intent-based API for collecting the various intents that have 

been provided by the user in the framework of NEMO workload registration process. The interaction of 

the PPEF with the intent-based API is further supported by the addition of an intent validator that works 

as a filter over the attributes that are assigned as expectation/target values by the NEMO service 

provider. This process ensures the proper configuration of the intents that are consumed and monitored 

by the NEMO meta-OS.  

KPI Description Target Value 

Availability The percentage of time that the 

cluster is up (99.9%, 99%, 90%) 

Integer value 

Green Energy  The percentage of RES 

powering the cluster. 

(0%,20%,40%,60%,80%,100%) 

Integer value 

Cost The cost type of a cluster (low 

cost, high performance) 

String value 

CPU base rate The CPU cost of the cluster by 

the CPU capacity of the cluster 

(in milli-tokens) 

Integer value in milli-tokens 

Memory base rate The memory cost of the cluster 

by the memory capacity of the 

cluster (in milli-tokens) 

Integer value in milli-tokens 
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3.5.2 LCM 

The PPEF module interfaces with the LCM module to which it dispatches metrics that are monitored, 

and which are associated with NEMO cluster monitoring and workload intents. In addition, PPEF via 

its Analytics Engine is able to provide additional statistical insights into the collected measurements.  

3.5.3 meta-Orchestrator 

The PPEF dispatches to the meta-Orchestrator metrics that are monitored, and which are associated with 

NEMO cluster and workload intents.  

3.5.4 CMDT 

CMDT consumes the PPEF workload intent related information that corresponds to the NEMO-hosted 

workloads.  

3.5.5 CFDRL 

The PPEF module interacts with the CFDRL component and communicates in fixed time intervals the 

NEMO-hosted cluster and workload measurements that are collected via the monitoring tools deployed 

in the NEMO clusters. CFDRL capitalizes on the collected information for its decision-making 

functionality over the NEMO-hosted workloads. 

3.5.6 MOCA 

The PPEF communicates to the MOCA the monitored information that concerns both the NEMO 

governed clusters and the NEMO hosted workloads supporting the accounting and billing functionality 

that is offered by the MOCA. 

3.5.7 RabbitMQ 

The data collected by the PPEF component is communicated both to the intent-based API and to the 

NEMO components via the RabbitMQ module which establishes the main communication backbone of 

NEMO. 

 

3.6 Conclusion 

The final version of the PPEF is described here in the context of D3.3. The PPEF integration with the 

NEMO meta-OS has been presented in detail in D4.2 which details the first integrated NEMO meta-OS 

framework. The final integration results that concern the PPEF component will be further updated and 

described in D4.3. The final version of the PPEF is available in the project’s Eclipse GitLab repository. 

The final development activities pertaining to the PPEF component along with the deployment and the 

proper configuration of the PPEF monitoring tools, namely Prometheus and Kepler, on the NEMO 

development and integration environments (development, staging production) hosted in OneLab 

facilities and in NEMO pilot related infrastructures.  

The final version of the PPEF incorporates new features that were implemented in PPEF. Specifically, 

a new Intent (Machine Learning Intent) was included in the list of the intents that are available to the 

NEMO service provider, the expectation/target validation filter and the code refactoring and 

implementation enhancements that concern the service scale out process that is triggered by the CFDRL 

workload scheduling optimization functionality.  

The PPEF component along with the rest of the NEMO meta-OS will be further validated both in the 

framework of the NEMO pilots and the associated use cases and in the context of the Open Call 1 and 

2 integration and validation activities. 
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4 Cybersecurity & Digital Identity Attestation 

4.1 Overview 

The final version of the access control framework within NEMO implements a sophisticated Identity 

and Access Management (IAM) system. which enforces granular access rights for individual users and 

groups to specified resources. In that respect the Identity Management sub-module covers the lifecycle 

of user identities, including the creation and deletion of user identities, along with the processes of 

provisioning and de-provisioning user access rights. As has been proved in the last phase of the project 

the Identity Management modules successfully manage user identities efficiently and securely, from 

their initial establishment to their eventual removal. The Access Management sub-module performs 

authentication, authorization, and policy management. As proved in the last phase of the NEMO project, 

this module guarantees that only users with the appropriate permissions can access specific resources, 

while it also enforces and monitors, in a continuous manner, the access policies which are constantly 

adapting to the changing security requirements; thus, this module guarantees the security, confidentiality 

and integrity of the overall NEMO system.   

 The final version of the Network Intercommunication Security module utilizes a message broker 

incorporated with the most widely used open-source identity and management sub-system (Keycloak25) 

and the Identity and Management sub-module of NEMO. In that respect it enables secure and 

authenticated communication and synchronization among the NEMO modules supporting secure 

message routing, queuing, and transformation and thus allowing the loose coupling of the message 

sender and the receiver. The Network Intercommunication Security module, as it has been proved in the 

last phase of the project, supports full flexibility and efficient intercommunication of the NEMO 

modules while also triggering high reliability and scalability.  

 NEMO’s source code projects on the Eclipse Foundation Gitlab, starting with the “meta-Orchestrator-

api”, will feature CICD recipes to build and produce cybersecurity metadata artefacts such as SBOM 

and cryptographic signatures. This enforcement of cybersecurity supply chain workflows, or SSDLC, 

strengthens the level of cybersecurity of NEMO’s software solutions and helps in meeting requirements 

from the European Cyber Resilient Act and NIS2 directives. 

 

4.2 Architecture and Approach 

The overall architecture has not changed from the one that has been analytically described in D3.2, 

within the last period all the components have been fully verified and evaluated. 

4.2.1 Identity and Management Module 

The NEMO Access Control was initially integrated with the oAuth2.0 plugin for security. In this updated 

version the integration of NEMO Access Control with the Kong Prometheus plugin26, which allows the 

exposure of workload network metrics, such as its bandwidth and latency, through a Prometheus 

instance is reported. The metrics are scraped by the PPEF and provided for querying. These metrics can 

prove useful to pinpoint any slowdowns in the workload, which can affect the overall performance and 

experience provided by the workload and possibly detect attack attempts (e.g. DoS attacks). 

To better demonstrate the plugin, there is deployment of a simple NGINX server workload, which serves 

a simple login page, Figure 43. 

 

 
25 Keycloak: https://www.keycloak.org/ 
26 https://docs.konghq.com/hub/kong-inc/prometheus/ 

https://www.keycloak.org/
https://docs.konghq.com/hub/kong-inc/prometheus/
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Figure 43: Test NGINX server 

 

The workload has been registered automatically in Access Control, with the usage of the appropriate 

annotations in its K8S Ingress, further details can be found on deliverable D4.2. This automation method 

for registering workloads in NEMO Access Control has been described in more detail in deliverable 

D4.2. Figure 44 focuses on the kong.com/plugins annotation, which is responsible for registering the 

workload in Access Control’s Kong service.  

 

 

Figure 44: Test NGINX Ingress description. 

 

Now, the necessary Kong service, route and plugin have been added successfully to Kong as 

demonstrated in Figure 45, Figure 46 and Figure 47.  

 

Figure 45: NGINX Kong Service   
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Figure 46: NGINX Kong route  

 

            Figure 47: NGINX Prometheus plugin  

 

Figure 48 demonstrates the details of the Prometheus plugin applied to the workload. The plugin has 

enabled exporting the latency and bandwidth metrics of the workload, the status code metrics, which 

can expose the total number of requests to the workload.  

 

Figure 48: Prometheus plugin details  
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In this context, the PPEF can expose those metrics. If a query is carried out, for example, the total 

number of requests it can be observed, Figure 49, the total count, which at the start of the deployment 

is a total of 1. 

 

Figure 49: NGINX total HTTP request count - initial deployment 

 

If the NGINX server is refreshed a few times, it can be observed that the total count has been 

incremented (total=3) and that the PPEF, also, exports information for the total count of the different 

status codes (200, 404).  

 

Figure 50: NGINX total HTTP request count – refresh  

Figure 51 shows querying the change rate of the NGINX server’s bandwidth, in bytes, for a time window 

of 1 day. 

 

Figure 51: The bandwidth change rate for NGINX   

Finally, Figure 52 shows how the latency histograms of the workload can be queried, to observe how 

much time it takes the Access Control Kong to process the request to the server (ms). 

