Next Generation Meta Qpel;q/ System
|

D3.3 Nemo Kernel

Document Identification

ersion

Status Due Date 31/03/2025

Version . V‘ Submission Date 15/04/2025
h

Related WP Document Reference D3.2

Related Deliverable(s) o Dissemination Level (*) PU

Lead Participant [Lead Author Rubén Ramiro

Alberto del Rio (UPM)

ATOS, COMS, ICCS,

Alexandru Vilceloiu
(SIM)
Mircea Vasile (SIM)

Contributors INTRA, RWTH, SYN, RGEUEEH
STS, TID, TSG

continuum, meta-Orchestration, micro-services, privacy & policy, cybersecurity, embeded systems

This document is issued within the frame and for the purpose of the NEMO project. This project has received funding from the European
Union’s Horizon Europe Framework Programme under Grant Agreement No. 101070118. The opinions expressed and arguments employed
herein do not necessarily reflect the official views of the European Commission.

The dissemination of this document reflects only the author’s view, and the European Commission is not responsible for any use that may be
made of the information it contains. This deliverable is subject to final acceptance by the European Commission.

This document and its content are the property of the NEMO Consortium. The content of all or parts of this document can be used and
distributed provided that the NEMO project and the document are properly referenced.

Each NEMO Partner may use this document in conformity with the NEMO Consortium Grant Agreement provisions.

(*) Dissemination level: (PU) Public, fully open, e.g., web (Deliverables flagged as public will be automatically published in CORDIS project’s
page). (SEN) Sensitive, limited under the conditions of the Grant Agreement. (Classified EU-R) EU RESTRICTED under the Commission
Decision No2015/444. (Classified EU-C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified EU-S) EU
SECRET under the Commission Decision No2015/444.

Document Information

&8s NEMO

List of Contributors

Name ‘ Partner

Rubén Ramiro ATOS

Ignacio Prusiel

Enric Pages

Matija Cankar COMS

Tomaz Bracic \
Gregor Cerar | (b
Orestis Lagkas ICCS

Dimitrios Skias INTRA “N
Stefan Lankes RWTH O

Jonathan Klimt

Martin Kroning

Yannis Papaefstathiou STS q ’

Ilias Seitanidis SYN

Mattin A. Elorza TID '

Alejandro Muiiiz %

Nicolas Peiffer SG y

Version

Document History

Date

Change editors

Changes

Initial version
0.1 08/01/2025
TOC creation
02 24/01/2025 First version of the executive Summary and
[Introduction section.
0.3 15/02/202 o .
(STS), and Jonathan Klimt Added first contributions into Sections 2, 3,4 and 5.
(RWTH)
Mattin A. Elorz (TID), Added . the de & Deployment Mlgratlon
Tlias Seitanidis (SYN) subsection, rgbullt section 2, and added section 2.3
0.4 25/02/2025 o . ’ Nerves architecture for the FOTA system, made
and Dimitrios Skias . .
changes in the KPIs section, and updated the format
(INTRA)
and style
Orestis Lagkas (ICCS), Added Pod & Deployment Migration subsection,
0.5 17/03/2025 Jonathan Klimt (RWTH), |rebuilt on section 2 and add sub section 2.3 Nerves
’ and Matija Cankar architecture for FOTA system, changes in KPIs
(COMS) section, and updated format and style.
0.6 23/03/2025 | Orestis Lagkas (ICCS), Restructured and added new content Section 2,
' Jonathan Klimt (RWTH), |updated Section-3, updated KPIs section.

Document name:

D3.3 Nemo Kernel Final Version

Page: 2 of 83

Reference:

D3.3 [Dissemination:

[PU

[Version: [1.1 Status: |Final

&8s NEMO

Dimitrios Skias (INTRA),
Mattin A. Elorz (TID)

0.7 25/03/2025

Matija Cankar (COMS),
and Yannis Papaefstathiou
(STS)

Section 2.4 Nerves moved to Section 6, added
changes section 4, and restructured, updated KPIs
section, and updated format and style.

0.8 01/04/2025

Rubén Ramiro, Enric
Pages, Ignacio Prusiel
(ATOS), and Dimitrios

KPIs section changed, section 5 updated and added
content in KPIs Section 8, updated Section 3.

Skias (INTRA)
0.9 08/04/2025 | Rubén Ramiro (ATOS) Added new content to Section 5, change main
structure of the document.
10 |11/04/2025 Rubén Ramiro (ATOS) | Alizned document with format ang & ded
deliverable conclusion.
1.1 15/04/2024 | ATOS Quality check and submission ‘m
Quality Control
Who (Partner short name) 7 Approval Date
Deliverable leader Rubén Ramiro (ATOS) 11/04/2025
Quality manager Rosana Valle Soriano (AN) 15/04/2025
Project Coordinator Enric Pages (ATOS) y 15/04/2025
Technical Manager Ilias Seitanidis @XN) 14/04/2025

Y

&>

o

Document name:

D3.3 Nemo Kernel Final Version

Page: 30f 83

Reference:

D3.3 [Dissemination: [PU

[Version: [1.1 Status: |Final

Table of Contents

Document INFOrMEAtIONcocuiiiuiiiiiiie ettt ettt b e b e st e et e et eebe e bt e sbeessteeaeeenteebeens 2
TaDIE OF COMEENLS ...ttt ettt h ettt ettt e a et e s bt e et e ebe e e e bt este bt ese et e sbeeneentesneeneens 4
ST OF TADIES ...ttt ettt bttt ettt e b e e b e e shee e st e embe e be e bt e bt e sbeesateenteebeens 6
LIST OF FIZUIES ..ottt ettt sttt et et e e bt e bt e shte e st e et e eabe e bt e bt e sbeesseeenteenbeans 7
LISt OF ACTOMYIMIS ...veeuvieiiereieeieeiieteeseestteseteesteesteesteesseesseessseanseesseesseesseesssesssenssessseessessssenssennns

EXECULIVE SUIMIMATY ...coutiitiiiiiiiiee ettt ettt ettt ettt e bt e bt e sbte s st e eateenteenbeesbeeeseezaceen

I INETOAUCLION <.ttt ettt ettt ettt et et et e b e st e e e eae g
1.1 Purpose of the dOCUMENL.........cccueiiiiiiiiiieciie et evee ey
1.2 Relation to other project WOrK..........covevvvevierieriiniieiieieee e e R
1.3 Structure of the document.............cocceeriiriiiiiiiiieeesee e, o 12

2 Micro-services Secure Execution Environment &

2.1 OVEIVIBW ..oouiiiiieiieiteiteette sttt et e sieesitesaeeteebeesseesseesaee ezt o

2.2 Architecture and Approachcccceeeveeevvecieeveenieneesreennen,
2.2.1 Unikernel Runtime for Kubernetes
2.2.2

223
224

2.3.1 Unikernel image Size,0VErNEIH..........cceevvierierieeiieiiere ettt stestresreereesreesraeseneseneens 29

232 Secure pod atteSTAIONY.. . co.eevirrieiertiriee sttt ettt ettt ettt st et eaees 30
2.4 Unikernel Deplo;;men i 1§ 121 USRS URUPSRUUSRIRR 33
2.5 Conclusion ... 4.....

3 Privacy & Policy

3.1 Overview

3.2 Archite AR APPTOACKH ...ttt et nae e 36
3.3 WPTKIOAd MONILOTINGvievieiieeiiieiieteeteese e s e eteebe et e esteestresebeeeseesseesseesseesssesssessseassenns 37
Intents and EXPeCtationscccverierierieriiieieerite ettt st eeeeteeseee s e 37

34 O ClIUSEET MONILEOTING.....ecuvievieerieeiieeireereereereesseesteesteessreesseesseesseesseesssesssesssesssesssesssessssessees 40
3.5 PPEF interactions and NteTfaces.........cceeteruiririieririeerieeiesie ettt 40
3.5.1 Intent-based APLooiiiee e 40
3.5.2 LCM ettt st b et b et b ettt et be e 41
353 MNEEA-OTCHESIIALOT ...ttt ettt ettt et e e et e e steeneeeesseeneenseeneenes 41
354 CIMDIT ...ttt bt ettt st b e e sttt e bt et s bt et b e et e b bt enee 41
355 (] 23 D) 2 TSRS 41
3.5.6 IMOCA .ttt ettt b ettt ettt s b et e sttt et sbe et e b bt enee 41

Document name: D3.3 Nemo Kernel Final Version Page: 4 of 83

Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

3.5.7 RADBIVIQ c.vooeeeooeeeee e eeee e sese e e e s e eeeeeeeeeessseesesseseeesseeeeesseeeeeees 41

3.6 COMNCIUSION ..ttt ettt ettt ettt e bt e st e et e e bt et e e sb e e sb e e saeeeateebe e bt e saeesateeabeenbeenseanseas 41

4 Cybersecurity & Digital Identity AtteStation..........cccvervveerieeriieriienieeriereeseeseeseeenessreesseesseessnesssennns 42

4.1 OVEIVIBW ..ttt ettt ettt ettt e bt e s bt e s a e e sateeab e e bt et e e bt e sb e e saeeeateemteebeeebteesteemteeabesmbeenbeenseenaeas 42

4.2 Architecture and APPIOACHcccviiiiiiiieciece ettt s e e neeneeas 42

4.2.1 Identity and Management Module............cocoeiiiiiiiiiiiiiieee e 42
422 News CNAPP & Software Supply Chain.........ccoeceevienienienieniecieeeeeesee e

.3 CONCIUSION .vvvvviiiieieieeieeee et eee et ee et ee et aeeea e se s eae s eaeaeaeaeseaaaasaaasesesesaaaaesesesaseaaasassesssssessnsaesesd
5 NEMO MEtA-OTCHESITALOTevvveeieieeeeeeeieieieee ettt e e e e e eeeereereeeeeeseseaaaeeeessessesaaneereeess
5.1 OVEIVIEW c.coeeiiieeieieieeeeeeeeeeeeeeeeeeeeeeeeeteeeeeeeeeeeteeeseeeseseseessesesesesesesssssssesssssssssssssssssssssess Noves

5.2 Architecture and Approach

5.2.1 meta-Orchestrator Hub APL.........c.ccooiiiiiiiiie e
522 meta-Orchestrator Agent (MO Agent)
5.2.3 Deployment Controller (DC)........ccoeevvveviereenvenieennens

5.3 CONCIUSION ..ttt ettt st

6 Secure Firmware Management on Far-Edge

6.1 Nerves architecture for FOTA system}
6.1.1 The architecture of FOTA,
6.1.2 Security and System Isolation .
6.1.3 Firmware update sequencg”™....
6.1.4 FOTA PMU Cloud Se
7 Measurement and Validation....................
7.1 Micro-Services Secure Exe Environment KPISccoccooiiiiiiniiiiicceeeeeeeeeee, 70
7.2 PRESS, Safety & Polic or t framework KPIS........ccocveviiiiiiiieicciecece e, 70
7.3 Cybersecurity & PioitdNde 1ty Attestation KPISoccooviiiiiiiiiiiiiiiecceee e 71
7.4 NEMO meta-O38 T KPLS . 72
8 CONCIUSIONS .. R ¥ ettt ettt et et e et e st e te e st entesneeneenees 74
N (S (O . USSP 75
10 A@ .. 76
G ines for TDX and Confidential Containers Technologycccceeevervieninccncneennene 76
1 Enable the TDX in the BIOS ..o e 76
Document name: D3.3 Nemo Kernel Final Version Page: 50f 83

Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

&8s NEMO

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10: Micro-Service Secure Execution Environment KPIs
Table 11: PRESS, Safety & Policy enforcement framework KPIs
Table 12: Cybersecurity & DIA KPIs
TADBIE 13: MO KPIS ... e e
Table 14.: Kata container inStallation.ccccc.cooueeeeiieiiiiiiiieeiieeeeeeeeeeeeeeee e

Migration time breakdown for an example micro-service (NZINX).c.cccueeioenoeenieiniee e, 23
Computing WorklOQd INTENL...............c.cccoooiiiiieieeee ettt 38
Energy Carbon EffiCiency INTENL.ccoocuoiiaiiii ettt 38
N =TT 1 L 2 1 TSR 39
Federated Learning INTENL.ccoccoviiiiaiieiieee ettt ettt ere e enes 39
Machine Learning INEENL.ccoocoieiiiieiieii ettt ettt ettt saeeae e nse et eseeeseeseens 39
INEEWOFK TREERL. ...ttt ettt

Cluster regiStration KPIS..............c.cccooiiiiiiii ittt nraes

Cluster Metrics

Document name: D3.3 Nemo Kernel Final Version Page: 6 of 83

Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

List of Figures

Figure 1: Architecture of the Secure Execution Environment extension collection for Kubernetes.
Figure 2: Unikernel integration in Kubernetes.

14
14

Figure 3: Example of a Dockerfile to build a container image of a simple webserver as a Hermit unikernel 15

Figure 4: Unikernel runtime configuration for runh

Figure 5: Registration YAML of the container runtime runh with Kubernetes.

Figure 6: Deployment YAML of an example Unikernel service

Figure 7: List of running pods in a Kubernetes Cluster. In the middle it can be seen that a Unikernel i

as a Pod.

Figure 8: Kernel Parameters for KBS Integration.

Figure 9. KBS Architecture
Figure 10: Migration request using the see-ctl program

A
Figure 11: Deployment migration request N
Figure 12: Single pod migration request ,\

Figure 13: Deployment migration demo.

Figure 14: Single pod migration (no downtime) demo.
Figure 15: Single pod migration (with downtime) demo.

Figure 16: AMQP messages for pod metrics

Figure 17: AMQP messages for pod metrics

Figure 18: RabbitMQ exchanges for SEE metrics

Figure 19: Creation of a new RabbitMQ queue for message retrieval.

Figure 20: Binding a RabbitMQ message queue to the exchange)

Figure 21: Receiving resource metrics via RabbitMQ

Figure 22: AMOP flow for resource configuration.

Figure 23: RabbitMQ queues relevant for resource cghfiguration.) 4

Figure 24: Creation of a NGINX Pod via the SEE irflerface inthe RabbitMQ web-ui

Figure 25: SEE-Interface response of the NGI,

Figure 26: SEE-Interface failure response wifen
Figure 27: Ubuntu based baseimage for Hermgy

Figure 28: Alpine Linux based base image for i containers.

Figure 29: Image composition of a Hermgt contaifer based on the Alpine Linux baseimage.

Figure 30: Image composition of the alpine container.

Figure 31: Kernel Parameters for K. ion.

Figure 32: Authentication Req

Figure 33: Key Retrieval®

Figure 34. CoCo Res tion.

Figure 35. Description sugessful pod.

Figure 36. Description nsuccessful pod.

Figure 37: Deplo e SEE-Interface itself in the OneLab Kubernetes.

Figure 38: De, enYAML for a Unikernel based webservice

Figure 39: e v deployed Unikernel -based webservice.
oy PBEF architecture.

. Intent Expectations.

Figurdg2: PPEF PAC internal modules.

Figure 49 Test NGINX server

Figure 44: Test NGINX Ingress description.