 

Figure 52: NGINX server latency histograms  
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4.2.2 News CNAPP & Software Supply Chain 

This paragraph will first give a brief reminder of previous deliverables. Then it addresses the signature 

validation at runtime. 

D3.1 describes CNAPPs - Cloud-Native Application Protection Platforms - in general and with a focus 

on runtime cybersecurity probes such as Falco. 

 

Figure 53 NEMO D3.1 focus on the detection at runtime (step 7 Gartner DevSecOps) 

D3.2 took a “shift left approach” to address the topic of software supply chain security during 

development time with tools like software composition analyzers that create SBOM and attestation of 

provenance, as well as software signing tools. D3.2 gives the example of Goreleaser as a CICD tool to 

release Golang application with SBOM and signatures. 

 

Figure 54 NEMO D3.2 Focuses on Software Composition Analysis (Step 3 Gartner DevSecOps) and Software 

Signing (Step 5) 
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D3.3 goes back to “runtime” and illustrates step 6 of Gartner DevSecOps, which is signature verification 

at runtime. These steps follow D3.2, which purpose is to generate the metadata such as OCI - Open 

Container Initiative – image signatures or attestation that will be verified at runtime. 

 

Figure 55 NEMO D3.3 focus on signature verification at runtime 

 

In the NEMO project, this software signature verification at runtime uses Kubernetes Validation 

Admission and Admission Controller features from Figure 56. 

 

Figure 56 A Guide to Kubernetes Admission Controllers27. NEMO focuses on validation admission. 

 

Figure 57, Figure 58 and Figure 59 show the principle behind this signature verification that uses 

Kubernetes Admission Controllers. The application to deploy can be anything, from NEMO meta-

Orchestrator-api to KeyCloak, as long as they the apps provide the metadata like signatures. 

 
27 A Guide to Kubernetes Admission Controllers | Kubernetes 

https://kubernetes.io/blog/2019/03/21/a-guide-to-kubernetes-admission-controllers/
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As can be observed in Figure 57, from left to right, a DevSecOps person is responsible for writing 

validation policy for the Kubernetes admission. The DevSecOps also configure or use the OCI image 

registry where software artefact and software signatures have been released. And the DevSecOps also 

writes the Kubernetes manifests that correspond to the deployment of an application. 

The DevSecOps uses the Kubernetes client of its choice, including GitOps, to deploy the policy 

manifests on the Kubernetes cluster, and then the application manifests. Indeed, the policy and 

admission controller must be configured and deployed before the application. This enforced and 

protected the application. On Figure 57, the policy could be phrased like this:  

“In order to be pulled, an OCI container image must have a valid signature verified by the admission 

controller from an accessible root of trust. If the OCI signature is valid, then the image is pulled. 

Otherwise, the DevSecOps chooses a strict policy which prevents the OCI container image from being 

pulled if the signature verification fails. This is the case in Figure 58. Or the DevSecOps could chose a 

less strict policy which pull the OCI container image even if the signature is not valid but warns the user 

about this with an alert message. This is the case in Figure 59.” 

To choose between a strict policy “no pull if not a valid signature”, or a warning only policy “pull even 

if not a valid signature but warn the user”, this depends on the use case. In testing or pre-production 

environments, the signatures might not be generated by the CICD when it is not a software artefact from 

a release branch. In this situation, a warning policy is enough as testing the app is more important than 

protecting the apps. In a production environment, strict policy should be implemented. 

 

Figure 57 OCI Image Verification at Runtime: signature is valid, and policy let the OCI container image be 

pulled 
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Figure 58 OCI Image Verification at Runtime: signature is not valid, and policies says not to pull OCI container 

image (strict policy) 

 

Figure 59 OCI Image Verification at Runtime: signature is not valid, but policy says pull the OCI container 

image but warn user (warn policy) 
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Future work might include doing the same verification with in-toto SLSA attestation of provenance, 

which includes both a signature and information about the software supply chain. One could write a 

policy to prevent installation of OCI image pulled from a wrong registry. 

4.3 Conclusion 

NEMO deliverables D3.1, D3.2, and D3.3 demonstrate the developments, validation, and ways to utilize 

the intercommunication system, the identity management system, and the principle of CNAPPs to 

protect applications during development and runtime. For CNAPPS, it has been demonstrated the full 

loop, where both development and runtime protect different aspects of an application's lifecycle. 

The final version of the Cybersecurity and Digital Identity Attestation framework developed within the 

NEMO project consolidates essential security components to protect services operating across AIoT, 

Edge, and Cloud environments. 

IAM system that offers precise control over who can access what. It is built to be flexible, adapt to 

security needs, and make access decisions based on context and risk. 

Another important point concerns built-in telemetry powered by Prometheus, seamlessly integrated 

through Kong plugins. These two tools give real-time insight into system performance and health while 

also helping to discover early warning signs of potential issues, like service attacks, by analyzing traffic 

trends and user behavior. 

The NEMO framework adopts a proactive and adaptable approach by combining identity management, 

contextual security enforcement, and continuous monitoring. The platform manages digital identities 

independently, secures communications, and ensures that all active components comply with strict 

security policies both now and in the future. 
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5 NEMO meta-Orchestrator 

The NEMO meta-Orchestrator (MO) is an open-source software system designed to manage and 

optimize the distribution of computing workloads across the NEMO cluster network. This core 

component serves as the NEMO platform's central component, allowing efficient and smooth 

coordination between multiple NEMO components to allocate intelligently logical resources. 

5.1 Overview 

The meta-Orchestrator leverages different technologies and tools to achieve the goals, at the same time, 

the component splits itself into multiple subcomponents, as shown in Figure 60. Each subcomponent 

has a different main goal. 

One of these goals is to deploy NEMO ad-hoc workloads built at a higher level from the vanilla 

Kubernetes manifests. These deployments are over a selection of clusters; this selection is the NEMO 

cluster network, or, in other words, all clusters that form IoT-Edge-Cloud devices for the NEMO 

platform also, considering that the role played by the MO is very important in managing this complex 

resource and service flow to enable NEMO to work effectively in a highly dynamic and heterogeneous 

environment. 

On other hand, the MO controls the Placement28 of the network cluster in order to optimize those 

workloads deployments and not overload the network, so also to prioritize green-energy cluster over the 

non-renewable energy clusters or fossil fuels energy clusters. 

It is important to remark that in the initial stages of development of this component, Golang, RabbitMQ, 

Kubernetes, and REST API technologies have been chosen as the stack to meet its requirements. 

Interaction with other components will be mostly asynchronous through RabbitMQ queues, but 

synchronous HTTP direct communication via the REST API can also be used when needed. 

At the top, the MO is a high-level controller over container orchestration clusters such as Kubernetes, 

coordinating resources from the IoT edge to the cloud continuum, ensuring workloads are deployed 

without issues. The NEMO MO comprises key subcomponents and services such as MO API, 

Deployment Controller (DC), and the IBMC (Intent-Based Migration Controller), which effectively 

orchestrate computing workflows. 

  

 
28 Placement: https://open-cluster-management.io/docs/concepts/content-placement/placement/ 

https://open-cluster-management.io/docs/concepts/content-placement/placement/
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5.2 Architecture and Approach 

As previously mentioned, the meta-Orchestrator’s functionality is divided into multiple subcomponents 

to achieve a better software life cycle. This structured and maintainable software lifecycle, enabling 

better separation of concerns, scalability, and extensibility. 

 

.  

Figure 60: meta-Orchestrator Subcomponents 

 

The MO is composed of three main subcomponents, Figure 60: 

• MO API: This subcomponent handles the CRUD operations of the NEMO cluster network and 

operations about the horizontal scaling of the NEMO workloads. From D3.2 to this D3.3 some 

updates have been made regarding the API. 

• MO Agent: This component is based on Event-Driven Architecture (EDA) and communicates 

with the rest of the NEMO components using RabbitMQ queues. The MO Agent handles 

multiple queues and depending on the queues and messages, calls different endpoints with 

different behaviours from the MO API. 

• Deployment Controller (DC): This subcomponent specializes in workload deployments and has 

the logic for MO placements. It calls the API to get cluster-related metrics and decides which 

cluster to use for future workload deployments. 

5.2.1 meta-Orchestrator Hub API 

Since the first version of the API, the service has been evolving to adapt to the project needs. 

Consequently, the final architecture slightly varied as it is represented in Figure 61 

In context and terms of Open Cluster Management tool (OCM29), this API is deployed inside the hub, 

based on the hub-spoke architecture30, the hub is the central cluster where the decision-making happens. 

All the services and subcomponents related to MO are deployed and working inside the hub. 

 

From D3.2 API to D3.3, some changes were made to adapt the service to the NEMO platform. In the 

next paragraphs the changes will be explained in deeper detail. 

The MO Agent has taken over the reading functionality from the queues; this agent used to write into 

queues but now also reads them, takes messages, and calls the API endpoints depending on the messages 

and queues listening. Basically, this agent triggers different behaviours inside the MO, depending on 

what is receiving from other NEMO components such as the Intent-Base API, CFDRL or MOCA.  

 
29 OCM: https://open-cluster-management.io/ 
30 Hub-spoke: https://open-cluster-management.io/docs/concepts/architecture/ 

https://open-cluster-management.io/
https://open-cluster-management.io/docs/concepts/architecture/
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Furthermore, MO API and MO Agent are services based on Kubernetes with inherited capabilities for 

modifying the Vertical and Horizontal scaling to handle petitions without losses. It is also possible to 

have multiple MO Agent instances inside the NEMO platform. 

 

 

 

Figure 61: MO API Architecture. 

The updates previously mentioned are: 

• Removing the worker subcomponents from the MO, this part has been absorbed by the MO 

Agent, assuming its functionality inside the component. 

• Adding new endpoints to handle the needs of the other components and at the same time the 

NEMO needs. See Figure 62. 

• Added JWT Keycloak authentication, based on the Access Control component (Task 3.2)  
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Figure 62: MO API endpoints. 

5.2.1.1 API Endpoints 

OCM 

This section is related to the NEMO cluster network and CRUD cluster operations. Inside the code, the 

MO API uses the OCM libraries and tools to exploit multi-cluster-level operations. 

• GET /getInfoManagedCluster: This endpoint gets all the clusters inside the NEMO cluster 

network. Previously, they must be joined using the /joinManagedCluster endpoint. See Figure 

63 to see the output. 

 

{ 

            "Name": "pro-onelab", 

            "UID": "ff0d5030-5d7c-487d-ad29-42c560251070", 

            "Version": "v1.30.7", 

            "ManagedAPI": "https://xxx.yyy.nemo.onelab.eu:6443", 

            "Capacity": { 

                "cpu": "32", 

                "ephemeral-storage": "387753320Ki", 

                "hugepages-1Gi": "0", 

                "hugepages-2Mi": "0", 

                "memory": "60826000Ki", 

                "nvidia.com/gpu": "16", 

                "pods": "550" 

            }, 



 
 

 

 
Document name: D3.3 Nemo Kernel Final Version Page:   55 of 83 

Reference: D3.3 Dissemination:  PU Version: 1.1 Status: Final 

 

  

            "Allocatable": { 

                "cpu": "32", 

                "ephemeral-storage": "357353459123", 

                "hugepages-1Gi": "0", 

                "hugepages-2Mi": "0", 

                "memory": "60314000Ki", 

                "nvidia.com/gpu": "16", 

                "pods": "550" 

            }, 

            "CreationTimestamp": "2025-04-03T12:24:13Z", 

            "Availability": "99.9%", 

            "Cpus": 32, 

            "Memory": 62, 

            "Storage": 1350, 

            "GreenEnergy": "20%", 

            "Cost": "low_cost", 

            "CpuBaseRate": 10, 

            "MemoryBaseRate": 10, 

            "Status": "True" 

} 

Figure 63: Retrieve spoke clusters from the NEMO Cluster Network endpoint. 

 

• PUT /joinManagedCluster: Join a cluster which was not present in the cluster network earlier. The 

endpoint is idempotent; only a cluster with that name can exist, no matter how many HTTP requests 

get triggered. The JSON payload contents key metrics like CPU count, memory, and storage 

capacities, qualitative contents, such as availability cost and green energy usage. 

 
{ 
    "availability": "80%", 
    "cluster_name": "dev-onelab", 
    "cost": "low_cost", 
    "cpu_base_rate": 10, 
    "cpus": 20, 
    "green_energy": "20%", 
    "managed_api": "https://api.main.nemo.onelab.eu:6443", 
    "memory": 200, 
    "memory_base_rate": 10, 
    "storage": 300 
} 

Figure 64: Payload for joinManagedCluster endpoint. 

 

• DELETE /unjoinmanagedCluster: This endpoint is the opposite of previous endpoint and removes 

a chosen cluster from the NEMO cluster network. In the payload there are the fields “managed_api” 

to put the API Kubernetes API and the name of the cluster. 
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• PUT /updateDb: This endpoint updates the OCM and DB registries to align and ensure the same 

cluster on both sides. Basically, thake the OCM persistence and clone it into the DB. 

 

 

• PUT /updateReplicas: this endpoint updates the number of replicas of the NEMO workloads. In the 

payload are shared the “cluster_name” where the workload is deployed, “workload_id” and 

“number_replicas”. See Figure 65 below to see an example of the payload call. 

 

{ 

  "cluster_name": "staging-cluster", 

  "workload_id": "cbcb208a-d535-434b-bb35-217a64bd516c", 

  "number_replicas": 3, 

} 

Figure 65: Update replicas endpoint payload for triggering Horizontal Scaling 

LCM 

This section is about the endpoint used in the Guided User Interface (GUI) of the NEMO project. This 

call returns all the names and Kubernetes’s API URL for the cluster that MO can handle, understanding 

it as capable of performing CRUD operations with these clusters. 

• GET /getNemoClusters: This endpoint returns the clusters that can be handled within the CRUD 

operations. The NEMO platform's LCM GUI uses this endpoint. 

 

AUTH 

This section is related to the authentication and security within the meta-Orchestrator API.  

• POST /login: This endpoint is used by other NEMO services to properly authenticate and get a JWT 

token. This endpoint has been removed and replaced by the Keycloak authentication. 

 

SEE 

This section is related to SEE services such as the unikernel and integrations with MO. 

• POST /publishToSee: this post triggers a SEE or unikernel deployment inside the NEMO platform 

and set the replying queue (“reply_to”) in the “body” field there’s go the SEE resource to deploy. 

See Figure 66. 

 
{ 
    "reply_to": "amq.gen-Xa2", 
    "verb": "create", 
    "body": { 
        "apiVersion": "v1", 
        "kind": "Pod", 
        "metadata": { 
            "name": "nginx" 
        }, 
        "spec": { 
            "containers": [ 
                { 
                    "name": "nginx", 
                    "image": "nginx:latest", 
                    "ports": [ 
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                        { 
                            "containerPort": 80 
                        } 
                    ] 
                } 
            ] 
        } 
    } 
} 

 

Figure 66:Payload to deploy SEE resources. 

 

5.2.2 meta-Orchestrator Agent (MO Agent) 

The main point of this component is to have a translator for the rest of the NEMO components using 

Event-Driven architecture (AMQP) and transform this into HTTP synchronous requests against the MO 

API or other APIs from projects. 

As seen previously in the overall MO architecture, this MO subcomponent can also be defined as an 

asynchronous agent. MO Agent is handling multiple queues using the Golang library Watermill31 that 

is designed to facilitate the construction of event-driven applications that provide robust tools for 

message-oriented architecture. From the MO Agent, Watermill simplifies publishing and reading the 

queues and adds an abstraction layer over the RabbitMQ library amqp091-go32. 

Inside the code, there are two handlers linked at two queues; these two queues have different logic and 

behavior; see Figure 67 for deeper details: 

 

• Cluster Registration or deregistration flow: From LCM GUI, go through MOCA and after the 

MO Agent. The MO Agent is listening to a queue to get messages about the potential registration 

or deregistration of clusters. 

 

• Horizontal Scaling or Descaling (Number of Replicas/Pods): At the top of Kubernetes, the MO 

API and the MO Agent have been built to respond to the CFDRL component's demands to increase 

or decrease the number of pods. 

 

The MO agent is not just a task runner. It is shaping up as a general-purpose event-driven control planer 

for multi-cluster or hybrid cloud orchestration, being a flexible and compatible approach to automation, 

which could easily be extended and integrated into DevOps operations. 