Figure 45: NGINX Kong Service

Figure 46: NGINX Kong route

Figure 47: NGINX Prometheus plugin

Figure 48: Prometheus plugin details

Figure 49: NGINX total HTTP request count - initial deployment

Figure 50: NGINX total HTTP request count — refresh

Figure 51: The bandwidth change rate for NGINX

Figure 52: NGINX server latency histograms

Figure 53 NEMO D3.1 focus on the detection at runtime (step 7 Gartner DevSecOps)

16
16
17

Unning

18
18
19
22
22
22
23
24
24
25
25
25
26
26
26
27
27
27
28
28
29
29
30
30
30
31
31
31
32
33
34
35
35
37
38
39
43
43
43
44
44
44
45
45
45
45
46

Document name: D3.3 Nemo Kernel Final Version Page: 7 of 83

Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

Figure 54 NEMO D3.2 Focuses on Sofiware Composition Analysis (Step 3 Gartner DevSecOps) and Software

Signing (Step 5) 46
Figure 55 NEMO D3.3 focus on signature verification at runtime 47
Figure 56 A Guide to Kubernetes Admission Controllers. NEMO focuses on validation admission. 47
Figure 57 OCI Image Verification at Runtime: signature is valid, and policy let the OCI container image be

pulled 48
Figure 58 OCI Image Verification at Runtime. signature is not valid, and policies says not to pull OCI container
image (strict policy) 49
Figure 59 OCI Image Verification at Runtime: signature is not valid, but policy says pull the OCI container

image but warn user (warn policy) 49
Figure 60: meta-Orchestrator Subcomponents 52
Figure 61: MO API Architecture. 53
Figure 62: MO API endpoints. 54
Figure 63: Retrieve spoke clusters from the NEMO Cluster Network endpoint. i § 55
Figure 64: Payload for joinManagedCluster endpoint. A 55
Figure 65: Update replicas endpoint payload for triggering Horizontal Scaling N 56
Figure 66:Payload to deploy SEE resources. 57
Figure 67: MO Agent sequence diagram ‘ 58
Figure 68: DC Sequence Diagram. 59
Figure 69: Gitlab Tagging. 60
Figure 70: Gitlab CL 61
Figure 71: NEMO DockerHub. 61
Figure 72: Deployment Manifest. 62
Figure 73: Deployment Details. 62
Figure 74: The schema of FOTA system. 67
Figure 75: NEMO FOTA System Sequence Diagram. 68
Figure 76: Enable Intel TDX in Host OS ‘, 76
Figure 77: System BIOS settings. / 77
Figure 78: Verify Intel TDX is Enabled on Host OS | 77
Figure 79: Operator deployment. A 77
Figure 80: wait for “Running” status . 77
Figure 81: CC Runtime deployment) 77
Figure 82: wait for “Running status” 77
Figure 83: Kubectl get runtimeclass 78
Figure 84: CoCo deployment 78
Figure 85: Image encryption. 79
Figure 86: 79
Figure 87: 79
Figure 88: 80
Figure 89: 80
Figure 90: 80
Figure 91: 81
Figure 92: 83

Document name: D3.3 Nemo Kernel Final Version Page: 8 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

List of Acronyms

&8s NEMO

Abbreviation / Description
acronym
3GPP 3rd Generation Partnership Project
AloT Artificiail Intelligence of Things
AMQP Advanced Message Queuing Protocol
API Application Programmin Interface
AS Attestation Service
CFDRL Cybersecure Federated Deep Reinforcement Learning .
CICD Continuous Integration and Continuous Delivery \
CNNAP Cloud-Native Application Protection Platforms N
CO2 Carbon Dioxide ﬁ
CoCo Confidential Containers
DC Deployment Controlller
DDoS Distributed Denial of Service
DevSecOps Development, Security and Operations
DFDs Data Flow Diagrams .
DiD Defense in Depth
DIDs Decentralized Identifiers ‘(
DoS Denial of Service .
Dx.y Deliverable number y belofging to JVP x
EC
ECC
EDA
EDR
FOTA
HSMs
HTTP
IAM
IBMC
1D
JavaScript Object Notation
JSON Web Tokens
Key Broker Service
Key Performance Indicator
LCM Lifecycle Manager component
LTE Long-Term Evoluation
MFA Multi-factor Authentication
mNCC meta-Network Cluster Controller
MO meta-Orchestrator
MOCA Monetization and Consensus-based Accountability
MS Milestone
Document name: D3.3 Nemo Kernel Final Version Page: 9 of 83
Reference: D3.3 |Dissemination: |PU [Version: [1.1 Status: [Final

&8s NEMO

NIS2 Network and Information Security Directive 2

OCI Open Container Initiative

OCM Open Cluster Management

PAC Policy Agent Controller

PCCS Provisioning Certificate Caching Service

PMUs Phasor Measurement Units

PoLp Principle of Least Privilege

PPEF Privacy & Policy Enforcement Framework

PRESS Privacy, data pRotection, Ethics, Security & Societal

QEMU Quic Emulator

QGSD Quaote Generation Service Daemom A ‘b .
RPC Remote Procedure Call Q
RVPS References Value Provider Service

SBOM Software Bill of Materials

SDLC Software Development Life Cycle

SEAM Secure Arbitration Mode

SEE Secure Execution Environment

SIM Subscriber Identity Module

SLA Service Level Agreement

SLO Service Level Objective

SLSA Supply-chain Levels of Soft)AArtifac)/

SSDLC Secure Systems Developmegnt Lifecycle

TDs Trusted Domains A\ & /

TDX Trusted Domain E i \

TEE

TRL

UUID

VCs

WP

YAML YAML Ain't Markup Language

Document name: D3.3 Nemo Kernel Final Version Page: 10 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

Executive Summary

This document provides the final advancements and integration results within Work Package 3 (WP3)
of the NEMO project, focusing on a functional, secure, and scalable multi-cluster management system.

D3.3 aligns with the stages of the Software Development Life Cycle (SDLC), D3.1: Introducing NEMO
Kernel [1] is related to planning, analysis, and design, D3.2: NEMO Kernel Initial Version development
and some integrations, and finally [2], D3.3: NEMO Kernel Final Version refactoring and improving

developments, adding functionalities, and closing integrations.

To fully understand this last stage, it is important to have read the D3.1 and D3.2 previously g align
with the last milestone that affects WP3, the MS9: NEMO Components (Version 1.0), w he¥P?2.3
[3] and D3.3 are the proofs of this final version.

The main achievements in this deliverable are listed below:

e A demonstration of the Secure Execution Environment (SEE) compoCigin the end stage,
providing a highly secure context where resources can be us eployed. These
advancements ensure strong isolation and integrity inside NEMO.

has been fully integrated
atform's monitoring and

providing an extra step of protection from developmgnt until deployment and runtime.

e The meta-Orchestrator (MO) is a fungfional component for managing resources across 1oT,
Edge, and Cloud environments. It is @esigned) for scalability using ML feedback from the
Cybersecure Federated Deep Reipforce arning (CFDRL) component and efficiently the
resource management of the NERO Sratfiorm.

e To achieve a final integration of ea ponent with the NEMO platform and its components.

D3.3 concludes WP3 by showcaSimg/d€Monstrating/presenting a solid and compact NEMO Kernel
Space that now offers ggsmaplfaiihes Iti-cluster control, paving the way for future developments.
This final deliverablg highlig

Document name: D3.3 Nemo Kernel Final Version Page: 11 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

1 Infroduction

Deliverable D3.3 concludes the reporting of the work conducted within the scope of WP3, consolidating
and validating important steps taken since the release of D3.2, whose objective aims to demonstrate the
latest updates and explain how each component contributes to NEMO in various aspects.

1.1 Purpose of the document

D3.3 describes the last features, tools, and integrations developed to achieve a secure, efffgient, and
integrated system within the NEMO.

The deliverable sets the final stage for gathering all the development efforts and vglidting”the
components involving much more the integration and the testing parts to ensure a robfs ature
version of the NEMO Kernel, to contribute to the project's goals of advancing clou iYe computing.
Moreover, this document will validate all the job-done evaluations of the KPI ed to each of the
four WP3 components.

1.2 Relation to other project work &

e n to D3.1 and D3.2 within
haD&s the main goals, structure
nhancing NEMO Underlying

This last D3.3: NEMO Kernel Final Version represents an increme
the WP3. In addition, it is tightly connected with WP2. Particularl
and milestone (MS9) objectives within the project 2.
Technology.

Integrations and WP3 components functionalitie
D4.3 Advanced NEMO platform & laboratory
1.0). The work reported in D3.3 also relates to

¢ relate WP4, and the results demonstrated in
sting results [5] at MS10 NEMO Integrated (Version
P4 and)the integration activities.

1.3 Structure of the documen

This document is structured in a godulaiPformat, allowing the reader to see the progress and

contributions from each task withy P3. It starts with an executive summary and introduction that
describes the purpose and context. owing first four sections are related to the WP tasks:

Section 2 describes thegarchiifec evaluation of the Secure Execution Environment; Section 3
covers the Privacy angl Po, cement Framework, which is the main monitoring part of the project.

Section 4 includes Cyp@gseclgity and digital Identity Attestation, security measures, and subcomponents
related to NEMO's s4 @ td security. Section 5 introduces the meta-Orchestrator, its subcomponents,
and architecture /8 0 deeper detail with the integration logic.

document to the far edge and deals with secure firmware updates. Section 7
1on of each component with key performance indicators and finalizes the general
chnical annexes.

Document name: D3.3 Nemo Kernel Final Version Page: 12 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

2 Micro-services Secure Execution Environment

Modern cloud environments, characterized by increased scale and complexity, face significant
cybersecurity challenges, making it crucial to enhance security and isolation. The rapid growth of cloud
services has led to a proliferation of vulnerabilities, underscoring the need for robust data protection and
application integrity measures that safeguard user privacy.

The first component of the NEMO Kernel, the Micro-services Secure Execution Environment (SEE)
tackles precisely these challenges and provides a set of enhancements for cloud infrastructures regarding
isolation, integrity, and flexibility.

2.1 Overview

V3

Currently, the industry standard for cloud service execution is Kubernetes!, wtﬂ%s originally
developed by Google and in 2024 became open-source, which is the de facto r r container-

based cloud infrastructures. It can orchestrate thousands to millions of cont: in a cluster and
manages relevant aspects like networks or file storage as well.

For these reasons Kubernetes was selected as the backend infrastructurg/8ge 98ed for NEMO, with it
orchestrating the services and components at the lowest level. It is, th@ @ , of uttermost importance
to provide the necessary adaptation and integration points, so tha cO@ponents, such as the meta-
Orchestrator, can utilize the computing infrastructure.

roach with little overhead and
focused workloads or the execution

Kubernetes is designed to provide isolation using container
high flexibility. However, this approach is not sufficient for

Several limitations hav@ be
been built as a collegfign
way, providing open th§ware built upon for achieving higher isolation and security for the NEMO
services. This result SEE architecture, Figure 1, which consists of the following modules:

e The Uni

gl runtime for Kubernetes registers as a new runtime in a cluster and provides the

capalgplitlyo” execute highly isolated applications-specific virtual machines in a cluster,

e@ g'the existing orchestration functionalities.

he"Mfigration extension utilizes the Kubernetes API for fine-grained Pod & Deployment
igration. The extension itself is running as a service in the cluster itself, which is a common
ttern for infrastructure related services.

o The SEE interface serves as a connector between other NEMO components and Kubernetes as
well as the previously mentioned components. The default interface within NEMO components
is AMQP v0.9.1 so this component provides an interface layer between the Kubernetes API,
our other components and any other potential NEMO component, but is specifically meant to
interface with the meta-Orchestrator.

I Kubernetes:

Document name: D3.3 Nemo Kernel Final Version Page: 13 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

https://kubernetes.io/docs/home/

&8s NEMO

e To reduce the trust requirements for the underlying infrastructure, as well as for enhanced
integrity, we have evaluated the new area of confidential computing and have developed
guidelines and best practices for utilizing confidential computing in NEMO clusters.

Meta Orchestrator

AMQP

SEE-Interface

Kubernetes API

Kubernetes

Confldgnnal Unikernel Docker Container Docker Container
Container Pod

Confidential Ulfierng] Docker Docker

Contglner Runtime Runtime Runtime
Runtime

Figure 1: Architecture of the Secure Execution Environmdg Znsion collection for Kubernetes.

2.2.1 Unikernel Runtime for Kubernetes

Kubernetes, as well as the most well-knowilcontaigler engine Docker, does not start containers
themselves. Instead, Figure 2, Docker is g/high- pfterface to build container images for forwarding
requests to the container manager. In t fiKubernetes, every node is running a daemon as node
manager. That daemon provides high-lev s like health monitoring but also forwards container
spawning requests to the container %mger.

docker-cli AP| Server

hd ¥

Handle high-level tasks dockerd kubelet
(login / build / attach /...) (container engine) (node agent)

Health monitoring
Resource managment

Container Runtime
Intertace

containerd = Start container
(container manager) = Manages networks

Abtraction layer for low-level runtimes

containerd-shim-runh « Lives as long as a container process
/ \ « Redirects logs
runh is a command line tool OCI runtime container Virtual machine within a
to spawn a unikernel (runh) {unikernel) running unikernel

Figure 2: Unikernel integration in Kubernetes.

Document name: D3.3 Nemo Kernel Final Version Page: 14 of 83
Reference: D3.3 |Dissemination: |PU [Version: [1.1 Status: [Final

Multiple container managers such as Podman? and cri-o® exist, however as OneLab is using containerd
as container manager, the implementation of the SEE focusses on this one. Containerd is an open-source
project, which is more-or-less a spinoff of the original Docker project and designed to fulfil the
requirements of Docker and to the standards of the Open Container Initiative (OCI)*.
While containerd evolved as result of Docker redesign, cri-o has its roots in the Kubernetes community
and is focused to solve the community requirements. Podman is a RedHat project and is realized a library
and is not depending on a daemon running in the background. containerd manages the network interfaces
and uses an OCI-compliant container spawner to create and to start a container. Unlike cri-o, containerd
uses an additional abstraction layer between container spawner and container manager called container
runtime shim.

To use the unikernel Hermit as a container replacement with strong isolation and small overh the

container spawner runh® was extended for containerd and a new container runtime shim® wgs 18ped
for the NEMO project. Several base images were also written, that include all necessarytoo start a
unikernel. Namely these are the hypervisor QEMU’ and the daemon virtiofsd® t ide local file

image, as is shown in Figure 3. In that Figure, a simple webserver “httpd” ded as unikernel
image, as well as the loader hermit-loader to start the unikernel in the VM. Jllis ii#®¥8e uses the Alpine-
based base image hermit env_alpine. Alpine Linux is a securitysog , lightweight Linux
distribution. By using Alpine as Linux distribution, the image size
contrast to Ubuntu distribution (~81 MiB).

system access. A user has only to extend these base images with their applicatj !| o0 bufld a suitable

FROM ghcr.io/hermit-os/hermit_env_alpine:latest
COPY hermit-loader-x86_64 hermit/hermit-loader
COPY httpd hermit/httpd

CMD ["/hermit/httpd"]

Figure 3: Example of a Dockerfile to by a ¢ ta'n& 1mage of a simple webserver as a Hermit unikernel

The container spawner runh inte s the dommand line of the container image and checks if the
command is starting a unikernel 0, the command will be executed within a virtual machine,
otherwise, the command will ta common Linux container.

. []
The container spawner

spawner runc, whic
file /etc/containerd/co

desi@gedo spawn Linux container. The following lines extend the configuration

N us¥ be registered to containerd. Per default, containerd is using the
] £0 support runh, see Figure 4.

0 N N ! AW N

Document name: D3.3 Nemo Kernel Final Version Page: 15 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

https://github.com/containers/podman
https://github.com/cri-o/cri-o
https://opencontainers.org/
https://github.com/hermit-os/runh
https://github.com/hermit-os/containerd-runh-shim
https://www.qemu.org/
https://gitlab.com/virtio-fs/virtiofsd

[plugins."io.containerd.grpc.vl.cri".containerd.runtimes]
[plugins."io.containerd.grpc.vl.cri".containerd.runtimes.runh]
base_runtime_spec = ""
container_annotations = []
privileged _without_host_devices = true

runtime_path =
runtime_root = ""
runtime_type = "io.containerd.runh.v2"

pod_annotations = ["io.hermitcontainers.*"]

[plugins."io.containerd.grpc.vl.cri".containerd.runtimes.runh.options]

N4
Figure 4: Unikernel runtime configuration for rujgg

After this configuration, containerd can use runh besides the default sp@ @ runc, but Kubernetes still

must be informed about this change. This can be done via the ru sclgction mechanism, which is
based on the resources RuntimeClass’. To announce the spawn: theXesource can be registered
by applying the following file with the tool kubectl, see Fi&

[apiVersion: node.k8s.io/v1
kind: RuntimeClass
metadata:

name: runh

handler: runh

Figure 5: Registratig ML of the container runtime runh with Kubernetes.
After the registration of the ne ss, Kubernetes will still use the default spawner runc and by
adding the runtime CI?S t ent the new spawner runh will be used. The following
specification defines,a , which contains a simple webserver. The webserver is listening on

1mage is publicly available at GitHub repository ghcr.io/hermit-
os/httpd:latest. The runtimeClassName: runh shows Kubernetes should use runh to spawn
the container. To, ¢ deployment, a service must be registered. In this example, see Figure 6, the
service acts als@fas balancer and forward the request to deployment.