 
31 Watermill.io: https://watermill.io/docs/getting-started/ 
32 Ampq091.go: https://github.com/rabbitmq/amqp091-go 

https://watermill.io/docs/getting-started/
https://github.com/rabbitmq/amqp091-go
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Figure 67: MO Agent sequence diagram 

 

5.2.2.1 Sequence Diagram Steps 

Based on the above figure, Figure 67. The workflow steps are: 

1. A message is emitted to the input queue 

An external NEMO component sends an operation request (e.g., join, unjoin, or horizontal scaling) 

to the input queue hosted on a message broker such as RabbitMQ. This message contains metadata 

identifying the action, target cluster, operation ID, type of operation (join/unjoin). 

 

2. MO Agent Core receives and parses the message 

The Agent Core (main.go) subscribes to the message queue using Watermill and listens for 

incoming events. Upon receiving a message, it parses the JSON payload and evaluates the action 

field to determine how to route the request. 

The Agent Core routes the request to the correct handler 

Based on the value of action, the Agent Core dispatches the message to one of two handlers: 

• For join or unjoin, it invokes the Cluster Lifecycle Handler 

• For horizontal_scale, it invokes the Scaling Handler 

This routing logic is abstracted using a configurable function map. 

 

3. The handler constructs and sends a request to the MO API 

The appropriate handler (either Cluster Lifecycle or Scaling) builds an API request that reflects the 

message’s intent. This typically includes the target cluster name, identifiers, resource parameters 

(e.g., replica count), or lifecycle directives. It then sends this request to MO API. The Agent finally 
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queued for the reply to messages from the MO API into another different queue providing full 

feedback on the process. 

5.2.3 Deployment Controller (DC) 

As described in Section 5.1 Overview, the Deployment Controller (DC) is responsible for managing 

workload deployments. It leverages RabbitMQ to listen for incoming messages in a queue, where the 

Intent-API publishes workload instances. 

Upon receiving a new message, the DC first extracts the instance_id, a unique identifier for the 

workload. Using this ID, it queries the Intent-API to retrieve the workload’s current status and 

deployment cluster. If the status is "rendered", the deployment process is triggered. 

Next, the DC retrieves cluster metrics from the MO-API for all available clusters. If the message 

received from the Intent API contains an intent, these metrics are used to identify a cluster that meets 

the specified requirements. If no cluster meets the criteria, or if the message lacks an intent, the DC 

selects the cluster with the highest green energy availability for deployment. 

Once a cluster is selected, the manifests included in the Intent API message are encapsulated into an 

OCM33 ManifestWork34 and applied to the HUB35 cluster within the namespace corresponding to the 

selected cluster. This triggers the propagation of the manifests to the target cluster, ensuring the 

successful deployment of the workload. 

Finally, the DC sends a confirmation message back to the Intent API, updating the workload status to 

"deployed", thereby closing the deployment loop. 

 

 

Figure 68: DC Sequence Diagram. 

 
33 https://open-cluster-management.io/ 
34 ManifestWork | Open Cluster Management 
35 Architecture | Open Cluster Management 

https://open-cluster-management.io/
https://open-cluster-management.io/docs/concepts/work-distribution/manifestwork/#:~:text=ManifestWork%20is%20used%20to%20define%20a%20group%20of,resource%20must%20be%20created%20in%20the%20cluster%20namespace.
https://open-cluster-management.io/docs/concepts/architecture/
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5.2.3.1 CI/CD 

The CI/CD pipeline for the MO follows the standard36 established in the NEMO project, ensuring 

consistency and reliability across deployments. GitLab CI is utilized for continuous integration (CI), 

requiring each component to include a valid Dockerfile to enable deployment within the NEMO 

environment. Additionally, a .gitlab-ci.yml file must be present in each component's repository. This 

configuration allows a GitLab runner to automatically build a new container image whenever a commit 

is pushed. The newly built image is then stored in NEMO’s Docker Hub registry37, ensuring an up-to-

date and versioned container repository. 

For continuous deployment (CD), FluxCD38 is employed to automate and streamline the deployment 

process. The deployment manifests for each component are maintained in the NEMO FluxCD 

repository39. Whenever a new version of a component is tagged in GitLab, FluxCD detects the update 

and automatically synchronizes the target clusters with the latest changes. This ensures that all deployed 

services remain current with minimal manual intervention, reducing operational overhead and 

improving system reliability. 

This process is represented in the figures below. Figure 69 illustrates an example of creating a new tag 

for the Deployment Controller. 

In Figure 70, this newly created tag triggers the GitLab runner, which initiates the CI process by building 

a new image of the component. 

Once the build is completed, the updated image is pushed to Docker Hub, as shown in Figure 71. 

Following this, Figure 72 demonstrates how FluxCD automatically detects the new tag and updates the 

corresponding deployment manifest for the Deployment Controller. 

Finally, Figure 73 shows the verification step, where the target cluster is accessed to confirm that the 

tag used in the deployed image matches the newly created one. 

 

 

Figure 69: Gitlab Tagging. 

 

 
36 CI-CD Integration.md · main · Eclipse Research Labs / NEMO Project / Nemo HowTo · GitLab 
37 https://hub.docker.com/u/nemometaos  
38 https://fluxcd.io/  
39 NEMO / FLUX CD · GitLab 

https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo/-/blob/main/CI-CD%20Integration.md?ref_type=heads
https://hub.docker.com/u/nemometaos
https://fluxcd.io/
https://git.synelixis.com/nemo/flux-cd
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Figure 70: Gitlab CI. 

 

Figure 71: NEMO DockerHub. 
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Figure 72: Deployment Manifest. 

 

Figure 73: Deployment Details. 
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5.2.3.2 Workload Migration (IBMC-DC) 

The Intent-Based Migration Controller (IBMC) is responsible for handling workload migrations within 

NEMO whenever a new intent is created and published by the Intent-API. 

This process directly impacts the Deployment Controller (DC), as the cluster where the workload is 

deployed changes. However, the issue is resolved in a straightforward manner. Once the migration is 

completed, meaning the workload’s manifests have been successfully backed up in the source cluster 

and restored in the target cluster, the IBMC sends a message to the DC, instructing it to update the 

ManifestWork corresponding to the migrated workload. 

To ensure continued workload management by OCM, the DC updates the ManifestWork namespace to 

match the name of the new target cluster. This guarantees that the workload remains properly 

orchestrated and monitored after migration. 

5.2.3.3 Network configuration and creation between NEMO Cluster Network (DC-mNCC) 

The MO supports creating virtual networks between pods of different NEMO clusters using the DC 

subcomponent. The meta–Network Cluster Controller (mNCC) creates an extra layer of communication 

between clusters using the L2S-M40 tool. The mNCC communicates with the Intent-Base API and the 

MO; after exchanging messages, the MO establishes the connection by applying the changes in the 

managed NEMO’s workload.  

5.2.3.4 Workload Placement 

Placement means scheduling workloads strategically in the best possible place, based on monitoring 

metrics retrieved. The MO API gathers some metrics as can be seen in Table 9 which includes resource 

availability, CPU usage, RAM usage, and energy sources. The placement strategy determines which 

place a given workload runs in. 

Value and practical placement are crucial for system performance, resource utilization, and energy 

efficiency. With good placement reallocation, systems can achieve better performance and lower 

latency. Moreover, optimized placement helps minimize energy consumption during low-demand 

periods, for example. 

The workload placement strategy needs to be dynamic in a cloud computing environment. 

In the NEMO project, there are different levels of placement. NEMO and meta-Orchestrator handle the 

workloads at multi-cluster levels, meaning they are at a higher level that Kubernetes can manage. While 

Kubernetes seeks and finds the best nodes inside a cluster with different nodes, heterogeneous or 

homogeneous, NEMO and meta-Orchestrator handle the placement between different clusters around 

the NEMO Cluster Network. 

 
40L2S-M: https://github.com/Networks-it-uc3m/L2S-M 

Field Type Title Description 

cluster_name string Cluster name The name of the Cluster that will be deployed. 