<

Document name: D3.3 Nemo Kernel Final Version Page: 16 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

https://kubernetes.io/docs/concepts/containers/runtime-class/

kind: Service
apiVersion: vi
metadata:
name: hermit-httpd-service
namespace: hermit
spec:
type: LoadBalancer
ports:
- name: hermit-httpd
port: 9975
targetPort: 9975
selector:
app: hermit-httpd-app
apiVersion: apps/vl
kind: Deployment
metadata:
name: hermit-httpd-app
namespace: hermit
spec:
replicas: 1
selector:
matchlLabels:
app: hermit-httpd-app
template:
metadata:

labels:
app: hermit-httpd-app

spec:

runtimeClassName: runh

containers:

- name: hermit-httpd
image: ghcr.io/hermit-os/httpd:latest
ports:

- containerPort: 9975

, Figure 6: Deployment YAML of an example Unikernel service

After starting the service, the running processes are seeable on the Kubernetes cluster. Figure 7 shows
two running container shims. One is the shim for the spawner runc (process id 3205162), which spawned
a NodeJS webserver in common Linux container, while the other shim (process id 2059994) spawned a
unikernel, which is running within the hypervisor QEMU.

Document name: D3.3 Nemo Kernel Final Version Page: 17 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

Il
aTe)

éls NEMO

root 3205162 ©.0 0.0 1238228 15572 ? S1 Marl3 5:59 /usr/bin/containerd-shim-runc-v2 -namespace k8s.io -id 9b49d99b833508a26d
2938ea04fed -add

65635 3205183 0.0 0.0 996 640 ? Ss Marl3 0:00 _ /pause

2102 3205294 0.0 0.8 116572 25516 ? Ssl Marl3 6:14 _ ?

root 3205420 0.0 0.1 271728 60180 ? Ssl Marl3 2:50 _ node webserver

root 3059994 0.0 0.0 958512 11220 ? S1 08:54 0:01 /home/stefan/containerd-runh-shim/target/release/containerd-shim-runh-v2
27ea7el94d2ech23

root 3060016 0.0 0.0 996 640 7 Ss 08:54 0:00 _ /pause

root 3060048 .0 .3 2357904 100496 ? Ssl ©8:54 0:52 _ gemu-system-x86_64 —display none -smp 1 -m 16 -serial stdio -device
04 —kernel /herm

root 3060062 0.0 0.0 142304 4224 7 S1 @8:54 0:00 _ virtiofsd —-socket-path=/run/vhostgemu —-shared-dir /root --sand
-handles=never

stefan 3065601 1.2 0.0 22864 13824 ? Ss 08:58 0:59 /usr/lib/systemd/systemd —user

stefan 3065602 0.6 0.0 21148 3520 ? S 08:58 0:00 _ (sd-pam)

Figure 7: List of running pods in a Kubernetes Cluster. In the middle it can be seen that a Unikernel is running as
a Pod.

2.2.2 Secure Pod Attestation and Deployment Leveraging Trusted Execution Environ®gnts

Confidential Containers (CoCo'?) is a new way to run containers in a secure environmen ects
both data and applications, even from the infrastructure provider.

To achieve usage protection, workloads (pods deployed in Kubernetes) are isolate 0Co, so that
neither the cluster nor infrastructure admins can access or manipulate the worklo the data within,
providing data in use protection. Moreover, it also integrates with advanced ardware features

like TEEs (Trusted Execution Environment), allowing it to run sensitive lications in an isolated
environment.

ilities to add an extra layer
0 nents of CoCo. Before

CoCo uses Kata Containers'! runtimes as runtime, leveraging hard
of encryption and attestation, where attestation is one of the
deploying a workload as a confidential container, attestatiumi
in which the container is to be deployed in a secure and tru

We are using a TDX'? server as TEE. TDX allows ug to creat
and protected hypervisor environments. Truste¢/domains are used to isolate resources and workloads,
allowing only trusted components to access thdln. This ¢gnsures the confidentiality and integrity of data
even if there are intruders in the system.

On our server we have used an Ubunt #On 24.04 and Kubernetes version 1.29.9. To enable TDX,
the Intel guide'® has been used.

In order to install CoCo, we have folfgwed tHe instructions outlined in the quickstart guide', installing

version 11 of the Operator and C igge. After completing the CoCo installation, it was necessary to
set up Trustee'>. To do this sed cluster mode, which deploys the services as Docker
containers. L4
To finish the i Jat it is necessary to modify the kernel params in the file
/opt/kata/share/defa containers/configuration-qemu-tdx.toml to point to the IP of the KBS
container where &(ployed the cluster:

kernel_ s “agent.aa_kbc_params=cc_kbc: :<KBS_URI>:8080”

Figure 8: Kernel Parameters for KBS Integration.

the general architecture of CoCo, we have two main elements: the TEE and the attestation

module.

10 CoCo:
1l Kata Containers:
12 Intel TDX:

Document name: D3.3 Nemo Kernel Final Version Page: 18 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

https://confidentialcontainers.org/
https://katacontainers.io/
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://github.com/canonical/tdx
https://github.com/confidential-containers/confidential-containers/blob/main/quickstart.md
https://github.com/confidential-containers/trustee

The TEE is where the pod is deployed and on which the attestation module collects the necessary
hardware measurements to verify that the environment is reliable. The attestation module consists of
numerous services that connect to each other to verify the TEE to deploy the container on it.

In CoCo, the Trustee project provides attestation capability and key management engine. In addition,
this project allows us to encrypt and sign the container image to be deployed, so that only the trusted
environment can decrypt it.

Get Confidential Resaurce
CC-KBC » KBS -Attestation AS
Tee

KEK Registration P ———

CSP Side
RVPS
Cluster
Encrypted Image Generation Reference Value Registration

Tenant
Fighire .Mhitecture

Side
Figure 9 represents the general archjtectureYdeployed for the CoCo testing environment. The green
squares are those provided by Tru or the attestation process. The other main components are:

- TEE: Environment in

- CoCo K
is enciAted e private key is stored inside the KBS container.

- K@ roker Service): Service that communicates with the TEE and with the Attestation

e If the Attestation Service confirms to the KBS that the environment is trusted, it is
responsible for providing the private keys to the TEE to deploy the pod.

- PS Client: Tool to send the reference values to the RVPS. These reference values must be
values that are known by the client, because the attestation service will perform the attestation
based on the reference values that are injected into the RVPS. If no reference values are inserted
into the RVPS, the attestation process will not have against which to compare the evidence
provided by the enclave, and it will use a predefined reference value.

- RVPS (Reference Value Provider Service): Manages the reference values to verify the TEE

evidence. Those reference values are sent to the AS to compare them with the evidence.

Document name: D3.3 Nemo Kernel Final Version Page: 19 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

https://github.com/confidential-containers/trustee/blob/main/kbs/docs/cluster.md

- AS (Attestation Service): Performs the attestation process. Responsible for collecting evidence
and confirming that it is correct. The Attestation Service uses PCCS (Provisioning Certificate
Caching Service) and QGSD (Quote Generation Service Daemon) to generate quotes describing
the enclave status and validate the environment.

2.2.2.1 State of the art

Increasing usage of microservices-based architectures and cloud-native environments has created the
need to build solutions to provide confidentiality of data in processing. For this purpose, different
solutions have been used, such as the TEE technology that facilitates the execution of appljcations in
trusted enclaves safely. In this situation, CoCo presents an innovative approach for confiden at the
container level, making it more suitable for cloud environments.

CoCo is designed to integrate with cloud environments such as Kubernetes, thus 'n%g the
deployment of architecture. It is also vendor-neutral, allowing deployment in multi—c%o“ emises,
or hybrid environments. Unlike other alternatives such as Microsoft Azure Confidentia puting!” or
IBM Hyper Protect Services'®, which are dependent on certain vendors'®. This @ ¢ makes CoCo a
technology that addresses both flexibility and security issues.

For the NEMO project, CoCo has proven to be one of the most robust dress confidentiality
issues without neglecting the importance of scalability and integratio odern workflows.

Resulting from the investigations and experiences when workin ntF computing technologies,
we have developed a setup and best-practice guide for Co hich be found in 10.1 Guidelines for

TDX and Confidential Containers Technology.

2.2.3 Pod & Deployment Migration
Concept

m E) supports fine grained workload migration at
d\by the SEE Migration component. The Migration

assumption of homogeneous clus @ such as computing centers. However, with edge and far-edge
computing as new paradigms, this 38%1 dgi ion does not hold anymore. Clusters could be geographically
distributed which makegcar g

g of services necessary, so that applications can benefit from

implemented as a Python Flask application that exposes two separate endpoints (known as Flask app
routes) that serve requests from the front-end Kubernetes Migration Service endpoint:

17 Azure Confidential Computing:
18 IBM Cloud Hyper Protect Crypto Services:
YVendor Lock-In in Confidential Computing:

Document name: D3.3 Nemo Kernel Final Version Page: 20 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

https://azure.microsoft.com/en-us/solutions/confidential-compute
https://www.ibm.com/products/hyper-protect-crypto
https://medium.com/%40safelishare/building-multi-cloud-confidential-computing-the-danger-of-data-lock-in-cfe14893ddb3
https://medium.com/%40safelishare/building-multi-cloud-confidential-computing-the-danger-of-data-lock-in-cfe14893ddb3

e /health endpoint: An http GET method that simply returns “status: UP” if the migration daemon is
up and running

e /migrate endpoint: An http POST method that accepts a migration request (JSON format) and calls
the Migration functions that perform the actual migration. The method returns a JSON with a
breakdown of the migration duration in milliseconds as follows:

— Total migration time: The total time elapsed since the Migration Service received a Migration
Request until the migration was completed.

— Eviction time: The time elapsed since the Migration Service received a Migration Request until
the workload was evicted from the source node.

— Boot time: The time elapsed since the Migration Service received a Migration Requestti the
workload was up and running in the target node.

— Downtime: The time elapsed while the workload was not running in any node if ethod
3 below).

Migration functions: migration is performed using the Kubernetes API. The migrati
imports the Kubernetes Python Client in order to perform calls to the Kube
migration is based on the Node Labeling / NodeSelector functionality of
different cases - implemented as three different functions as shown in thg

daethon program
ntrol Plane. The
and covers three
jng table:

Migration scenario

@
o
Q
—
Qo
=

Deployment Migration patch @
Single POD Migration (new POD name / no patch_%ppd_node_selector

downtime)

Single POD Migration (same POD nam§ /|patch pod node selector

downtime) /\

The reason for the distinction between the and the third case is that each POD has a unique and
immutable name in a Kubernetes clugger. In orler to move it from one node to another without downtime
!; %e :s

it is required to first start the POD rget node and then evict the POD from the old node. As two
POD objects with the same nagag.c -exist in the same Kubernetes namespace these two different
options are both implengentg@ilin nt version of the migration component.

Upon receiving a mt
patch_node method
the migration scegari

st the first step is to set a key/value label on the target node using the
CoreV1Api client library. We call this label: target label. Depending on
different functionalities are implemented as follows:

a) Deplo ni{y¥ligration: The patch namespaced deployment method of the k8 AppsV1Api
cli ibrgry is used in order to directly add the target label in the NodeSelector field of the
e ent Configuration. This step will trigger the Kubernetes Control Plane to migrate the
eployment pods to the required target node in order to satisfy the NodeSelector field. No
wntime is involved in this case as Kubernetes terminates the old deployment pods after the

ew PODs are in “Running” state.

b) Single POD migration (no downtime): The daemon reads the running POD configuration
using the read namespaced pod method of the CoreV1Api k8s client library. It starts a new
POD named as <old_pod name>-migr using the same configuration as the old (still) running
POD with the additional NodeSelector field changed to match the target label. The Kubernetes
Control Plane schedules the new POD to the desired target node. The migration script watches
the new POD state using the Kubernetes client Library watch method. When the new POD state
is changed to Running, the daemon evicts the old POD from the old node. As a result, there is
no downtime.

Document name: D3.3 Nemo Kernel Final Version Page: 21 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

c) Single POD migration (downtime): The target pod is evicted from the node where it is
currently running using the delete namespaced pod method of the CoreV1Api k8s client
library. The daemon then starts watching for events related to the deleted POD. When the
DELETED event for the old POD is published the daemon deploys a new POD (with the same
name as the old one) on the target node by adding target label in the Pod NodeSelector field as
in the a) and b) cases.

Credentials: The migration daemon performs actions that change the cluster configuration (e.g., PODSs,
deployments, nodes). In order for the Kubernetes client Library to successfully make the related method
calls the daemon pod is related with the “see-migration” Kubernetes Service Account. This is a service
account that is binded with the “cluster-admin” Kubernetes cluster role and grants thtgequired
permission to the migration daemon.

SEE Interface: Migration

The SEE Interface accepts and forwards migration requests to the Migration Servi%e migration
requests are read from YAML files, converted to JSON objects by the SEE inter nd Sent as HTTP
requests to the migration service.

Usage: A migration request can be sent using the see-ctl program as follow

apivVersion: vl
kind: Service
metadata:
name: migration-service
annotations:
node: "k8s-worker2" # target node
deployment: "nginx-deployment" # deplouyment that we want to migrate

(] &M Deployment migration request

apiVersion: vl
kind: Service
metadata:
name: migration-service
annotations:
node: "k8s-workerl" # target node
pod: "nginx" # the pod name that we want to migrate
keep_pod_name: "true" # ether to keep the pod name

Figure 12: Single pod migration request

Demonstration

Document name: D3.3 Nemo Kernel Final Version Page: 22 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

O _(N E M O

Table 1 and presents a breakdown of the migration time for the 3 different scenarios described above
using as example workload a nginx server. The image is already present in the target nodes, i.e. the time
for pulling the image from the network is not included. Note the downtime in the 3rd case as a result of
first evicting the pod from the source node before creating the new one in the target node - the boot time
includes the downtime. The downtime is dominated by the eviction time of the old pod. Also note that
the boot time is affected by:

— the workload itself, e.g. for different images the boot times may vary.
— the Kubernetes Control Plane decision overhead.

Scenario Total Eviction Downtime

Deployment (2 replicas) 7921ms 5694ms 7919ms

Pod (new name) 5402ms 3688ms 5402ms \

Pod (same name) 6111ms 6111ms 2939ms Nl 71ms
Table 1: Migration time breakdown for an example micro-servic iX).

tionality in all 3 cases,

Figure 13, Figure 14 and Figure 15 demonstrate the Migration Compo
] gs showing the migration

using the SEE Migration Interface. Figures also include the migratigigg
times breakdown, which is later encapsulated in the daemon resp8 Q

orestis@x1c5: ~

root@k8s-master:~/see-interface# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
nginx-deployment-bf56f49¢c-c74nz = 1/1 Running ®© 49s 192.168.194.102 k8s-workerl <none> <none>
nginx-deployment-bf56f49c-hmev7 = 1/1 Running © 49s 192.168.126.13 k8s-worker2 = <none> <none>
root@k8s-master:~/see-interface# cat ../k8s-migration-script/examples/migration-depl-req.yaml
apiVersion: vi
kind: Service
metadata:
name: migration-service
annotations:
node: "k8s-workerl" # target node
deployment: "nginx-deployment" # djeployment that we want to migrate

root@k8s-master:~/see-interface# go run cmd/see-ctl/main.go do migrate -f ../k8s-migration-script/examples/migration-depl-req.yaml
root@k8s-master:~/see-interface# kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE 1IP NODE NOMINATED NODE READINESS GATES
nginx-deployment-66cb89dc6f-1g4k8 1/1 Running @ 9s 192.168.194.104 k8s-workerl = <none> <none>
nginx-deployment-66cb89dc6f-sx6tm 1/1 Running 0 11s 192.168.194.101 k8s-workerl = <none> <none>
root@k8s-master:~/see-interface#

I+l orestis@x1c5: ~

root@k8s-master:~/k8s-migration-script# kubectl -n nemo-kernel logs migration-pod

* Serving Flask app 'migrate’

* Debug mode: off

INFO:werkzeug:

* Running on all addresses (0.0.0.0)

* Running on http://127.0.0.1:5000

* Running on http://192.168.194.92:5000

INFO:werkzeug:

INFO:migrate:{'total_time': 5287.601422, 'eviction_time': 5287.296144, 'boot time': 2648.483441, 'downtime’:
INFO:werkzeug:192.168.194.77 - - [18/Mar/2025 10:01:51] "POST /migrate HTTP/1.1" 200 -

INFO:migrate:Keeping the same pod name during migration -- this will result in downtime
INFO:migrate:{'total_time': 6111.263681, 'eviction_time': 2939.520631, 'boot_ time': 6111.210791, 'downtime’: 69016}
TNFn-marl(?nug-1Q‘) 1A2 104 77 - - [1Q‘IM=|-'I‘)F\7E 1m-ma-an] "DNST ’.’nn'grzfa I—JTTD,."‘ 1" 2AA -
INFO:migrate:{'total_time': 7921.495965, 'eviction_time': 7919.999308, 'boot time': 5694.705793, 'downtime':
INFO:werkzeug:192.168.194.77 - - [18/Mar/2025 10:08:40] "POST /migrate HTTP/1.1" 200 -

FOOT(KBS -MasTer : ~/ K85 -Mlaration-Script#

Figure 13: Deployment migration demo.