Must be between 1 and 42 characters. 

cpus number CPUs The number of CPUs of the Cluster. 

memory number Memory The RAM of the Cluster in GB. 

storage number Storage The disk storage of the Cluster in GB. 

availability string Availability The percentage of time that the cluster is up 

(99.9%, 99%, 90%).  

green_energy string Green energy The percentage of RES powering the cluster 

(0%, 20%, 40%, 60%, 80%, 100%). 

https://github.com/Networks-it-uc3m/L2S-M
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Table 9: Cluster Metrics 

Regarding the above cluster metrics, the Deployment Controller uses these metrics to place the workload 

in the best possible cluster from the NEMO cluster network that MO is handling and managing. 

  

Field Type Title Description 

cost string Cost The cost type of a cluster (low cost, high 

performance). Enum 

cpu_base_rate number CPU base rate The CPU cost of the cluster by the CPU 

capacity of the cluster (in milliseconds). 

memory_base_rate number Memory base rate The memory cost of the cluster by the memory 

capacity of the cluster (in MBs). 
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5.3 Conclusion 

The NEMO meta-Orchestrator (MO), now at this new phase of the project, demonstrates to be a pivotal 

component of the NEMO platform that coordinates workloads across different scenarios while also 

working with event-driven communication architecture and has been built for decentralized cluster 

control and coordination, using tools like OCM, Golang, and RabbitMQ, allowing efficiently manage 

tasks across distributed systems whether it is handling edge devices or scaling services in real-time. 

Thanks to OCM, it uses a hub-spoke architecture for the decentralized distribution of resources and 

coordination, also supporting execution and governance that makes a system scalable, stable, and edge-

friendly. 

The subcomponents of the MO’s architecture are the MO API, the asynchronous MO Agent, and the 

Deployment Controller (DC). The MO API facilitates smart workload placement based on key metrics 

(CPU, memory, green energy usage, and cost) and offers a secure orchestration compatible with a new 

safety authentication.  

The MO as a service is available with integrations such as cross-cluster networking (mNCC), workload 

cluster migrations (IBMC), and secure use of Unikernel deployments (SEE) to isolate crucial parts of 

NEMO, which highlights the MO is ready to provide its services to different NEMO components and in 

extension to different NEMO uses cases. 
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6 Secure Firmware Management on Far-Edge 

In addition to the secure execution environment for microservices discussed in Section 2, the Smart Grid 

use case extends the requirements to include firmware updates for far-edge devices. These devices 

operate remotely, away from the data centre, and connect to the system solely through wireless 

technologies. To address this, a dedicated firmware update system, known as FOTA (Firmware Over-

The-Air), has been integrated into NEMO using meta-Orchestrator calls. This section presents the details 

of the FOTA system and its integration.   

6.1 Nerves architecture for FOTA system 

D3.2 introduced the Firmware Over-The-Air (FOTA) system for distributing and deploying firmware 

images to far-edge devices. These devices are often deployed in harsh environments with limited 

connectivity options, typically relying on public wireless networks such as LTE. This highlights the 

critical need for secure and atomic firmware upgrades. If an update fails, devices could become 

inoperable (bricked) and require manual intervention. 

Within the NEMO project, far-edge devices function as Phasor Measurement Units (PMUs), which play 

a critical role in fault localization for the Grid Disturbance Mitigation System, as detailed in D5.3 [6] 

and D5.4 [7] . These devices are responsible for collecting high-frequency phase readouts, preprocessing 

the data, and transmitting both alerts and readouts to the main cloud node, where they are available for 

further analysis. 

6.1.1 The architecture of FOTA  

The FOTA architecture, illustrated in Figure 74, distinguishes between components deployed within the 

NEMO infrastructure and those located at the far edge. The core FOTA system is integrated into the 

NEMO installation via an API, providing functionalities for core operations, status inspection, and 

firmware updates. The cloud-based FOTA system manages all firmware-related operations, including 

monitoring the status of field devices, logging changes, and maintaining an artifact repository of all 

available firmware versions. 

At the edge, the system employs a parallel firmware partitioning approach, where one partition remains 

active while the other is prepared for deployment. This configuration enables a blue-green deployment 

strategy, reducing the risk of failures and ensuring seamless firmware updates with minimal downtime. 

Communication between the cloud and edge components occurs over an LTE wireless network. The 

control plane is reserved for NEMO instructions and firmware updates, while the data plane handles the 

collection and inspection of PMU data. A dedicated user interface (GUI) is planned for this system, 

though it is not included in the current schema. Further details on this implementation will be provided 

in D5.4 (NEMO Living Labs Use Case Evaluation – Final Version). 

Due to the importance and security, the communication between cloud and edge part is decoupled from 

the common NEMO services. The architecture relies on decoupled MQTT broker, MinIO 41storage and 

PostgreSQL 42database. This approach allows us to easily maintain the system, scale the components by 

demand, and control the throughput. Additionally, decoupling improves the security of the NEMO 

infrastructure. Note that far edge devices are on public networks and use SIM cards of public network 

providers. This expands the surface of possible attacks as devices at the edge could be stolen, 

compromised or the card identities would be spoofed, which could lead to potential DDoS attacks to the 

system. The possibility of this event is low, but even in case of happening, the main NEMO services as 

brokers and storages would not be affected.   

 
41 MinIO: https://min.io/docs/minio/kubernetes/upstream/index.html?ref=docs-redirect 
42 PostgreSQL: https://www.postgresql.org/ 

https://min.io/docs/minio/kubernetes/upstream/index.html?ref=docs-redirect
https://www.postgresql.org/
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Figure 74: The schema of FOTA system. 

6.1.2 Security and System Isolation 

Due to security considerations, communication between cloud and edge components is isolated from 

other NEMO services. The system relies on a dedicated MQTT broker, MinIO for storage, and a 

PostgreSQL database, ensuring greater control over scalability, stability, and security. By decoupling 

these services, the system can be maintained and expanded more efficiently while also reducing potential 

attack vectors. 

Since far-edge devices operate on public networks and use Subscriber Identity Module (SIM) cards from 

commercial providers, they present potential security risks, such as device theft, compromise, or SIM 

identity spoofing. Such incidents could lead to Distributed Denial of Service (DDoS) attacks on the 

system. Although the likelihood of these events is low, the main NEMO services, including brokers and 

storage, remain unaffected due to the segmented system design, ensuring continued stability and 

security. 

6.1.3 Firmware update sequence 

This sequence diagram, Figure 75 ,describes the FOTA update process within the NEMO infrastructure, 

ensuring secure firmware deployment to far-edge devices. The process begins with a new firmware 

version being stored in the FOTA NEMO Cloud Service. The NEMO meta-Orchestrator then requests 

a firmware update, prompting the FOTA system to securely transmit the update to both Bivio and 

Siemens Far Edge Gateways via the control plane. 

Once the gateways receive the update, they confirm delivery by notifying the MQTT Broker. Following 

this, the FOTA system publishes an update message to the MQTT Broker, which then forwards the 

update request to the respective gateways. Each gateway then applies the firmware update locally and 

sends an update confirmation back to the MQTT Broker. 
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Figure 75: NEMO FOTA System Sequence Diagram. 

 

The broker logs the update status and reports it to the FOTA system, which ultimately informs the 

NEMO meta-Orchestrator that the firmware update has been successfully completed. This structured 

process ensures secure and reliable firmware updates while maintaining clear communication between 

cloud services and far-edge devices. 

6.1.4 FOTA PMU Cloud Service API documentation 

This section is a result of the T3.1 task and provides the crucial information for the integration of FOTA 

management into NEMO framework. This API provides operations to interact with devices, including 

retrieving device information, fetching the last recorded data, updating firmware, and listing available 

devices.  

 

Base url 

 /api/v1 

 

GET /devices 

 

Return a list of all available devices. For each available device it returns all data that is saved for each 

device. It also returns the current firmware version, and all data for all phasors. 

 



 
 

 

 
Document name: D3.3 Nemo Kernel Final Version Page:   69 of 83 

Reference: D3.3 Dissemination:  PU Version: 1.1 Status: Final 

 

  

GET /{device_id}/info 

 

Returns a list of device’s information for specific device. Return all the information that is available for 

specific device. It also returns data for all phasors that are connected to device. 

 

 

GET /{device_id}/data 

 

• device_id - integer 

 

Return data for all phasors for given device. For each phasor, there is a field name, unit, angle, and 

magnitude. If device do not have available phasors the empty JSON is returned. 

 

GET /firmware         

 

Returns the list of available firmware files on the cloud service. The filenames are also the key IDs for 

updating firmware using the POST {device}/firmware command.  