Document name: D3.3 Nemo Kernel Final Version Page: 23 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

orestis@x1c5: ~

orestis@x1c5: ~

rootfk8s-master:~/see-interface# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
nainx 1/1 Running @ 84s 192.168.194.105 k8s-workerl <none> <none>
root@k8s-master:~/see-interface# cat ../kBs-migration-script/examples/migration-req.yaml
apiVersion: vil
kind: Service
metadata:
name: migration-service
annntatinne-
node: "k8s-worker2" # target node
pod: "nginx" # the pod name that we want to migrate
wkeep_pod_name: true" # whether to keep the pod name (slower migration time) or change it to <pod-name>-migr
root@k8s-master:~/see-interface# go run cmd/see-ctl/main.go do migrate -f ../k8s-migration-script/examples/migration-req.yaml
rontkRs-master:~/see-interface# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IpP NODE NOMINATED NODE READINESS GATES
nginx-migr 1/1 Running 0O 12s 192.168.126.12 k8s-worker2 = <none> <none>
root@k8s-master:~/see-interface# D

i orestis@x1c5: ~

oot@k8s-master:~/k8s-migration-script# kubectl -n nemo-kernel logs migration-pod
* Serving Flask app 'migrate’

* Debug mode: off

INFO:werkzeug:

* Running on all addresses (0.0.0.0)

* Running on http://127.0.0.1:5000

* Running on http://192.168.194.106:5000

[INFO:werkzeua:

[NFO:migrate:{'total_time': 5402.147869, 'eviction_time': 5402.091319, 'boot_time': 3688.298351, 'downtime': 0}
[NFO:werkzeug:192.168.194.77 - - [18/Mar/2025 10:22:36] "POST /migrate HTTP/1.1" 200 -

OOT(K8S -master :~/K8s-migration-script#

Figure 14: Single pod migration (no

orestis@x1c5: ~

orestis@x1c5: ~

root@k8s-master:~/see-interface# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
nainx 1/1 Running © 34s 192.168.194.93 k8s-workerl <none> <none>
root@k8s-master:~/see-interface# cat ../k8s-migration-script/examples/migration-req.yaml
apiVersion: vi
kind: Service
metadata:
name: migration-service
annotations:
node: "k8s-worker2" # :arget node
pod: "nginx" # the pod name that we want to migrate
keep_pod_name: "true" it whether to keep the pod name (slower migration time) or change it to <pod-name=>-migr
rootidkss-master:~/see-1nterface# go run cmd/see-ctl/main.go do migrate -f ../k8s-migration-script/examples/migration-req.
yaml
root@k8s-master:~/see-interface# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
nginx 1/1 Running © 11s 192.168.126.11 k8s-worker2 = <none> <none>
root@k8s-master:~/see-interface# D

[+ orestis@x1c5: ~

root@k8s-master:~/k8s-migration-script# kubectl -n nemo-kernel logs migration-pod
* Serving Flask app 'migrate’
* Debug mode: off

INFO:werkzeug:

* Running on all addresses (0.0.0.0)

* Running on http://127.0.0.1:5600

* Running on http://192.168.194.92:5000
:werkzeug:
:migrate:{'total_time': 5287.601422, 'eviction_time': 5287.296144, 'boot_time': 2648.483441, 'downtime': 0}
:werkzeug:192.168.194.77 - - [18/Mar/2025 10:01:51] "POST /migrate HTTP/1.1" 200 -
:miarate:Keenina the same nod name durina miaration -- this will result in downtime
:migrate:{'total_time': 6111.263681, 'eviction_time': 2939.520631, 'boot_time': 6111.210791, 'downtime': 3171.69016}
:werkzeug:192.168.194.77 - - [18/Mar /2025 10:04:48] "POST /migrate HTTP/1.1" 200 -

FOOLEKES -Mas Ler : ~/K8S -Migracion-scripts |

Figure 15: Single pod migration (with downtime) demo.

D 3 Nemo Kernel Final Versio m 24 of 83
e [Fnal]

NEMO

2.2.4 meta-Orchestrator integration

The SEE interface is the software component for interacting with the SEE via AMQP. As depicted in
Figure 1, it is used by other components to interact with the other SEE components. The main points of
interaction are retrieving both node and pod metrics as well as performing actions with the SEE, see
Figure 16.

Retrieving metrics

The SEE interface retrieves both node and pod metrics from Kubernetes and publishes them toan AMQP

exchange as shown in Figure 17.
SN

Nodes

SEE Cluster

Container
runtime

NEMO SEE AP| metrics__| Metrics- node level A
4 " 4 +— 4—+
AMQP Server AMQP Client server API| Server resource metrics kubelet Container

runtime
Figure 16: AMQP messages f x
Q1 —b@
a2 [—(c2)

o F1 VAMQP messages for pod metrics

This part examines h| »rieve node metrics from the cluster as an example. Retrieving pod metrics

would work v rly. We use the RabbitM(Q management interface for demonstrating
communicatin SEE interface while software components use appropriate AMQP libraries.
F1rst e relevant SEE interface exchanges:

Exchanges

All exchanges (17, filtered down to 2)

Virtual host Name Type Features Message rate in Message rate out +/-

/ nemo.see.metrics.nodes topic D 0.00/s 0.00/s

/ nemo.see.metrics.pods topic D 0.00/s 0.00/s

Figure 18: RabbitMQ exchanges for SEE metrics

These exchanges make node and pod metrics available as single messages per node and per pod. This
allows consumers to natively select which nodes and pods they are interested in, leveraging the
appropriate AMQP primitives for offloading this routing and filtering to the AMQP server.

Document name: D3.3 Nemo Kernel Final Version Page: 25 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

NEMO

To receive metrics, we add a new queue called “my.test.queue” to receive arbitrary messages on:

Add a new queue

Virtual host: [¥
Type: | Default for virtual host v
Name; Mmy.test.queue

Durability: Durable v

Arguments: = String v
Add Auto expire ? | Message TTL ? | Overflow behaviour ?
Single active consumer ? | Dead letter exchange 7 | Dead letter routing key 7
Max length ? Max length bytes ?
| Leader locator ?

Figure 19: Creation of a new RabbitMQ queue for message retrieval.

For messages to arrive on this queue, we create a binding to forward messages from hange to the
receiving queue. The routing key specifies which messages we are interested i pod metrics, the
routing key is “<namespace>.<pod name>". If we were interested in the mgt r all pods in the
default namespace for example, we would specify “default.*” as the routi ey tor the binding. For
node metrics, the routing key is the node name. In this example, we bi ssages from the node
metrics queue to our receiver queue.
VN
Bindings (1)
From Routing key Arguments
(Default exchange binding)
1
Add binding to this queue
From exchange: nemo.see.metrics.nodes
Routing key: *
Arguments: = String v

Figure 2 i@abbitMQ message queue to the exchange.
The SEE interface peri8dic uPtisifs metric messages to the exchanges. Once a new message that
matches our bindin s& blished to the exchange, we can get the message from our receiver
queue:

Get messages

Warning: getting messages from a queue is a destructive action. ?

Ack Mode: | Automatic ack “
Encoding: | Auto string f base64 ~ | ?

Messages: 1

Get Message(s)

Message 1

The server reported 29 messages remaining.
Exchange | pemo.see.metrics.nodes
Routing Key nemo-dev-master
Redelivered

Froperties content_type: application/json

Payload
ves

{"timestamp":"2025-03-10T14:48:152", "window":"20.054s" , "usage" : {"cpu' :"442098334n", "memory" : "4786952Ki" } }

Figure 21: Receiving resource metrics via RabbitMQ

Document name: D3.3 Nemo Kernel Final Version Page: 26 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

Perform an action in the SEE
The SEE interface can be driven by an AMQP RPC API as shown in Figure 22.

Request
reply_to=amq.gen-Xa2... —— | rpc_queue Y
correlation_id=abc

Reply amg.gen-Xa2...
correlation_id=abc

Figure 22: AMQP flow for resource configuration.

Walking through the process using the RabbitM(Q management interface similarly to ho \% done
it for the metrics. First, we look for the relevant RPC queues:

Queues

All queues (24, filtered down to 4)
Overview Messages Message rates +/-
Virtual Name Type Features State Ready Unacked Total incoming deliver / ack
host get
/ nemo.see.apply classic idle 0 0 0
/ nemo.see.create classic idle 0 0 0
/ nemo.see.delete classic idle 0 0 0
/ nemo.see.migrate classic idle 0 0 0

)4 7

Figure 23: RabbitMQ queues relevant for §gsource configuration.

We see four RPC queues, Figure 23: one for crgating resources, one for applying changes to resources,
one for deleting resources, and one for migratin@resourges using SEE’s migration component. Now, an
NGINX pod can be created by publishir%;lis the nemo.see.create RPC queue:

Publish message

Message will be published to the default exchange with routing key nemao.see.create, routing it to this queue,

Delivery mode: | 1- Mon-persistent v

Headers: ? = String

Properties: 7 Feply_to my.test.gueue

correlation_id = random_string

Payload: APiversion: vl
kind: Pod

metadata:
name: nginx
namespace: nemo-kerngl
Spec:
containers:
— name: nginx
image: nginx:latest
ports:
- containerPort: 80

Payload encoding: | String (default} v

Publish message

Figure 24: Creation of a NGINX Pod via the SEE interface in the RabbitMQ web-ui

In Figure 24 two properties are very important for RPC messages: the “reply to” property and the
“correlation_id” property. The “reply to” property tells the SEE interface where to send the response to
this RPC message. Its value should be a callback queue which is set up before by the RPC caller. This
callback queue should usually be a non-durable queue with an AMQP-server-generated name to avoid

Document name: D3.3 Nemo Kernel Final Version Page: 27 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

NEMO

collisions for these one-off responses. In our case, we reused the test queue from the previous section
strictly for demonstration purposes. The other important property is the correlation ID. This ID is
included in the response again so the caller can be sure the response corresponds to their request. The
correlation ID can be any sufficiently random string, but we recommend UUIDvV7.

Once we have sent the request, SEE interface will perform the corresponding action and send a reply to
the referenced callback queue. So, in Figure 25, the response from our test queue is:

Get messages

Warning: getting messages from a queue is a destructive action. ?

Ack Mode: |Automatic ack v

Encoding: |Auto string [base64 v | ?

Messages: 1

Get Message(s)

Message 1

The server reported 0 messages remaining.
Exchange (AMQP default)
Routing Key = my.test.queue

Redelivered o

Properties correlation_id: random_string
content_type: application/json
Payload
0 bytes

Encoding: string

X pod&eation in the RabbitMQ web UI.

In this case the response is empty, which meanglsuccess) When trying to create the same, now existing,
pod again, we receive an error, Figure 26/\
AN

Figure 25: SEE-Interface response of the

Get messages

Warning: getting messages from a queue is a destructive action. ?

Ack Mode: | Nack message requeue true v
Encoding: |Auto string / base64 v | ?
1 Messages: 1

Get Message(s)

Message 1

The server reported 0 messages remaining.

Exchange (AMQP default)
Routing my.test.queue
Key
Redelivered o
Properties correlation_id: random_string
content_type: application/json
Payload = {"ErrStatus":
égéog‘ﬁ? {"kind":"Status","apiVersion":"v1","metadata™:
string | 1t,"status":"Failure”,"message”:"pods \"nginx\"

already

exists","reason":"AlreadyExists","details":
{"name":"nginx","kind":"pods"},"code":409}}

Figure 26: SEE-Interface failure response when deploying a pod via the RabbitMQ web UL

Document name:

D3.3 Nemo Kernel Final Version

Page: 28 of 83

Reference:

D3.3 |Dissemination:

[PU [Version: [1.1 Status: [Final

2.3 Evaluation

2.3.1 Unikernel image size overhead

To investigate the claim of Unikernels having a low overhead compared to containers, we take a look at
the image sizes and their composition in the cloud use case.

The Unikernel Hermit that is selected in NEMO is deployed in Kubernetes as a regular layered Docker
image. This image contains the Kernel and the Kernel’s bootloader, but also a minimal userspace
installation and an instance of the VM hypervisor QEMU. It is the latter that can be considered overhead
when comparing containers and Unikernels, therefore we try to quantify this. The Herfjit project
provides two base images with this setup?, one based on the widespread Ubuntu image (Figurc®() and
another one based on the lightweight Alpine Linux image (Figure 28). When investigatin coptent
of these files, we can see that both base images still remain rather small, but the QE ‘%laﬁon
induces an overhead of 142MiB/81MiB. & [5

| ® Layers |

Cmp Size Command
L § 78 MB__FROM blobs|
46 MB RUN /bin/sh -c apt update # buildkit
96 MB RUN /bin/sh -c apt install -y —-no-install-recommends libcap-ng® libseccom
3.7 MB COPY /usr/local/cargo/bin/virtiofsd /usr/bin/virtiofsd # buildkit
© B RUN /bin/sh —-c chmod 0755 /usr/bin/virtiofsd # buildkit
| ® Layers |

Figure 27: Ubuntu based baseimage W co};ﬁners.
Cmp Size Command

| l 7.8 MB FROM blobs

77 MB RUN /bin/sh -c apk add —--no-cache gemu gemu-system-x86_64 libseccomp libca
3.7 MB COPY /root/.cargo/bin/virtiofsd /usr/bin/virtiofsd # buildkit
@ B RUN /bin/sh -c chmod 0755 /usr/bin/virtiofsd # buildkit

ini x based base image for Hermit containers.

ayers of the Dockerfile, this only has to be considered once per host,
nikernels running on that machine. The variable parts are the loader
binary and the actual on. Figure 29 shows a resulting image along the disk usage of each layer.
We can see that el parts can provide a webserver in less than 5 MiB. As a comparison, the
small nginx:alpjbe Mygge?! is shown in Figure 30. Skipping QEMU, the image size is smaller overall,
but the plai@b er is more than 7 times the size than the one in the unikernel image.

However, as Kubern
independently of th

20
21

Document name: D3.3 Nemo Kernel Final Version Page: 29 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

https://github.com/orgs/hermit-os/packages?repo_name=runh
https://hub.docker.com/layers/library/nginx/alpine/images/sha256-799a9c761078cbbd04bdef1f3578741455114a29c55988e697bfceb97fa14682
https://hub.docker.com/layers/library/nginx/alpine/images/sha256-799a9c761078cbbd04bdef1f3578741455114a29c55988e697bfceb97fa14682

| * Layers |

Cmp S1ze Command
[J§ 7.8 MB_FROM blobs
77 MB RUN /bin/sh -c apk add --no-cache gemu gemu-system-xB6_64 libseccomp libeap-ng # buildkit
3.7 MB COPY /root/.cargo/bin/virtiofsd fusr/bin/virtiofsd # buildkit
@ B RUN /bin/sh -c chmod @755 fusr/bin/virtiofsd # buildkit
155 kB COPY hermit-loader-x86 64 hermit/hermit-loader # buildkit
157 kB COPY hermit-loader-x86 64-fc hermit/hermit-loader-fc # buildkit
4.5 MB COPY httpd hermit/httpd # buildkit

Figure 29: Image composition of a Hermit container based on the Alpine Linux baseimageA

e N

| Layers
Cmp Size Command

7.8 MB FROM 994456c4fd7b2b8

4.6 MB RUN /bin/sh -c set -x &% addgroup -g 101 -5 nginx &% adduser -5 -D -H -u 181 -h /var/cache/ngi

1.6 kB COPY docker-entrypoint.sh / # buildkit

2.1 kB COPY le@-listen-on-ipv6-by-default.sh /docker-entrypoint.d # buildkit

389 B COPY 15-local-resolvers.envsh /docker-entrypoint.d # buildkit

3.8 kB COPY 2@-envsubst-on-templates.sh /docker-entrypoint.d # buildkit

4.6 kB COPY 38-tune-worker-processes.sh /docker-entrypoint.d # buildkit

RUN /bin/sh -c¢ set -x && apkArch="%(cat /etc/apk/arch)" && nginxPackages="" nginx=${NGI|

Figure 30: Image composition of the gginx-alps ntainer.

This result is indicative, that Unikernels can provide very plXation images. The comparison
looks different for different servers, and only a small example is shown here. But it is to be expected,
that with larger applications, the overhead of bup@ling QEMW'is outweighed by the small image size of
the application.

2.3.2 Secure pod attestation

deploys the services as Poc
To finish the installgti

cessary to modify the kernel params, see Figure 31, in the file
Jopt/kata/share/defau [ntainers/configuration-gemu-tdx.toml to point to the IP of the KBS

@ Figure 31: Kernel Parameters for KBS Integration.

In th&ollowing section startup time and cluster resource consumption will be considered for the
measurey.

2.3.2.1 Startup time and resource consumption
The time it takes to deploy the pod in CoCo is counted from the time the command to start the pod is
executed until its status is “Running”.

Figure 32 corresponds to the first log found when a pod is deployed.

22

Document name: D3.3 Nemo Kernel Final Version Page: 30 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

https://github.com/confidential-containers/guest-components/tree/main/attestation-agent/coco_keyprovider

‘[2024-10-16T11:26:04Z INFO kbs::http::attest] Auth API called. ‘

Figure 32: Authentication Request.

This log confirms that the KBS has received a request. This marks the start of an authentication process
to verify the identity of the requestor. If the attestation process is successful, the KBS will provide the
private key to decrypt the image(s) of the pod container to be deployed. Figure 33 corresponds to the
last log.

[2024-10-16T11:26:07Z INFO actix_web::middleware::logger] 172.18.0.1
/kbs/v@/resource/default/image-kek/2b5353ec-709a-4254-a311-f8ec8f2bff4
HTTP/1.1" 200 530 "-" "attestation-agent-kbs-client/0.1.0" 0.005777

Figure 33: Key Retrieval. ¢
Therefore, the time it takes to confirm that the TEE is trusted and provides the s o the host to
deploy the pod is around 3 seconds. Although once the host has the private key t t the container

image, k8s takes about 5-10 seconds to deploy the pod.
The pods deployed to enable the execution of CoCo consume a total of 15@&0 memory and 3m of

CPU, with overall memory and CPU consumption being controlled. ‘

confidential-containers-system cc-operator-controller-manager-699d884f44-w2tsj 3m

confidential-containers-system cc-operator-daemon-install-792nj
confidential-containers-system cc-operator-pre-install-daemon-86jrg

Figure 34. CoCo Resource Cogfumption.

2.3.2.2 Deployment testing
Two different scenarios were successfully dem@astrated) These are the details of those scenarios:

Successful pod deployment using Co

For this purpose, the image of the containe
keys have been stored in the KBS correctl
attestation process is successful, t S will be able to find the private key associated to the public
key of the encrypted image and wi e it to the TEE to decrypt the image and deploy the pod. The
Figure 35 depicts the differ stics of the pod deployed using CoCo. Providing us with
information about the ringi sed (kata-gemu-tdx), which the one used for Intel TDX, the encrypted
image used and the

<

Document name: D3.3 Nemo Kernel Final Version Page: 31 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

L oy
are) i

fic NEMO

=

‘060 —

mw@pandora-1:~/kbs$ kubectl describe pod encrypted-image-test-busybox
encrypted-image-test-busybox

default
0

Name :
Namespace:
Priority:

Runtime Class Name:

Service Account:
Node:

Start Time:
Labels:
Annotations:

kata-gemu-tdx
default
pandora-1/
Tue,

22 Oct 2024 09:24:56

+0000

run=encrypted-image-test-busybox

cni.projectcalico.
cni.projectcalico.
cni.projectcalico.
IO.COT\tSU‘IErdACrl.

org/containerID: 2 7€5133e2990997f1a05dd2e9b56a702927e78691f0f7e71a02ed4cbfébc2
org/podIP: /32

org/podIPs: /32

runtime-handler: kata-gemu-tdx

Status:
IP:
IPs:
IP:
Containers:
busybox:
Container ID:
Image:
Image
Port:
Host Port:
State:
Started:
Ready:
Restart Count: ©
Environment: < >
Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-gdxn7 (ro)
Conditions:
Type
PodReadyToStartContainers
Initialized
Ready
ContainersReady
PodScheduled
Volumes :
kube-api-access-gdxn7:
Type:
TokenExpirationSeconds:
Conf igMapName :
ConfigMapOptional:
DownwardAPI:
QoS Class:
Node-Selectors:
Tolerations:

Running

containerd://8bb19fa78dd2c3d6bd037a96b03d1e33a480586c4498d83a8e23d54c8fdobaod
docker.10/jorgealmansa/busybox:encrypted

ID: docker. 1o/jorgealmansa/busybox@sha256:505fc7788ddaSe0a20a401dabd72ace72bb762a7d19cf60207b613173f27107f

Running

Tue, 22 Oct 2024 09:25:08 +0000

Status

Projected (a volume that contains injected data from multiple sources)
3607
kube-root-ca.crt

<niL>

BestEffort

katacontainers.1o/kata-runtime=tru

node.kubernetes.1o/not-ready:NoExecute op=Exists for 300s
node.kubernetes. 1io/unreachable:NoExecute op=Exists for 300s

Events: < >

bon of e successful pod.

In this case, we encrypt the contai
able to find the private key and ca

age but do not store the secrets in KBS. Therefore, KBS is not
avide it to the TEE to unlock the container image.

to create container task: failed to create shim task: failed to

t KCy””. The container is trying to deploy an encrypted image, but it fails
aff key to decrypt it. It also gives us information about the runtime being
, the last state, etc.

On Figure 36, the error mes
handle layer: failed tq
because it cannot fird

used, the image and '

32 of 83
Final

D3.3 Nemo Kernel Final Version
D3.3 [Dissemination: [PU

Document name:
Reference:

Page:
Status:

[Version: [1.1

f:-.wﬂw_{: '\l EE '\" <:)

mw@pandora-1:~/ kKube: describe pod ubuntu-encrypted

Name : ubuntu-encrypted

Namespace: default

Priority 0

Runtime Class Name: kata-gemu-tdx

Service Account: default
pandora-1/
Tue, 22 Oct 2024 09:26:19 +0000
run=ubuntu-encrypted
cni.projectcalico.org/containerID: db9339718e0547a23669f47110bb882f980c2f14579ba1aa1359b03f79428399
cni.projectcalico.org/podIP: /32
cni.projectcalico.org/podIPs: /
10.containerd.cri.runtime-handler: kata-qemu-tdx
Running

Conta1
ubuntu:
containerd://299f702719cb8617cdagfeSeateaddcd2b364e35¢c058ch62506e195ddod04650
docker.10/jorgealmansa/ubuntu:encrypted
docker.10/)orgealmansa/ubuntu@sha256:bbd57641a3564dd7478bb4342fbf463a6c5a45ebd96ba87526f7b4ab9c3762bc
Host Port: < >
State: Waitin
Reason:
Last State: Terminated
StartError
to create containerd task: to create shim task: to handle layer: to get decrypt key

Caused by:
missing private key needed for decryption

2.3.2.3 Custom images

Finally, a pod has been successfully deployed using a custom imags ing the same deployment
steps as before. In the image, there are several pre-installed packagg

as a SDN network controller or as a switch while also inteyagting e Kubernetes API.

During the image encryption process, an issue has been encoypferoff. two encrypted layers corresponded
to identical plaintext layer, preventing decryptiony This iss§e is documented in a pull request on the
Confidential Containers GitHub repository [1].

Finally, CoCo offers us a good and easy-to-ins@ll way tp protect workloads in cloud environments, by
incorporating attestation mechanisms ement and encryption technologies. Our
implementation leverages TDX to crea off&ring isolation and protection to make the environment
even more reliable. The deployment proc demonstrated scalability, robustness, and efficiency,
requiring minimal resources. Moreovgr, its infegration with Kubernetes and support for custom images
makes it a very versatile soluti 11 this makes CoCo a flexible and independent solution for
organizations to protect their ompromising performance or scalability.

2.4 Unikernel

via SEE-Interface

As mentioned previ SEE-Interface itself runs as a pod in Kubernetes. Thus, first, there is a
need to deploy t image via the components.yaml that is offered in the project’s repository?.
Figure 37 showlth cessfully deployed the SEE interface to the OneLab cluster:

23

Document name: D3.3 Nemo Kernel Final Version Page: 33 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-kernel/secure-execution-environment/see-interface/-/blob/main/components.yaml
https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-kernel/secure-execution-environment/see-interface/-/blob/main/components.yaml

&3¢ NEMO

o @ = mkroening — ~ — -fish — 80x24
=
> kubectl cluster-info
Kubernetes control plane is running at https://api.main.nemo.onelab.eu:6443
CoreDNS is running at https://api.main.nemo.onelab.eu:6443/api/v1l/namespaces/kub
e-system/services/kube-dns:dns/proxy
To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.
> kubectl --na ce=nemo-kernel get deployments see-interface
NAME READY UP-TO-DATE AVAILABLE AGE
see-interface 1/1 1 1 26m
> 1
Figure 37: Deployment of the SEE-Interface itself in t a bernetes.

To demonstrate the process of deploying a safe unikernel wa the S terface, define the service in a
deployment YAML file for Kubernetes, as represented in service is a simple webserver
that is executed as a unikernel. The main difference betweeifa umkernel and a normal container-based
pod in the deployment yamls is the runtimeCla e field”It must be set to the Unikernel runtime
runh. Additionally, the nodeSelector field is sdf, as notall nodes in the OneLab test cluster have this

runtime installed. /\

kind: Service
apiVersion: vl
metadata:
name: hermit-httpd-servi

namespace: herm%;

spec:
type: LoadBala \'

ports:

- nhame:

p 9
a ort: 9975

ector:
apP: hermit-httpd-app
apiVersion: apps/vl
kind: Deployment
metadata:
name: hermit-httpd-app
namespace: hermit

spec:

Document name: D3.3 Nemo Kernel Final Version Page: 34 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

replicas: 1
selector:
matchLabels:
app: hermit-httpd-app
template:
metadata:
labels:
app: hermit-httpd-app
spec:
runtimeClassName: runh
containers: (b
- name: hermit-httpd 4
image: ghcr.io/hermit-os/httpd:latest O
imagePullPolicy: Always
ports: &
- containerPort: 9975
nodeSelector:

runtime: runh

Figure 38: Deployment YAML for a Unik§#hel Pased‘webservice

Finally, the pod is deployed, and the service is @vailablejvia a browser, see below:

)

nemo.hermit-0s.org:9975/ X | +
C @ O & NotSecure nemo.hermit-os.org:2975

Hello from Hermit! &
The current date and time in UTC is 2825-83-24 19:34:02.9042@85 +00:90:00.

‘@‘l’:igure 39: Successfully deployed Unikernel -based webservice.

2. 1on

The o es of task 3.1 provide several promising enhancements for classical cloud infrastructures.
These ate for once the Unikernel extension for Kubernetes, providing means of deploying highly
specialized and well-isolated application images also on cloud scale. The migration extension allows
fine-grained pod and deployment migration, which is relevant for locally distributed clusters to provide
careful service placement, e.g., depending on latency or the CO2 level in the local power-grid. Last, an
investigation was conducted into the use of confidential computing technologies and provided a setup
and integration guide for the project and beyond, to allow trustful cloud infrastructures in NEMO. In
combination with the underlying Kubernetes, these extensions form the Secure Execution Environment
for service execution in the NEMO kernel. All components’ development is complete, and they are
successfully deployed in the OneLab cluster.

Document name: D3.3 Nemo Kernel Final Version Page: 35 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

3 Privacy & Policy Enforcement Framework

3.1 Overview

The ultimate objective of NEMO meta-OS concerns the optimal management of hyper-distributed
services over AloT-Edge-Cloud continuum. This requires the appropriate definition of Service Level
Objectives that would drive and, at the same time, safeguard the optimal operation of the deployed
applications. NEMO meta-OS adopts an intent-based approach that drives the management of the
NEMO stakeholders’ application requirements and defines their optimal lifecycle managofgent. The
Privacy & Policy Enforcement Framework (PPEF) component materializes the NEMO meta%nt-
based approach supporting the governance of workloads that adhere to high-performan, d Wreh-

energy efficiency operations as manifested by the NEMO stakeholders.
troduces the

The PPEF that was introduced in D3.1 and further evolved as described in

mechanism that safeguards the compliance and enforcement of different aspects#fghe application life
cycle concerning security, privacy, cost, performance, and environment 't aspects. D4.2
“Advanced NEMO platform & laboratory testing results. Initial version” was submitted in
M27 and documented the first 1ntegrated NEMO meta-OS framework . corporated, as part of
the end-to-end integration scenarios that presented functional example PPEF highlighting its role

wh

within the NEMO framework. This document's final version of the 19gletailed, providing the latest
technical and functional updates and new insights. For the sake leteHless, technical information
that were already presented in past deliverables might also re.

3.2 Architecture and Approach

In D3.2, section 3.2, the PPEF concept is i
functional aspects of the tool that concern,
and management activities. The present
describing the latest updates adopted by t

Moreover, in D3.2 a list of SLOs that are incoPporated by the NEMO meta-OS are defined. These SLOs
concern both the NEMO governe sters and the NEMO hosted workloads and are defined by the
NEMO provider during the registr: cluster (infrastructure) or of a workload (application). These
SLOs cover both stati rmation that describe an asset supported by NEMO. This
section summarizes tie in tation/target list supported by the PPEF component that corresponds
to dynamic properties Whi monitored by the PPEF in the context of NEMO meta-OS.

o

Document name: D3.3 Nemo Kernel Final Version Page: 36 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

CLIENT

Intent-based API ‘1—){ LCM ‘
A

[] workload intents

Privacy, Data L
LEE protection, Ethics w —
PRESS manager [>
Palicy Agent Contraller g
=4]
< > 5 f
Analytics Engine > analytics, alers, 1
monitoring
) [y
Analytics A
Resource monitoring 2
(metrics, analytics,) |
v E
Monitoring API Thanos
A
Infrastructure

Continuum O
Prometheus
s [omeovr

‘ loT Device 1 ‘ ‘ Edge Node 1 ‘ ‘ K8s Node 1 ‘

‘ loT Device N ‘ ‘ Edge Node N ‘ ‘ K8s Node N ‘

Figury PPEF architecture.
The PPEF is vertically oriented in #4@NEMO meta-OS architecture, implying both direct and indirect

interfacing and interaction with ¢ O meta-OS components, including the intent-based API, the

meta-Orchestrator, the CFDRIFSud onetization and Consensus-based Accountability (MOCA).
 J

3.3 NEMOw itoring

tations

the 3GPP specification** #28.312 which covers the intent-driven management
rie networks and has been adapted to suit the project's needs. In principle, an intent
bectations, including requirements, goals and constraints for a specific service or
. The intent may provide information on a particular objective and related details. It is typically
able by humans and needs to be interpreted by the machine without any ambiguity, focusing
more o’ describing the "What" needs to be achieved but less on "How" those outcomes should be
achieved, expressing the metrics that need to be achieved.

3.3.1 Intents

24

Document name: D3.3 Nemo Kernel Final Version Page: 37 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 Status: |Final

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3554

&8s NEMO

Intent

Expectation

« Expectation Target 1

. Expectati;)n Target N . : (b

As indicated in Figure 41, an Intent consists of a set of Expectations (In ectations) which describe
the desired characteristics
on fargets are associated with

Figure 41: Intent Expectations.

of the service are the expectation targets to be achieved. The
metrics that measure the corresponding values.

In view of the final version of the PPEF significant implenygfitatfon ehhancements and corresponding
code refactoring was necessary to optimize the dgperation §f the component. In the context of the
workload scheduling that is governed by the FDRL component, workload migration and workload
scaling (scale out) actions might be triggered. latter ntroduced some added complexity to the PPEF
logic that concerns the calculation of the £o orkload monitoring which was addressed in the
finalized PPEF.

The PPEF has defined six types of intents correspond to the desired application behaviour that
NEMO service provider assigns in biginess térms for a NEMO meta-OS hosted application (workload).
Specifically, the NEMO meta- ‘3 load intents are the Computing Workload Intent, the
EnergyCarbonEfficiency Inte, rity Intent, the FederatedLearning Intent, the Machine
Learning Intent and ®he ent. The associated expectations that are mapped to the
abovementioned int ist@¥in tabulated format below in Table 2, Table 3, Table 4, Table 5, Table
6, and Table 7.

Table 2: Computing Workload Intent.

Expectation | Description Target Value Range
w- lige Usage in seconds Integer value
RAMWyage Bytes in memory occupied Integer value

Table 3: Energy Carbon Efficiency Intent.

Expectation |Descripti0n ‘ Target Value Range
Energy Consumption rate Joules per second (avgin 5’) Integer value
Energy Efficiency Joules for every second of CPU | Integer value

time
Energy Consumption Total Joules consumed Integer value
Document name: D3.3 Nemo Kernel Final Version Page: 38 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

Table 4: Security Intent.