 

POST {device_id}/firmware 

 

• PATH:  device_id - integer 

• BODY: { "filename": name of firmware file - string}  

 

POST request for updating a specific device. In body of request filename is specified and based on that, 

correct firmware is flashed on device.  
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7 Measurement and Validation 

This section takes a closer look at the main KPIs set for the NEMO project and the progress made to 

date; each KPI has assigned specific goals, whether it is boosting performance, improving security, 

streamlining integration, or enhancing functionality, finalizing the following breakdown shows what 

has been accomplished so far, and how each component contributes to validating NEMO’s success. 

7.1 Micro-Services Secure Execution Environment KPIs 

Table 10: Micro-Service Secure Execution Environment KPIs 

 
Following Table 10: 

KPI 4.1 is about the TRL of the SEE interface. The SEE was successfully deployed and tested in the 

OneLab cluster, and the integration with the meta-Orchestrator asserted that this KPI could be 

accomplished. 

KPI 4.2 demands the interaction of two open-source container platforms and Unikernels. The NEMO 

project has demonstrated the interaction of two Hermit unikernels on the Kubernetes Infrastructure of 

the OneLab Cluster, as well as on a local unikernel-specific Runtimes. We assert this KPI being 

successfully accomplished as well. 

KPI 4.3 asserts the flexibility of the developed solution. Supporting HermitOS, as well as many other 

OS, such as Ubuntu, Alpine or Debian, this KPI can be considered accomplished as well.  

 

7.2 PRESS, Safety & Policy enforcement framework KPIs 

Table 11:  PRESS, Safety & Policy enforcement framework KPIs 

 

Following Table 11: 

KPI 5.2 demands the definition of more than 20 SLO/KPIs for micro-services offloading decision 

making process. The NEMO meta-OS digests and considers more than 20 SLOs and KPIs in the form 

of either intents or KPIs that drive the orchestration of the NEMO-hosted workloads. These Intents or 

KPIs concern the NEMO-managed resource specifications, the NEMO-hosted workloads intents and 

the MOCA-managed metrics that concern the monetary aspects of a cluster and a service/application.   

KPI # Title 

KPI4.1 Micro-services SEE increases from TRL-4 to TRL-5 by M24 (D3.2a) and to TRL-6 by M31 

(D3.2b) 

KPI4.2 

 

Interface/Federate of at least 2 open-source containers’ platforms and unikernels. 

 

KPI4.3 Support at least 3 different native OS, e.g. Android, ROS and Linux 

KPI # Title 

KPI5.2 Define > 20 SLO/KPIs (including CO2 footprint) for micro-services offloading decision by 

M12 

KPI5.5 Reduce energy consumption >15%. In case of RES usage at the edge, CO2 footprint reduction 

>40%  

KPI8.3 Micro-services policy & PRESS enforcement framework initial by M24(D3.2) and final by 

M31 (D3.3)  
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KPI 5.5 concerns the reduction of energy consumption by 15% and the CO2 footprint reduction by 40% 

for the case that RES usage is available. Both objectives are fulfilled through the optimal scheduling 

and management of the deployed applications and services (workloads) thought the NEMO meta-OS 

framework. More specifically, NEMO applies scaling on deployed workloads and on the corresponding 

pods only when it is necessary. This process is triggered once the target values that concern the workload 

performance capacity are reaching the boundaries set, thus guaranteeing the optimal energy 

management. Regarding the CO2 footprint reduction objective, the NEMO hosted resources (clusters 

and infrastructures) declare their power generation sources upon registration to the NEMO meta-OS 

framework. Then, the NEMO meta-OS is able to schedule (deploy and migrate) workloads to the 

resources that achieve the highest RES usage. This provides for significant RES reduction. Relevant 

validation activities will be performed in the context of NEMO Living Lab use cases.  

KPI 8.3 The 1st release of the PPEF component was available by M24 and presented in detail in D3.2, 

whilst the final release of the PPEF component was available on M31 and described in D3.3. The final 

version component has been updated for performance, stability and enhanced its functionality through 

the monitoring of the GPU received metrics. It is deployed in all OneLab hosted NEMO environments 

and in NEMO pilots.   

7.3 Cybersecurity & Digital Identity Attestation KPIs 

The modules comprising the Cybersecurity & Digital Identity Attestation sub-system of NEMO 

contribute to the materialization of the following two KPIs, Table 12: 

Table 12: Cybersecurity & DIA KPIs 

 

Security by Design incorporates a set of technical principles that aim to embed security controls and 

threat mitigation strategies directly into the architecture and codebase from the earliest design stages. In 

order for a component to be Cybersecure “by design” they should support one or more of the following 

features. A foundational concept is the Principle of Least Privilege (PoLp), which dictates that processes, 

services, and users should operate with only the permissions they need to function by reducing the attack 

surface and limiting the blast radius of a compromise. This is enforced through fine-grained access 

controls, privilege separation, and the use of secure tokens or scoped API keys. Defense in Depth (DiD) 

extends this approach by layering security mechanisms across multiple tiers such as input validation, 

access controls, encryption, monitoring, and anomaly detection so that failure in one layer does not lead 

to full system compromise. Systems are designed to fail securely, meaning exception handling and error 

states are coded to avoid exposing sensitive data, stack traces, or internal logic; defaults are set to deny 

access unless explicitly permitted. Secure defaults ensure that all deployments begin with hardened 

configurations like disabled debug modes, strong password policies, and TLS enabled by default 

minimizing risk from misconfiguration. During the design phase, threat modelling is conducted to 

identify potential attack vectors, using methodologies like STRIDE or DFDs (Data Flow Diagrams) to 

systematically analyze data paths and trust boundaries. Identified threats are mitigated with specific 

controls such as input sanitization, rate limiting, or authentication checks. Throughout the development 

lifecycle, continuous testing and validation are performed via automated static and dynamic analysis, 

dependency scanning (e.g., Snyk, OWASP Dependency-Check), fuzz testing, and regular penetration 

testing. Security findings feed back into the CI/CD pipeline, ensuring secure code is maintained across 

iterations. By implementing these technical practices consistently, systems achieve a resilient, security-

first posture that can withstand real-world adversaries. 

 

KPI # Title 

KPI8.1 Cybersecure “by design” components (i.e. network zones, CF-DRL, SEE, CMDT, MOCA) 

≥ 5. 

KPI8.2 Supplementary cybersecurity methods & Digital Identity Attestation ≥ 6. 
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In that respect, in terms of KPI8.1 the intercommunication module is cybersecure by design since it 

fully supports secure defaults and defence in depth through the relevant modes and layers of TLS, The 

Identity management system has been developed from scratch so as to be full in line with the defence 

in Depth approach, by layering several mechanisms for access controls, encryption, monitoring. The 

CNAPP - Cloud-Native Application Protection Platform developed is perfectly inline, by design, with 

continuous testing and validation testing throughout the development and operation phases. As a result, 

the modules developed as part of the Cybersecurity & Digital Identity Attestation sub-system have three 

distinct components that contribute to KPI8.1. 

Moreover, a number of additional such components which support the security “by design “principle 

will be listed in the final deliverable of WP4.  

In terms of KPI8.2 Modern cybersecurity methods leverage a layered and adaptive approach, integrating 

preventive, detective, and responsive controls to protect systems against evolving threats. Core 

techniques include network segmentation, zero trust architecture, multi-factor authentication (MFA), 

behavioral analytics, and endpoint detection and response (EDR). Cryptographic protocols such as TLS 

1.3, mutual TLS, and elliptic curve cryptography (ECC) are employed to ensure secure communication 

and data integrity, while tokenization, hardware security modules (HSMs), and secure enclaves are used 

to protect sensitive assets at rest and in use. Within this context, Digital Identity Attestation systems 

play a critical role in verifying the authenticity and integrity of user and device identities. These systems 

often rely on Public Key Infrastructure (PKI), biometric verification, verifiable credentials (VCs), and 

decentralized identifiers (DIDs) to establish trust in a cryptographically secure and privacy-preserving 

manner. Identity proofs may include signed assertions from trusted authorities, leveraging standards 

such as OAuth 2.0, OpenID Connect, FIDO2/WebAuthn, and W3C Verifiable Credentials, with 

attestation mechanisms built to detect device spoofing, tampering, or replay attacks.  