Description

Federated Learning FL environment requirement Yes/No

Table 5: Federated Learning Intent.

Expectation Description Target Value Range
Security SEFE requirement Yes/No
Table 6: Machine Learning Intent. =
Expectation Description ’ Target Value Range
Machine Learning ML environment required Yes/No Q
VRAM VRAM capacity in GB | Integer va@
requirement &

Table 7: Network Intent. ‘
Expectation Description
Secure AccessList descriptor N
UL Capacity Uplink capacity for 5 G% 1P, portNumber and portType
DL Capacity Downlink cap/ﬁy fors G)riice 1P, portNumber and portType

The PPEF is responsible for the intent-

‘Workload monitoring which is governed by the

Policy Agent Controller (PAC) moduleA S the heart and mind of the PPEF environment. The PAC
facilitates the management of the monitor gcess of the NEMO workloads, which is driven by the
intents of the NEMO user. More spgcifically] the PAC internally realizes two modules which tackle
distinct aspects of the NEMO wor(&l’ s‘intent monitoring lifecycle, Figure 42.

Q Intent-based API
[)

i3
/ t \ PAC

Monitoring API

Figure 42: PPEF PAC internal modules.

The Intent Validator is a new feature that is introduced for the final version of the PPEF component in
NEMO meta-OS. The target value that is assigned by the NEMO meta-OS service provider which
corresponds to an expectation/target attribute is validated through a validation filter. This ensures that
the monitoring thresholds correspond to the infrastructure specifications and are aligned with the Target
Value Range of each intent/expectation.

Document name: D3.3 Nemo Kernel Final Version Page: 39 of 83
Reference: D3.3 |Dissemination: |PU [Version: [1.1 Status: [Final

The Intent Collector is responsible for collecting the intents that are associated with a NEMO workload
through the Intent-based API and thus triggering the monitoring process.

The Intent Evaluator interfaces with the Monitoring API and collects the metrics corresponding with
the intents defined for a particular NEMO workload. Then, it evaluates whether the metrics satisfy the
targets set by the NEMO client. Subsequently, the updated values that have been collected are stored in
the PPEF database and communicated through RabbitMQ to either the meta-Orchestrator or mNCC.

The PAC interfaces internally with the PRESS manager, the PPEF Analytics Engine and a database. In
addition, it interfaces with the main communication channel of the NEMO meta-OS, RabbitMQ,
enabling it to communicate its service monitoring analysis, metrics, and alerts to the meta-Orghestrator,
CFDRL, MOCA, and mNCC components.

3.4 NEMO Cluster monitoring

PPEF is responsible for deploying monitoring tools which are responsible for coﬂg tge cluster

resource consumption measurements from the NEMO incorporated infrastructure all hto the AloT,
Edge and Cloud continuum. The PPEF monitoring the CPU, RAM and HD rego @ bnsumption from
each environment that is managed by the NEMO meta-OS, see Table 8.

Table 8: Cluster registration KPIs
Description ‘ Target Value

Availability The percentage of time that

cluster is up (99.9%,
Green Energy The percentage Iriteger value
powering
Cost String value
CPU base rate Integer value in milli-tokens
illi-tokens)
Memory base rate mory cost of the cluster | Integer value in milli-tokens
° memory capacity of the
cluster (in milli-tokens)
3.5 PPEF inter s and interfaces

This section high-level description of the interactions that concern the PPEF component
within NE e2OS. The integration results that correspond to the listed interactions are presented
in nd8yily be further updated in D4.3. The latter will also include relevant integration activities

tha ern the 3™ parties that are introduced to the NEMO project through Open Call 1 and 2.

3.5.1 tent-based API

The PPEF component interfaces with the Intent-based API for collecting the various intents that have
been provided by the user in the framework of NEMO workload registration process. The interaction of
the PPEF with the intent-based API is further supported by the addition of an intent validator that works
as a filter over the attributes that are assigned as expectation/target values by the NEMO service
provider. This process ensures the proper configuration of the intents that are consumed and monitored
by the NEMO meta-OS.

Document name: D3.3 Nemo Kernel Final Version Page: 40 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

3.52 LCM

The PPEF module interfaces with the LCM module to which it dispatches metrics that are monitored,
and which are associated with NEMO cluster monitoring and workload intents. In addition, PPEF via
its Analytics Engine is able to provide additional statistical insights into the collected measurements.

3.5.3 meta-Orchestrator

The PPEF dispatches to the meta-Orchestrator metrics that are monitored, and which are associated with
NEMO cluster and workload intents.

workloads.

355 CFDRL 4

The PPEF module interacts with the CFDRL component and communicates in rne intervals the
S

354 CMDT
CMDT consumes the PPEF workload intent related information that corresponds to the NE iiO- sted

NEMO-hosted cluster and workload measurements that are collected via the g tools deployed
in the NEMO clusters. CFDRL capitalizes on the collected informati or decision-making
functionality over the NEMO-hosted workloads.

3.5.6 MOCA

The PPEF communicates to the MOCA the monitored jnforma at €oncerns both the NEMO
governed clusters and the NEMO hosted workloads suppo nting and billing functionality
that is offered by the MOCA.

3.5.7 RabbitMQ

The data collected by the PPEF componeny is @mmunicated both to the intent-based API and to the
NEMO components via the RabbitMQ mdu stablishes the main communication backbone of
NEMO.

3.6 Conclusion

The final version of the®PP d here in the context of D3.3. The PPEF integration with the
NEMO meta-OS hasfgee®pres@peed in detail in D4.2 which details the first integrated NEMO meta-OS
framework. The fina raon results that concern the PPEF component will be further updated and
described in D4.3. T version of the PPEF is available in the project’s Eclipse GitLab repository.
The final develp ivities pertaining to the PPEF component along with the deployment and the
proper confi \@f the PPEF monitoring tools, namely Prometheus and Kepler, on the NEMO
developmefit/and Yintegration environments (development, staging production) hosted in OneLab
facj idNEMO pilot related infrastructures.

The 1 version of the PPEF incorporates new features that were implemented in PPEF. Specifically,
a new nt (Machine Learning Intent) was included in the list of the intents that are available to the
NEMO service provider, the expectation/target validation filter and the code refactoring and
implementation enhancements that concern the service scale out process that is triggered by the CFDRL
workload scheduling optimization functionality.

The PPEF component along with the rest of the NEMO meta-OS will be further validated both in the
framework of the NEMO pilots and the associated use cases and in the context of the Open Call 1 and
2 integration and validation activities.

Document name: D3.3 Nemo Kernel Final Version Page: 41 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

4 Cybersecurity & Digital Identity Attestation

4.1 Overview

The final version of the access control framework within NEMO implements a sophisticated Identity
and Access Management (IAM) system. which enforces granular access rights for individual users and
groups to specified resources. In that respect the Identity Management sub-module covers the lifecycle
of user identities, including the creation and deletion of user identities, along with the processes of
provisioning and de-provisioning user access rights. As has been proved in the last phase of fae project
the Identity Management modules successfully manage user identities efficiently and securelfy from
their initial establishment to their eventual removal. The Access Management sub—mo ms
authentication, authorization, and policy management. As proved in the last phase of the {F Project,
this module guarantees that only users with the appropriate permissions can access %c fesources,
while it also enforces and monitors, in a continuous manner, the access policiesgghich @e constantly
adapting to the changing security requirements; thus, this module guarantees the @y, confidentiality

and integrity of the overall NEMO system.

pJzes a message broker
% sub-system (Keycloak?)
c§gcct it enables secure and
fodules supporting secure
tiQloose coupling of the message
module, as it has been proved in the
ient intercommunication of the NEMO

The final version of the Network Intercommunication Security mod
incorporated with the most widely used open-source identity and ma
and the Identity and Management sub-module of NEMO. In

authenticated communication and synchronization among th
message routing, queuing, and transformation and thus i
sender and the receiver. The Network Intercommunication
last phase of the project, supports full flexibilit
modules while also triggering high reliability and scalability.

NEMO’s source code projects on the Eclipge
ybersecurity metadata artefacts such as SBOM
cybersecurity supply chain workflows, or SSDLC,

from the European Cyber Resilient Aet and WIS2 directives.

within the last perio components have been fully verified and evaluated.

42.1 Identi@v/lanagement Module
The NEM ces¥Control was initially integrated with the oAuth2.0 plugin for security. In this updated
S e ation of NEMO Access Control with the Kong Prometheus plugin®, which allows the

exp ¢ of workload network metrics, such as its bandwidth and latency, through a Prometheus
Qs reported. The metrics are scraped by the PPEF and provided for querying. These metrics can
prove useful to pinpoint any slowdowns in the workload, which can affect the overall performance and
experience provided by the workload and possibly detect attack attempts (e.g. DoS attacks).

To better demonstrate the plugin, there is deployment of a simple NGINX server workload, which serves
a simple login page, Figure 43.

% Keycloak:
26

Document name: D3.3 Nemo Kernel Final Version Page: 42 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

https://www.keycloak.org/
https://docs.konghq.com/hub/kong-inc/prometheus/

Welcome to nginx!

i
Wi
=
T

Figure 43: Test NGINX server

The workload has been registered automatically in Access Control, with the usage of priate
annotations in its K8S Ingress, further details can be found on deliverable D4.2. This aytotgatf@#® method
for registering workloads in NEMO Access Control has been described in more de deliverable
D4.2. Figure 44 focuses on the kong.com/plugins annotation, which is responsf r registering the

workload in Access Control’s Kong service.

test-nginx-ingress
<none>
nemo

kong
<default>

test-nginx-nemo terminates test-nginx.nemo.platform.meta-os.eu

st-nginx.nemo.platform.meta-os.eu
/ nginx:8

cert-manager.io/cluster-i er: letsencrypt-production
: test-nginx.nemo.platform.meta-os.eu

i http, https
: false

Now, the necessary ervice, route and plugin have been added successfully to Kong as
demonstrated inw , Figure 46 and Figure 47.

Gateway Services

eam more ¢

estnging + New Gateway Service
Name Protocal Host Port Path Enabled Tags
test-nginx fitps test-nginx nemo platform. meta-os.eu 443] Enabled

Figure 45: NGINX Kong Service

Document name: D3.3 Nemo Kernel Final Version Page: 43 of 83
Reference: D3.3 [Dissemination: [PU Version: [1.1 Status: [Final

Routes

Hestnging

Name

test-nginx

Configuration Plugins

[E] Prometheus

Figure 48 demonstrates the details of the Prometheus plugin applied tq
enabled exporting the latency and bandwidth metrics of the workload
can expose the total number of requests to the workload.

Protocols

htip hips

E Prometheus

Configuration

D

Name

Instance Name
Enabled

Last Updated
Created
Consumer ID
Service ID
Route ID
Protocols

Tags

Learn more 2

Figure 46: NGINX Kong route
Enabled [[lT]

Figure 47: NGINX Prometheus plugin

297e327e-cb10-4ac5-b644-5779ecebc76b |0

E Prometheus

Enabled
Feb 11,2025, 12:15 AM

Feb 11, 2025, 12:15 AM

fa4ed11c-a713-4c43-82b1-53a076591a24 |0

grpc grpes http htips

Plugin Specific Configuration

Per Consumer

Status Code Metrics

Bandwidth Metrics

Upstream Health Metrics

Latency Metrics

Enabled

Enabled

Enabled

Enabled

Enabled

Figure 48: Prometheus plugin details

ya
= NEMO
% ® ® —
\
Tags
-

load. The plugin has

atus code metrics, which

Document name:

D3.3 Nemo Kernel Final Version

Page:

44 of 83

Reference:

D3.3 |Dissemination:

[PU [Version: [1.1

Status:

Final

In this context, the PPEF can expose those metrics. If a query is carried out, for example, the total
number of requests it can be observed, Figure 49, the total count, which at the start of the deployment
is a total of 1.

= @ Execue

Figure 49: NGINX total HTTP request count - initial deployment

If the NGINX server is refreshed a few times, it can be observed that the total count been
incremented (total=3) and that the PPEF, also, exports information for the total count of gadi nt
status codes (200, 404). .

= © | Execute

Q | kong http requests to

= © Execute

= © | Execule

hart

naged by="Heim". app kuber ume="kong". app kubernet version helm sh_chart

Figure 52: NGINX server latency histograms

Document name: D3.3 Nemo Kernel Final Version Page: 45 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

NEMO

4.2.2 News CNAPP & Software Supply Chain

This paragraph will first give a brief reminder of previous deliverables. Then it addresses the signature
validation at runtime.

D3.1 describes CNAPPs - Cloud-Native Application Protection Platforms - in general and with a focus
on runtime cybersecurity probes such as Falco.

The DevSecOps Toolchain https://github.com/devsecopsmaturitymodel/DevSecOps-MaturityModel/issues/14

7. RASP, UEBA/
Network & NEMO
Monitoring, D3.1
Penetration Test

Log and Perimeter
Monitoring
| RASP Feedback

Source: Gartner
ID: 377293

Figure 53 NEMO D3.1 focus on the dfgection aff runtime (step 7 Gartner DevSecOps)

D3.2 took a “shift left approach” to
development time with tools like soft
provenance, as well as software signing to
release Golang application with SB% and sfgnatures.

ic of software supply chain security during
sition analyzers that create SBOM and attestation of

The DevSecOps Toolchain https://github.com/devsecopsmaturitymodel/DevSecOps-MaturityModel/issues/14

Analytics

Dev
Security Monitoring
Champs and

Preprod

3. SAST/DAST/ 5. Software
IAST, SCA Signing
g% NEMO i

D3.2 D3.2

Source: Gartner
ID: 377293

Figure 54 NEMO D3.2 Focuses on Software Composition Analysis (Step 3 Gartner DevSecOps) and Software

Signing (Step 5)
Document name: D3.3 Nemo Kernel Final Version Page: 46 of 83
Reference: D3.3 |Dissemination: |PU [Version: [1.1 Status: [Final

NEMO

D3.3 goes back to “runtime” and illustrates step 6 of Gartner DevSecOps, which is signature verification
at runtime. These steps follow D3.2, which purpose is to generate the metadata such as OCI - Open
Container Initiative — image signatures or attestation that will be verified at runtime.

The DevSecOps Toolchain

Source: Gartner
ID: 377293

https://github.com/devsecopsmaturitymodel/DevSecOps-MaturityModel/issues/14

éhg Nemo D3.3

6. Signature Verify,
Integrity Checks,
Defense In-
Depth Measures

I

Prevant]

Ops

1

Monito
anc

Figure 55 NEMO D3.3 focug/on signature)griﬁcation at runtime

In the NEMO project, this software si@natyre ication at runtime
Admission and Admission Controller featQg€s fr)n Figure 56.

uses Kubernetes Validation

API|
API request HTTP

handler

Authentication Mutating

Authorization admission

Object

Schema
Validation

Validating
admission

Persisted
to etcd

Webhook || Webhook

Webhook

|

Figure 56 A Guide to Kubernetes Admission Controllers?’. NEMO focuses on validation admission.

Figure 57, Figure 58 and Figure 59 show the principle behind this signature verification that uses
Kubernetes Admission Controllers. The application to deploy can be anything, from NEMO meta-
Orchestrator-api to KeyCloak, as long as they the apps provide the metadata like signatures.

27

Document name:

D3.3 Nemo Kernel Final Version

Page:

47 of 83

Reference:

D3.3 |Dissemination: |PU

[Version: [1.1

Status:

Final

https://kubernetes.io/blog/2019/03/21/a-guide-to-kubernetes-admission-controllers/

O _(N E M O

As can be observed in Figure 57, from left to right, a DevSecOps person is responsible for writing
validation policy for the Kubernetes admission. The DevSecOps also configure or use the OCI image
registry where software artefact and software signatures have been released. And the DevSecOps also
writes the Kubernetes manifests that correspond to the deployment of an application.

The DevSecOps uses the Kubernetes client of its choice, including GitOps, to deploy the policy
manifests on the Kubernetes cluster, and then the application manifests. Indeed, the policy and
admission controller must be configured and deployed before the application. This enforced and
protected the application. On Figure 57, the policy could be phrased like this:

“In order to be pulled, an OCI container image must have a valid signature verified by the gdmission
controller from an accessible root of trust. If the OCI signature is valid, then the image 1Rgulled.
Otherwise, the DevSecOps chooses a strict policy which prevents the OCI container imag m Wping
pulled if the signature verification fails. This is the case in Figure 58. Or the DevSecOp, ose a
less strict policy which pull the OCI container image even if the signature is not valid put \var¥'the user
about this with an alert message. This is the case in Figure 59.”

To choose between a strict policy “no pull if not a valid signature”, or a warni olicy “pull even
if not a valid signature but warn the user”, this depends on the use case. adtes or pre-production
environments, the signatures might not be generated by the CICD when ijgiggno®g,software artefact from
a release branch. In this situation, a warning policy is enough as testi pp is more important than
protecting the apps. In a production environment, strict policy sh(ﬁ plemented.

A Security Policy engine lAn OCI registryv2

ion controller AP, e.g.:

e.g.: Kubectl, . e.q.: kyverno, OPA docker.io/nemometaos
helm, k8s operatar, e.g.: a k3s cluster | |Gatekeeper, Notary, A k8s node host A PRL U\,
Gitops (flux, or an other k8s Connaisseur, sigstore This is populated by 21:,91"(53‘ sto;'e)
argocd) flavor policy-cantroller Eclipse's Gitlab CICD 9
([k8s Validation "
Admission u Host (ocl Contal a Scftware_swgnature
: inux Host (user ontainer service or
Kubernetes Client Kubernetes Webhook & policy kubelet or Pad space) & container OCI Signature Cryptography Root
APT server controller Controller ; i
runtime Registry of trust
DevSecOps verification & ROT
T _ \ enforcement
H T T T T T
v ' ' I ' ! Configure or o'
H v Deploy Validat ' ' i ' I Consume =
i H eploy Validating : . i i H
+ write k8s manifests 1 ROT services
! or GitOps recipes | WebhookConfiguration : : :
+for policy enforcement : & controller H is initi s H H
policy B i [This initial Admissi i i | i |
' b -+, |webhook deployment] 1 1 ' 1
' H i |in the k8s cluster is 1 1
+ Manffests to . | Inot detailed here H H
+ deployanapp o . ' H ' H
7 " H H 1 H i H
H | 1 i I 1 1
E Create Pod(s) M Admission Request verify h
: > signature ! !
: Pull crypto OCI archive signature(s) ! !
H | Return OCI archive with signature i i
E | Verify the signature against the ROT H
H T T T 1l
H . signature is I ! ' !
H Admission Response valid | H | H
H Signature is valid | H | H
: Palicy says "create policy '
. pod(s)" Enfocement 1
H ; Check H 1 H
H Create Pod(s) ; o 1 | H
' #| | Consult OCI image | ! |
' local cache ! !
H . 1 :
H ; pull OCI imagéd(s) (if needed) | Legend
H .]] .
. : < T] AP Apy 1 Programming Interface
H : Instanciate & start ' QCl: Open Container Initiative
i : ﬂ@_’: ' PKI: Public Key Infrastructure
H ' container(s) created ' I ROT: Root of Trust
3 & started ' 3 TUF: The Update Framework
| Pod(s)Created | B | Blue is k8s policy configuration
* - H : Green is application deployment
: ¢ Fedls) Created 1 1 : 1 is kas Validation Admission
H App deployed : | H |
L : ! : ! black is k&s scheduler operation

Figure 57 OCI Image Verification at Runtime: signature is valid, and policy let the OCI container image be
pulled

Document name: D3.3 Nemo Kernel Final Version Page: 48 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

A Security Policy engine
ission controller

|An OCI registryv2
IAPT

NEMO

;8.0
e.g.: Kubectl, . €.g.: kyverno, OPA docker.io/nemometaos
helm, K8s operatar) €.9.: @ K3s Cluster | \Gatekeeper, Notary, A k8s node host
GitOps (flux, or an other kés Connaisseur, sigstore This is populated by
argocd) flaver policy-controller Eclipse's Gitlab CICD
i a 4 . 4
kg:d\r’si‘g?ut:? " Software signature
Linux Host (user OCI Container & service or
Kubernetes Client Kubernetes Webhoak & policy kubelet or Pod space) & container OCI Signature Cryptography Root
API server controller Controller ; i
runtime Registry of trust
DevSecOps wverification & ROT
T _ Y enforcement
: H . 1 i : Configure or :
i ' ' ' ! Consume =
! write kgs manifests | DePIOY VaRiannd i | | | ROTserices |
E or GitOps recipes < g‘uwr:jt?ul\ig;rra ien : ! ! ! !
ifor policy enforcemer I This initial Admissi . 1 1 | |
e v, |webhook deployment] ; | B B
H . i lin the k8s cluster is ; | | H H
i Manifests to : © || not detailed here ; ; i H H
1 deployanapp o v : : : H H
: i : | | i i .
| Create Pod(s) 1 Admission Request verify : | | |
: > »| | signature ! ! ! !
: i Pull crypto OCI archive signature(s) o H
! ' Retum OCl archive with signature o i
H -+] H
E | Verify the signature against the RQT o
' -« : : ; "
' N signature is | [| | B '
: Admission Response NOT valic : : :
: Signature is NOT valid ' ' :
: Policy says "DO NOT . policy ' ' v Legend
H create pod(s)” —Enfocement | i H API: Application Programming Interface
H Image Policy Error: : Check i | : QCI: Open Container Initative
H invalid image signature : : ' ! PKI: Public Key Infrastructure
H < ' I I ' ROT: Root of Trust
i App Not Deployed TUF: The Update Framework
-+ ' I I '

Blue is k8s policy configuration
Green is application deployment
orange is k8s Validation Admission
black is k8s scheduler operation

Figure 58 OCI Image Verification at Runtime: signature is not igs says not to pull OCI container

image (strict polic

d p

A Security Policy engine |An OCI registryv2
ission controller AP, e.g.:
e.g.: Kubectl, e.q.: kyverno, OPA docker.io/nemometaos
e.9.: a k3s cluster | |Gatekeeper, Notar A k8s node host
helm, k8s operator,| per, Ve
GitOps (flux, I?Ir an cther k8s Connaisseur, sigstore This is populated by
argocd) avor policy-cantroller Eclipse's Gitlab CICD
(k8s Validation (.
Admission u Host (ocl Contal a Scftware_swgnature
: inux Host (user ontainer service or
Kubernetes Client Kubernetes Webhook & palicy kubelet or Pad space) & container OCI Signature Cryptography Root
APT server controller Controller
runtime Registry of trust
DevSecOps verification & ROT
T _ \ enforcement _
H T T T T T T
H v I I ' ! Configure or o'
r ; i I I Consume =
\ write kBs manifests Deploy Val\dalmg_ 1 1 : 1 ROT services :
v oor GitOps recipes Wenh:“gg;?g‘?::am" R | H | H
ifor poliey enforcement This initial Admissips, : H : H
H - 4+, |webhook deployment| | i | H
1 | I|inthe kBs clusteris | 1 : i H
i\ Manifests lo not detailed here : ' : ; H
1 deployanapp ™ : ; H ; H
B | i i | i |
H | i i | i |
i Create Pod(s) M Admission Request verify ' H ' H
! » D= signature ! B ' |
: > ! Pull crypto OCI archive signature(s) . !
1 - | Return OCl archive with signature o |
H i | i |
H 1 H 1 H
E | Verify the signature against the ROT)
H Admission Response signature is | |« : : : 'i
H Signature NOT is valid NOT valid ' ' ' '
H Policy says "create . 3 E 3 E
' p?d(s)ibﬁ(;v?m i | Policy | H | H
H Signature Is vall l¢—Enfocement | H . |
H : Check : H : H
H Create Pod(s) : I ! ' :
: : > Consult OCI image | | '
! ! local cache ! ! !
H H H | !
H ; pull OCI imaga(s) (if needed) N Legend
H . : > . .
H : d T] API: Application Programming Interface
H : Instanciate & start ' QCl: Open Container Initiative
H ' container(s) ' I PKI: Public Key Infrastructure
H h container(s) created f | ROT. Root of Trust
H ; & st(ar?led H | TUF: The Update Framework
H ; — |
+ App deployed Pod(s) Created P Pod(s) Created | H | Blue is k8s policy configuration
1But wam the user the| Butwam the user the | |4 : L | : ' Green is application deployment
:s\gnature is NOT valid | _ signature is NOT valid ' i ' | orange is kBs Validation Admission
| E— L : : : : black is k8s scheduler operation
H - ' i T ' T
| : i | i

Figure 59 OCI Image Verification at Runtime: signature is not valid, but policy says pull the OCI container
image but warn user (warn policy)

Document name:

D3.3 Nemo Kernel Final Version

Page:

49 of 83

Reference:

D3.3 [Dissemination:

[PU

[Version:

Status:

Final

Future work might include doing the same verification with in-toto SLSA attestation of provenance,
which includes both a signature and information about the software supply chain. One could write a
policy to prevent installation of OCI image pulled from a wrong registry.

4.3 Conclusion

NEMO deliverables D3.1, D3.2, and D3.3 demonstrate the developments, validation, and ways to utilize
the intercommunication system, the identity management system, and the principle of CNAPPs to
protect applications during development and runtime. For CNAPPS, it has been demonstragg the full
loop, where both development and runtime protect different aspects of an application's lifecyc

The final version of the Cybersecurity and Digital Identity Attestation framework develo il the
NEMO project consolidates essential security components to protect services operati AIoT
Edge, and Cloud environments.

IAM system that offers precise control over who can access what. It is built § ex1ble adapt to
security needs, and make access decisions based on context and risk.

Another important point concerns built-in telemetry powered by Pro
through Kong plugins. These two tools give real-time insight into systék
also helping to discover early warning signs of potential issues, lik
trends and user behavior.

eamlessly integrated
ormance and health while
gKttacks, by analyzing traffic

The NEMO framework adopts a proactive and adaptable a bining identity management,
contextual security enforcement, and continuous monitoring. The platform manages digital identities
independently, secures communications, and e s that active components comply with strict
security policies both now and in the future.

A
o

Document name: D3.3 Nemo Kernel Final Version Page: 50 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

5 NEMO meta-Orchestrator

The NEMO meta-Orchestrator (MO) is an open-source software system designed to manage and
optimize the distribution of computing workloads across the NEMO cluster network. This core
component serves as the NEMO platform's central component, allowing efficient and smooth
coordination between multiple NEMO components to allocate intelligently logical resources.

5.1 Overview

The meta-Orchestrator leverages different technologies and tools to achieve the goals, at the safyg time,
the component splits itself into multiple subcomponents, as shown in Figure 60. Each S\@) nt
t

has a different main goal
One of these goals is to deploy NEMO ad-hoc workloads built at a higher 1GV% e vanilla
Kubernetes manifests. These deployments are over a selection of clusters; this sgiggtion 18 the NEMO
cluster network, or, in other words, all clusters that form loT-Edge-Cloud % for the NEMO
platform also, considering that the role played by the MO is very importan amerCing this complex
resource and service flow to enable NEMO to work effectively in a hig ic and heterogeneous

environment.

On other hand, the MO controls the Placement®® of the network
workloads deployments and not overload the network, so also to pr¥
non-renewable energy clusters or fossil fuels energy cluste

tRQLn order to optimize those
e gréen-energy cluster over the

It is important to remark that in the initial stages of developnmight of this component, Golang, RabbitMQ,
Kubernetes, and REST API technologies have choseyras the stack to meet its requirements.
Interaction with other components will be gfiostly agynchronous through RabbitMQ queues, but
synchronous HTTP direct communication y REST/API can also be used when needed.

At the top, the MO is a high-level cont tainer orchestration clusters such as Kubernetes,
coordinating resources from the [oT edg@yo thgPcloud continuum, ensuring workloads are deployed
without issues. The NEMO MO compris ey subcomponents and services such as MO API,
Deployment Controller (DC), and IBMC (Intent-Based Migration Controller), which effectively
orchestrate computing workflows.

&

o

28 Placement:

Document name: D3.3 Nemo Kernel Final Version Page: 51 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

https://open-cluster-management.io/docs/concepts/content-placement/placement/

5.2 Architecture and Approach

As previously mentioned, the meta-Orchestrator’s functionality is divided into multiple subcomponents
to achieve a better software life cycle. This structured and maintainable software lifecycle, enabling
better separation of concerns, scalability, and extensibility.

T3.4: Meta-Orchestrator

Figure 60: meta-Orchestrator Subcompone

The MO is composed of three main subcomponents, Figurg 60:

¢ MO API: This subcomponent handles the CRUD 0 ofhe NEMO cluster network and
operations about the horizontal scaling of the NEM® workloads. From D3.2 to this D3.3 some
updates have been made regarding the

e MO Agent: This component is based
with the rest of the NEMO co
multiple queues and dependi ueues and messages, calls different endpoints with

Event-Priven Architecture (EDA) and communicates

5.2.1 meta-Orch

based on th b
All t es

API to D3.3, some changes were made to adapt the service to the NEMO platform. In the
next paragraphs the changes will be explained in deeper detail.

d subcomponents related to MO are deployed and working inside the hub.

The MO Agent has taken over the reading functionality from the queues; this agent used to write into
queues but now also reads them, takes messages, and calls the API endpoints depending on the messages
and queues listening. Basically, this agent triggers different behaviours inside the MO, depending on
what is receiving from other NEMO components such as the Intent-Base API, CFDRL or MOCA.

¥ OCM:
30 Hub-spoke:

Document name: D3.3 Nemo Kernel Final Version Page: 52 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

https://open-cluster-management.io/
https://open-cluster-management.io/docs/concepts/architecture/

&8s NEMO

Furthermore, MO API and MO Agent are services based on Kubernetes with inherited capabilities for
modifying the Vertical and Horizontal scaling to handle petitions without losses. It is also possible to
have multiple MO Agent instances inside the NEMO platform.

4

gel/publish messages

I 4

O API Aychitecture.

Figure 61:

The updates previously mentioned are:

e Removing the worker subco

NEMO needs. See Figurd62)
e Added JWT Keycloa

o

Document name: D3.3 Nemo Kernel Final Version Page: 53 of 83
Reference: D3.3 |Dissemination: |PU [Version: [1.1 Status: [Final

ya

&3¢ NEMO

MetaOrchestrator API %2

[Base URL: mo.nemo.onelab.eu/]
doc json

A MetaOrchestrator service APl in Go using Gin framework

Apache 2.0

ocm ~
GET fgetInfoManagedCluster Getinfoabout Managed Clusters v B
/joinManagedCluster Join a managed cluster v ﬁ
[E /unjoinmanagedCluster Unjoin a managed cluster v e
fupdateDb Update MongoDB with the present OCM Network clusters v B
fupdateReplicas v ﬂ

Icm ~
GET /getNemoClusters v B

auth ~
POST flogin Userlogin v

see 2
POST fpublishToSee Using the next verbs: create, delete, apply v a

Figure 62: PI endp&r/lts.

5.2.1.1 API Endpoints
ocM

This section is related to the NEMO cluste
MO API uses the OCM libraries and

e GET /getinfoManagedCl @ is endpoint gets all the clusters inside the NEMO cluster
network. Previously, t"0g joined using the /joinManagedCluster endpoint. See Figure
63 to see the ouput

rk and CRUD cluster operations. Inside the code, the
ploit multi-cluster-level operations.

pro-onelab”,
"ff0d5030-5d7c-487d-ad29-42c560251070",

@ rsion": "v1.30.7",
'ManagedAPI": "https://xxx.yyy.nemo.onelab.eu:6443",
"Capacity": {
"cpu": "32",
"ephemeral-storage": "387753320Ki",
"hugepages-1Gi": "o",
"hugepages-2Mi": "@",
"memory": "60826000Ki",
"nvidia.com/gpu": "16",
"pods": "550"
}s

Document name: D3.3 Nemo Kernel Final Version Page: 54 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

"Allocatable": {

"cpu": "32",

"ephemeral-storage”: "357353459123",
"hugepages-1Gi": "e",
"hugepages-2Mi": "@",

"memory": "60314000Ki",
"nvidia.com/gpu": "16",
"pods": "550"
¥
"CreationTimestamp": "2025-04-03T12:24:
"Availability": "99.9%",
"Cpus": 32,
"Memory": 62,
"Storage": 1350,
"GreenEnergy": "20%",

132",

"Cost": "low_cost",
"CpuBaseRate": 10,
"MemoryBaseRate": 10,

"Status": "True"

A

Figure 63: Retrieve spoke clusters firom the NEMO Cluster Network endpoint.

PUT /joinManagedCluster: Join a
endpoint is idempotent; only a cluster
get triggered. The JSON paylo

hich was not present in the cluster network earlier. The
thet name can exist, no matter how many HTTP requests
s key metrics like CPU count, memory, and storage

h as availability cost and green energy usage.