Across those lines the developed Cybersecurity & Digital Identity Attestation sub-system of NEMO 

includes the full TLS cybersecurity components and supports an OAuth2.0 compatible authentication 

mechanism while the Digital Identity Management module is a full Digital Identity Attestation system 

complying with the OAuth2.0 standard. As a result, the modules developed as part of the Cybersecurity 

& Digital Identity Attestation sub-system support one full set and cybersecurity methods as well as two 

Identity Attestation systems thus contributing to KPI8.2 with three elements. 

Moreover, three additional cybersecurity methods are employed in the CFDRL sub-system developed 

in WP2 for increasing the resistance to cyberattacks to distributed AI systems thus contributing with 

three more elements to KPI8.2 More elements of KPI8.2 will be listed in the final deliverable of WP4.  

7.4 NEMO meta-Orchestrator KPIs 

Table 13: MO KPIs 

 

Following Table 13: 

KPI5.1: The main solution that allows NEMO to orchestrate multiple microservices is Kubernetes 

(K8s), the meta-Orchestrator relies on OCM which supports the entire lifecycle of a K8s cluster, and it 

is used to provide multi-cluster orchestration across diverse computational environments. In the initial 

phase of the NEMO project the main K8s distribution tested where K8s, K3s, Kind and OpenShift 

nevertheless other distributions are also supported by this solution (Amazon EKS, Google GKE, Azure 

AKS, among others). 

KPI # Title 

KPI5.1 Interface >3 local micro-services schedulers/ Orchestrators. 

KPI5.3 Micro-services discovery 10k; Simulated repositories> 100. 

KPI5.4 Low latency dynamic migration decision (<1 sec), zero-downtime service reschedules 

(Blue-Green) (<10 ms). 
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Through the SEE, NEMO is able to address secure and lightweight deployments on the Hermit operating 

system which is a rust-based, lightweight unikernel. 

Specialized deployments on embedded systems through BEAM virtual machines are supported in 

NEMO thanks to FOTA component. 

KPI:5.3: The programmatic entry path for NEMO platform is the Intent-API SDK. The service 

application K8s descriptors can be package as Helm charts that are processed by the Intent-API to check 

its syntax and break it down into custom resource definitions that our meta-Orchestrator is able to 

process across the different target clusters managed by the NEMO platform. There are thousands of 

Helm charts available, most of them in public repositories that include a large catalog of pre-packaged 

K8s applications. Furthermore, Helm charts can be based on docker public images hosted on public 

repositories like DockerHub which extend further the possibility to package our services based on 

container public images. 

KPI5.4: The dynamic migration decision may vary depending on the constraints defined for a deployed 

service, these constraints are assessed by the PPEF and evaluated by the CFDRL module in order to 

communicate to the NEMO kernel which is the best placement or rescheduling action (scaling/migrate) 

for a concrete workload, taking into consideration the overall conditions of the managed clusters. 

When it is requested the migration action is triggered by the IMC component in charge of backing up 

the resources and persistent volumes and restore them to a different target cluster with zero-downtime 

from users’ perspective.  
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8 Conclusions 

This deliverable D3.3 is the culmination of the work done in Work Package 3 (WP3) of the NEMO 

project, including all the technical effort, evaluations, and integrations made over the last months and 

transformed into a complete and mature version of the NEMO Kernel. The four core components (SEE, 

PPEF, Cybersecurity & Digital Identity Attestation, and NEMO meta-Orchestrator) have matured to a 

stable and working state. 

As development progressed, efforts were established not only to implement advanced features but also 

to integrate each component into the NEMO ecosystem. The SEE component can manage lightweight 

unikernels and migration in Kubernetes nodes, allowing NEMO to achieve performance objectives in 

distributed edge-to-cloud systems, decreasing time and memory usage and making them ideal for edge 

environments.  

The PPEF component has matured into key monitoring tools for services and now works with well-

defined intents, promoting better resource utilization and compliance with service level targets, its tools 

can collect metrics, analyze them, and pipeline insights into other components and NEMO services, 

such as the meta-Orchestrator and the CFDRL, acting as the learning system. 

The Cybersecurity and Digital Attestation component, working aligned with its modules, now provides 

an integral layer of trust, with secure access control and runtime security checks. In addition, this 

component incorporates Cloud-Native Application Protection Platform (CNAPP) principles to secure 

applications throughout the full software lifecycle.  

Now, there is the meta-Orchestrator, which binds it all together, becoming a microservice for workload 

management, scaling decisions, and component communication. As such, it will use metrics from the 

other modules and apply intelligent control to keep the system operating optimally in a distributed 

environment.  

Finally, the NEMO kernel has evolved and been tested with the help of the NEMO components, making 

a secure, extensible, and efficient system possible. The base laid is robust and sufficiently generic to 

accommodate use cases, pilots, and integrations yet to come outside of WP3 scope.  
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10  Annexes 

10.1 Guidelines for TDX and Confidential Containers Technology 

First, the server should have enough hardware capabilities to enable TDX. To do so, it has been used 

this guide 6, the beginning starts with the following commands as can be observed in Figure 76, and 

Figure 78: 

 

git clone -b main https://github.com/canonical/tdx.git 

cd tdx 

sudo ./setup-tdx-host.sh 

Figure 76: Enable Intel TDX in Host OS 

After that, reboot the machine. 

 

10.1.1 Enable the TDX in the BIOS 

To enable the BIOS in a proper way it is necessary to follow the next steps, as is represented in Figure 

77: 

 

Required BIOS Settings for Intel TDX: 

• Memory Settings: 

o Disable Node Interleaving  

• Processor Settings: 

o Enable x2APIC Mode  

o Disable CPU Physical Address Limit  

• System Security: 

o Set Memory Encryption to Multiple Keys. 

o Disable Global Memory Integrity. 

o Enable Intel Trusted Domain Extension (TDX). 

o Set TME-MT/TDX Key Split to a non-zero value (such as, 1) 

o Enable TDX Secure Arbitration Mode Loader (SEAM). 

o Enable Intel(R) SGX. 

 

https://github.com/canonical/tdx.git
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Figure 77: System BIOS settings. 

 

sudo dmesg | grep -i tdx 

Figure 78: Verify Intel TDX is Enabled on Host OS 

If you have “virt/tdx: module initialized” as the output of the message means that TDX has initialized 

properly. 

 

TDX in the server has been enabled; to give it a try deploying a TD and enable the remote attestation to 

follow the steps 6, 7 and 8 of this guide [2].  

 

Install Confidential Containers 

Deploy the operator by running the following command (we are using the latest version, which is 

v0.12.0) like in Figure 79: 

kubectl apply -k github.com/confidential-containers/operator/ 
config/release?ref=v0.12.0 

Figure 79: Operator deployment. 

Wait until the pod has the STATUS “Running” like in Figure 80: 

kubectl get pods -n confidential-containers-system --watch 

Figure 80: wait for “Running” status 

Now, proceed with deploying the CC Runtime, responsible for creating the necessary runtimes for the 

deployment, Figure 81: 

kubectl apply -k github.com/confidential-containers/operator/config/ 
samples/ccruntime/default?ref=v0.12.0 

Figure 81: CC Runtime deployment 

Wait until the pod has the STATUS “Running” as like in Figure 82: 

kubectl get pods -n confidential-containers-system --watch 

Figure 82: wait for “Running status” 

To verify that everything has been installed correctly like Figure 83 below: 



 
 

 

 
Document name: D3.3 Nemo Kernel Final Version Page:   78 of 83 

Reference: D3.3 Dissemination:  PU Version: 1.1 Status: Final 

 

  

kubectl get runtimeclass 

Figure 83: Kubectl get runtimeclass 

The output should be Table 14: 

 

Table 14: Kata container installation. 

 

 

 

 

 

 

 

 

 

Deployment of the Pod in CoCo by Encrypting and Signing the Image 

 

# Clone KBS git repository 

git clone https://github.com/confidential-containers/trustee.git 

cd trustee/kbs 

export KBS_DIR_PATH=$(pwd) 

 

# Generate a user auth key pair 

openssl genpkey -algorithm ed25519 > config/private.key 

openssl pkey -in config/private.key -pubout -out config/public.pub 

 

cd .. 

 

# Start KBS cluster 

docker-compose up -d 

Figure 84: CoCo deployment 

Encrypting the Image 

To encrypt the image, we use skopeo. To install it, follow these instructions [3]. You must have at least 

version 1.16.0 of skopeo43. For this example, the image busybox:latest has been used, but any image can 

be used, as can be observed in Figure 85. 

 
43 https://github.com/containers/skopeo/blob/main/install.md 

Name Handler Age 

kata      kata-qemu                   37h 

kata-clh                         kata-clh 37h 

kata-qemu                     kata-qemu 37h 

kata-qemu-sev          kata-qemu-coco-dev   37h 

kata-qemu-sev             kata-qemu-sev             37h 

kata-qemu-snp             kata-qemu-snp             37h 

kata-qemu-tdx             kata-qemu-tdx             37h 

https://github.com/containers/skopeo/blob/main/install.md
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# edit ocicrypt.conf 

tee > ocicrypt.conf <<EOF 

{ 

    "key-providers": { 

        "attestation-agent": { 

            "grpc": "127.0.0.1:50000" 

        } 

    } 

} 

EOF 

 

# encrypt the image 

OCICRYPT_KEYPROVIDER_CONFIG=ocicrypt.conf skopeo copy --insecure-policy --
encryption-key provider:attestation-agent docker://library/busybox 
oci:busybox:encrypted 

Figure 85: Image encryption. 

With this last command, several things happen inside the cluster: 

• The CoCo Keyprovider generates a random key and a key identifier. Then, it encrypts the image 

using this key. 

• The CoCo Keyprovider registers the key with the key identifier in the KBS. 

Now, upload the image, Figure 86: 

skopeo copy oci:busybox:encrypted [SCHEME]://[REGISTRY_URL]:encrypted 

Figure 86: Upload image. 

In our case, Figure 87: 

 

cosign sign --key cosign.key docker.io/jorgealmansa/busybox:encrypted 

Figure 87: Image Signing. 

Next, edit an image pull validation policy file. 

The file is called security-policy.json: 
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{ 

    "default": [{"type": "reject"}], 

    "transports": { 

        "docker": { 

            "[REGISTRY_URL]": [ 

                { 

                    "type": "sigstoreSigned", 

                    "keyPath": "kbs:///default/cosign-key/1" 

                } 

            ] 

        } 

    } 

} 

Figure 88: Security policy 

You need to replace [REGISTRY_URL] with docker.io/jorgealmansa/busybox:encrypted in our case. 

Register security-policy.json in the KBS storage: 

 

mkdir -p $KBS_DIR_PATH/data/kbs-storage/default/security-policy 

cp security-policy.json $KBS_DIR_PATH/data/kbs-storage/default/ 
security-policy/test 

Figure 89: Register security policy in KBS storage. 

Deploying an Encrypted Image Using CoCo on CC HW 

This is an example YAML file for deploying encrypted images: 

 

cat << EOT | tee encrypted-image-test-busybox.yaml 

apiVersion: v1 

kind: Pod 

metadata: 

  labels: 

    run: encrypted-image-test-busybox 

  name: encrypted-image-test-busybox 

  annotations: 

    io.containerd.cri.runtime-handler: [RUNTIME_CLASS] 

spec: 

  containers: 

  - image: [REGISTRY_URL]:encrypted 

    name: busybox 

  dnsPolicy: ClusterFirst 

  runtimeClassName: [RUNTIME_CLASS] 

EOT 

Figure 90: Deploying encrypted images. 
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In our case, we replace [RUNTIME_CLASS] with kata-qemu-tdx and [REGISTRY_URL] with 

docker.io/jorgealmansa/busybox. 

 

Finally, the IP of the KBS service must be configured in the file /opt/kata/share/defaults/kata-

containers/configuration-qemu-tdx.toml. 

To do this, perform a docker network inspect of the KBS cluster to see the IPs of each container. 

Then, modify the kernel_params line so that it contains agent.aa_kbc_params=cc_kbc::<KBS_URI>, 

for 

"agent.aa_kbc_params=cc_kbc::http://172.19.0.1:8080" (for example). 

 

If you encounter the error tee_qv_get_collateral failed: 0xe019, it is due to a network issue, meaning 

that your AS cannot connect to the local PCCS. 

 

There are two ways to resolve this: 

- If you do not have the PCCS service installed, use the following line in 

/config/sgx_default_qcnl.conf: 

 

{"collateral_service": "https://api.trustedservices.intel.com/sgx/ 
certification/v4/"} 

Figure 91: Resolving PCCS fail. 

- If PCCS is installed (sudo systemctl status pccs), you should use your machine's IP in the file 

/config/sgx_default_qcnl.conf, since the AS container must connect to that IP, Figure 92: 
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{ 

  // *** ATTENTION : This file is in JSON format so the keys are case sensitive. 
Don't  
change them. 

   

  //PCCS server address 

  "pccs_url": "https://<IP-SERVER>:8081/sgx/certification/v4/" 

 

  // To accept insecure HTTPS certificate, set this option to false 

  ,"use_secure_cert": false 

 

  // You can use the Intel PCS or another PCCS to get quote verification 
collateral.  Retrieval of PCK  

  // Certificates will always use the PCCS described in pccs_url.  When 
collateral_service is not defined, both  

  // PCK Certs and verification collateral will be retrieved using pccs_url   

  //,"collateral_service": 
"https://api.trustedservices.intel.com/sgx/certification/v4/" 

 

  // If you use a PCCS service to get the quote verification collateral, you 
can specify which PCCS API version is to be used. 

  // The legacy 3.0 API will return CRLs in HEX encoded DER format and the 
sgx_ql_qve_collateral_t.version will be set to 3.0, while 

  // the new 3.1 API will return raw DER format and the 
sgx_ql_qve_collateral_t.version will be set to 3.1. The pccs_api_version  

  // setting is ignored if collateral_service is set to the Intel PCS. In this 
case, the pccs_api_version is forced to be 3.1  

  // internally.  Currently, only values of 3.0 and 3.1 are valid.  Note, if 
you set this to 3.1, the PCCS use to retrieve  

  // verification collateral must support the new 3.1 APIs. 

  //,"pccs_api_version": "3.1" 

 

  // Maximum retry times for QCNL. If RETRY is not defined or set to 0, no 
retry will be performed. 

  // It will first wait one second and then for all forthcoming retries it 
will double the waiting time. 

  // By using retry_delay you disable this exponential backoff algorithm 

  ,"retry_times": 6 

 

  // Sleep this amount of seconds before each retry when a transfer has failed 
with a transient error 

  ,"retry_delay": 10 

 

  // If local_pck_url is defined, the QCNL will try to retrieve PCK cert chain 
from local_pck_url first, 

  // and failover to pccs_url as in legacy mode. 
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  //,"local_pck_url": "http://localhost:8081/sgx/certification/v4/" 

 

  // If local_pck_url is not defined, set pck_cache_expire_hours to a none-
zero value will enable local cache.  

  // The PCK certificates will be cached in memory and then to the disk drive.  

  // ===== Important: Once the local cache files are created, currently there 
is no other way to clean them other 

  //                  than to delete them manually, or wait for them to expire 
after "pck_cache_expire_hours" hours. 

  //                  To delete the cache files manually, go to these foders: 

  //                       Linux : $AZDCAP_CACHE, $XDG_CACHE_HOME, $HOME, 
$TMPDIR, /tmp/ 

  //                       Windows : $AZDCAP_CACHE, $LOCALAPPDATA\..\..\LocalLow 

  //                  If there is a folder called .dcap-qcnl, delete it. 
Restart the service after all cache  

  //                  folders were deleted. The same method applies to 
"verify_collateral_cache_expire_hours" 

  ,"pck_cache_expire_hours": 168 

 

  // To set cache expire time for quote verification collateral in hours 

  // See the above comment for pck_cache_expire_hours for more information on 
the local cache. 

  ,"verify_collateral_cache_expire_hours": 168 

 

  // You can add custom request headers and parameters to the get certificate 
API. 

  // But the default PCCS implementation just ignores them.  

  //,"custom_request_options" : { 

  //  "get_cert" : { 

  //    "headers": { 

  //      "head1": "value1" 

  //    }, 

  //    "params": { 

  //      "param1": "value1", 

  //      "param2": "value2" 

  //    } 

  //  } 

  //} 

} 

Figure 92: PCCS config file. 