_api": "https://api.main.nemo.onelab.eu:6443",
1 200,

"memory_base_rate": 10,

'storage"”: 300

Figure 64: Payload for joinManagedCluster endpoint.

e DELETE /unjoinmanagedCluster: This endpoint is the opposite of previous endpoint and removes
a chosen cluster from the NEMO cluster network. In the payload there are the fields “managed api”

to put the API Kubernetes API and the name of the cluster.

55 of 83
Final

D3.3 Nemo Kernel Final Version
D3.3 [Dissemination: [PU

Page:
Status:

Document name:
Reference:

[Version: [1.1

e PUT /updateDb: This endpoint updates the OCM and DB registries to align and ensure the same
cluster on both sides. Basically, thake the OCM persistence and clone it into the DB.

e PUT /updateReplicas: this endpoint updates the number of replicas of the NEMO workloads. In the
payload are shared the “cluster name” where the workload is deployed, “workload id” and
“number_replicas”. See Figure 65 below to see an example of the payload call.

'cluster_name": "staging-cluster",
"workload_id": "cbcb208a-d535-434b-bb35-217a64bd516¢c",
"number_replicas": 3, (b

} 4
Figure 65: Update replicas endpoint payload for triggering Horizontal
LCM &

NEMO project. This
an handle, understanding

This section is about the endpoint used in the Guided User Interface (
call returns all the names and Kubernetes’s API URL for the cluster tha
it as capable of performing CRUD operations with these clusters.

e GET /getNemoClusters: This endpoint returns the ters t an be handled within the CRUD
operations. The NEMO platform's LCM GUI uses 01

AUTH
This section is related to the authenticatio dSecuri ithin the meta-Orchestrator API.

e POST /login: This endpoint is use ot MO services to properly authenticate and get a JWT
token. This endpoint has been remove®@nd gplaced by the Keycloak authentication.

SEE
This section is related tg SE as the unikernel and integrations with MO.

e POST /publishT, t trlggers a SEE or unikernel deployment inside the NEMO platform
and set the replyi (“reply to”) in the “body” field there’s go the SEE resource to deploy.

See Flgure 66.
Y o": "amg.gen-Xa2"
': "create",
"body": {
"apiVersion": "v1",
"kind": "Pod",
"metadata”: {
"name": "nginx"
¥
"spec": {
"containers": [
{
"name": "nginx",
"image": "nginx:latest",
"ports": [
Document name: D3.3 Nemo Kernel Final Version Page: 56 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

"containerPort": 80

Figure 66:Payload to deploy SEE resources. \

5.2.2 meta-Orchestrator Agent (MO Agent)

The main point of this component is to have a translator for the rest of the NEM@ggomponents using
Event-Driven architecture (AMQP) and transform this into HTTP synchrono % s against the MO
API or other APIs from projects. i

calf also be defined as an
fg library Watermill®! that
is designed to facilitate the construction of event-driven appligd provide robust tools for

As seen previously in the overall MO architecture, this MO subcomppfic

Inside the code, there are two handlers linked at two queuesXthese two queues have different logic and
behavior; see Figure 67 for deeper details:

e Cluster Registration or deregistragion flo m LCM GUI, go through MOCA and after the
MO Agent. The MO Agent is list eue to get messages about the potential registration
or deregistration of clusters.

e Horizontal Scaling or Desca ber of Replicas/Pods): At the top of Kubernetes, the MO
API and the MO Agent € t to respond to the CFDRL component's demands to increase
or decrease the numbgr 01 pods"

The MO agent is not
for multi-cluster

sk runner. It is shaping up as a general-purpose event-driven control planer
cloud orchestration, being a flexible and compatible approach to automation,
xtended and integrated into DevOps operations.

31 Watermill.io:
32 Ampq091.go:

Document name: D3.3 Nemo Kernel Final Version Page: 57 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

https://watermill.io/docs/getting-started/
https://github.com/rabbitmq/amqp091-go

MO Agent — Full Event-Driven Workflow

Agent Core Cluster Lifecycle Handler Scallng Haldler Publisher
in. (join / unjoin) (Watermill)

Event received from MOCA and CFDRL components. H

Receive from input queue

[Cluster Join/Unjoin Flow]

7

Figure 67: MO Agggt sequen&iiagram

5.2.2.1 Sequence Diagram Steps

Based on the above figure, Figure 67. rkflpw steps are:

1. A message is emitted to the input

An external NEMO compone ds an operation request (e.g., join, unjoin, or horizontal scaling)
to the input queue hosted on broker such as RabbitMQ. This message contains metadata
identifying the actl(gl ta; eration ID, type of operation (join/unjoin).

2. MO Agent ves and parses the message

The Agent go) subscribes to the message queue using Watermill and listens for
incoming pon receiving a message, it parses the JSON payload and evaluates the action
field t how to route the request.

ore routes the request to the correct handler

ed on the value of action, the Agent Core dispatches the message to one of two handlers:

For join or unjoin, it invokes the Cluster Lifecycle Handler

e For horizontal scale, it invokes the Scaling Handler

This routing logic is abstracted using a configurable function map.

3. The handler constructs and sends a request to the MO API

The appropriate handler (either Cluster Lifecycle or Scaling) builds an API request that reflects the
message’s intent. This typically includes the target cluster name, identifiers, resource parameters
(e.g., replica count), or lifecycle directives. It then sends this request to MO API. The Agent finally

Document name: D3.3 Nemo Kernel Final Version Page: 58 of 83

Reference: D3.3 |Dissemination: |PU [Version: [1.1 Status: [Final

NEMO

queued for the reply to messages from the MO API into another different queue providing full
feedback on the process.

5.2.3 Deployment Controller (DC)

As described in Section 5.1 Overview, the Deployment Controller (DC) is responsible for managing
workload deployments. It leverages RabbitMQ to listen for incoming messages in a queue, where the
Intent-API publishes workload instances.

Upon receiving a new message, the DC first extracts the instance id, a unique identifier for the
workload. Using this ID, it queries the Intent-API to retrieve the workload’s current status and
deployment cluster. If the status is "rendered", the deployment process is triggered.
Next, the DC retrieves cluster metrics from the MO-API for all available clusters. If thg m®gage
received from the Intent API contains an intent, these metrics are used to identify a clust eets
the specified requirements. If no cluster meets the criteria, or if the message lacks an \nt the DC
selects the cluster with the highest green energy availability for deployment.

Once a cluster is selected, the manifests included in the Intent API message apsulated into an
OCM?** ManifestWork* and applied to the HUB?® cluster within the namegfc@ggsfesponding to the
selected cluster. This triggers the propagation of the manifests to th t cluster, ensuring the
successful deployment of the workload.

()

Finally, the DC sends a confirmation message back to the Intent
"deployed", thereby closing the deployment loop.

Intent-API Deployment-Controller MO-AP HUB Cluster

ing the workload status to

Publish a workload document instance

|

Retneve workload status

alt [Status is "rendered™]

Trigger Deployment Process

Retrneve cluster metrics

Select deployment cluster

Apply ManifestWork

Update workload status

| I I
Figure 68: DC Sequence Diagram.

33
34
35

Document name: D3.3 Nemo Kernel Final Version Page: 59 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

https://open-cluster-management.io/
https://open-cluster-management.io/docs/concepts/work-distribution/manifestwork/#:~:text=ManifestWork%20is%20used%20to%20define%20a%20group%20of,resource%20must%20be%20created%20in%20the%20cluster%20namespace.
https://open-cluster-management.io/docs/concepts/architecture/

523.1 CI/CD

The CI/CD pipeline for the MO follows the standard*® established in the NEMO project, ensuring
consistency and reliability across deployments. GitLab CI is utilized for continuous integration (CI),
requiring each component to include a valid Dockerfile to enable deployment within the NEMO
environment. Additionally, a .gitlab-ci.yml file must be present in each component's repository. This
configuration allows a GitLab runner to automatically build a new container image whenever a commit
is pushed. The newly built image is then stored in NEMO’s Docker Hub registry*’, ensuring an up-to-
date and versioned container repository.

For continuous deployment (CD), FluxCD?® is employed to automate and streamline the deployment
process. The deployment manifests for each component are maintained in the NEM luxCD
repository®®. Whenever a new version of a component is tagged in GitLab, FluxCD detects_the Wgdate
and automatically synchronizes the target clusters with the latest changes. This ensures thatal 1dyed
services remain current with minimal manual intervention, reducing operationalfpveghgad and
improving system reliability.

This process is represented in the figures below. Figure 69 illustrates an examp eating a new tag

for the Deployment Controller.
In Figure 70, this newly created tag triggers the GitLab runner, which initi I process by building
a new image of the component.
, as shown in Figure 71.
gcts e new tag and updates the

Once the build is completed, the updated image is pushed to Dyg
Following this, Figure 72 demonstrates how FluxCD automatica %
corresponding deployment manifest for the Deployment ler.

Finally, Figure 73 shows the verification step, where the tagfet cfustet is accessed to confirm that the
tag used in the deployed image matches the nev?@k@ated 0

[D wee Meta-Orchestrator deployment-controller Tags

Tags

Tags give the ability to mark specific points in history as being important

| Filter by tag name ‘ Q | Updated date ~

= v0.0.34 © Createrelease || & v | 0
47cd225a - Bugfixing - 6 days ago

v Figure 69: Gitlab Tagging.

36
37
38
39

Document name: D3.3 Nemo Kernel Final Version Page: 60 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo/-/blob/main/CI-CD%20Integration.md?ref_type=heads
https://hub.docker.com/u/nemometaos
https://fluxcd.io/
https://git.synelixis.com/nemo/flux-cd

&8s NEMO

[[=+=| / deployment-contraller / Pipelines | #69020

Bugfixing
@ warning Ignacio Prusiel Mariscal created pipeline for commit 47cd225a [y 6 days ago, finished 6 days ago
For vB.8.34

latest €0 20 jobs (Y 3 minutes 36 seconds, queued for 16 seconds

Pipeline Jobs 20 Failed Jobs 3 Tests 0 Licenses

Group jobs by Job dependencies y

build test

@ buildkit o @ container_scanning (S)
@ gemnasium-dependency_scanning Z
@O «kics-iac-sast (S
O secret_detection (S
@ semgrep-sast <
@ unit-test <

P o

Explore / nemometaos / deployment-controller

nemometaos/deployment-controller

By nemometaos - Updated 7 days ago

IMAGE

0 V272

Overview Tags

Sort by

Newest A

Q Filtertags

TAG
v0.0.34

Last pushed 7 days by nemometacs

docker pull nemometaos/deployment-controller:ve.8.34 m

Figure 71: NEMO DockerHub.

Document name: D3.3 Nemo Kernel Final Version Page: 61 of 83
Reference: D3.3 |Dissemination: |PU [Version: [1.1 Status: [Final

&g NEMO

[0 & NEMO | FLUXCD

nemometaos/deployment-controller:v0.0.34

£
E’i i 58cec725 | [History
Artemis Tomaras authored & days ago

E deployment.yaml [7} 623B m Replace | Delete [

1 apiVersion: apps/vl

2 kind: Deployment

5 metadata:

4 name: deployment-controller

3 namespace: nemo-kernel

6 labels:

7 app: deployment-controller

B spec:
replicas: 1

18 selector:

11 matchlLabels:

12 app: deployment-controller

13 template:

14 metadata:

15 labels:

16 app: deployment-controller

17 spec:

18 imagePullSecrets:

19 - name: nemo-regcred

28 serviceAccountName: ocm-serviceaccount

21 containers:

22 - name: deployment-controller-container
23 image: nemometaos/deployment-controller:vB.0.34 $imagepolicy": lux-system:deployment-controlle
24 envFrom:

25 - secretRef:

26 name: mo-deployment-controller-env

Figuyl 72 DMH Manifest.

Name: deployment—controller

Namespace: nemo-kernel

CreationTimestamp: Fri, 14 Feb 2025 12:50:48 +018@

Labels: app=deployment-controller
kustomize.toolkit.fluxcd.io/name=flux—system
kustomize.toolkit.fluxcd.io/namespace=flux—-system

Annotations: deployment.kubernetes.io/revision: 34

Selector: app=deployment-controller

Replicas: 1 desired | 1 updated | 1 total | 1 available | @ unavailable

StrategyType: RollingUpdate

MinReadySeconds: 0]

RollingUpdateStrategy: 25% max unavailable, 25% max surge

Pod Template:

Labels: app=deployment-controller

Service Account: ocm-serviceaccount

Containers:
deployment—controller—-container:
Image: nemometaos/deployment—controller:v0.0.34
Port: <none>
Host Port: <none>
Environment Variables from:
mo—deployment—controller-env Secret Optional: false
Environment: <none>
Mounts: <none=
Volumes: <none>
Node—-Selectors: <none>
Tolerations: <none>

Figure 73: Deployment Details.

Document name: D3.3 Nemo Kernel Final Version Page: 62 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

&3¢ NEMO

5.2.3.2 Workload Migration (IBMC-DC)

The Intent-Based Migration Controller (IBMC) is responsible for handling workload migrations within
NEMO whenever a new intent is created and published by the Intent-API.

This process directly impacts the Deployment Controller (DC), as the cluster where the workload is
deployed changes. However, the issue is resolved in a straightforward manner. Once the migration is
completed, meaning the workload’s manifests have been successfully backed up in the source cluster
and restored in the target cluster, the IBMC sends a message to the DC, instructing it to update the
ManifestWork corresponding to the migrated workload.

To ensure continued workload management by OCM, the DC updates the ManifestWork namespace to
match the name of the new target cluster. This guarantees that the workload remainery

orchestrated and monitored after migration.

5.2.3.3 Network configuration and creation between NEMO Cluster Network (DC- %

The MO supports creating virtual networks between pods of different NEMO clus ing the DC
subcomponent. The meta—Network Cluster Controller (mNCC) creates an extra communication

Base API and the
ing the changes in the

between clusters using the L2S-M*° tool. The mNCC communicates with t
MO; after exchanging messages, the MO establishes the connection by
managed NEMO’s workload.

5.2.3.4 Workload Placement

Placement means scheduling workloads strategically in the best le place, based on monitoring
metrics retrieved. The MO API gathers some metrics as ca i ble 9 which includes resource
availability, CPU usage, RAM usage, and energy sources. Whe placement strategy determines which
place a given workload runs in.

Value and practlcal placement are crucial fo system erformance resource utilization, and energy

In the NEMO project, there are differdht levels of placement. NEMO and meta-Orchestrator handle the
workloads at multi-cluster leve CY hey are at a higher level that Kubernetes can manage. While
Kubernetes seeks and ¢ind est @ddes inside a cluster with different nodes, heterogeneous or
homogeneous, NE cRyOrchestrator handle the placement between different clusters around

Description

Cluster name The name of the Cluster that will be deployed.

Must be between 1 and 42 characters.

cpu number |CPUs The number of CPUs of the Cluster.

memo number | Memory The RAM of the Cluster in GB.

storage number | Storage The disk storage of the Cluster in GB.

availability string Availability The percentage of time that the cluster is up
(99.9%, 99%, 90%).

green_energy string Green energy The percentage of RES powering the cluster
(0%, 20%, 40%, 60%, 80%, 100%).

4L2S-M:

Document name: D3.3 Nemo Kernel Final Version Page: 63 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

https://github.com/Networks-it-uc3m/L2S-M

&8s NEMO

Field Type Title Description

cost string Cost The cost type of a cluster (low cost, high
performance). Enum

cpu_base rate number |CPU base rate The CPU cost of the cluster by the CPU
capacity of the cluster (in milliseconds).

memory base rate |number |Memory base rate |The memory cost of the cluster by the memory
capacity of the cluster (in MBs).

Table 9: Cluster Metrics

Regarding the above cluster metrics, the Deployment Controller uses these metrics to place the load
in the best possible cluster from the NEMO cluster network that MO is handling and man%

4
S

Q
&
Y.,

Document name:

D3.3 Nemo Kernel Final Version

Page: 64 of 83

Reference:

D3.3 |Dissemination: |PU

[Version: [1.1 Status: |Final

5.3 Conclusion

The NEMO meta-Orchestrator (MO), now at this new phase of the project, demonstrates to be a pivotal
component of the NEMO platform that coordinates workloads across different scenarios while also
working with event-driven communication architecture and has been built for decentralized cluster
control and coordination, using tools like OCM, Golang, and RabbitMQ, allowing efficiently manage
tasks across distributed systems whether it is handling edge devices or scaling services in real-time.
Thanks to OCM, it uses a hub-spoke architecture for the decentralized distribution of resources and
coordination, also supporting execution and governance that makes a system scalable, stable gand edge-
friendly.

Deployment Controller (DC). The MO API facilitates smart workload placement ba, k& metrics
(CPU, memory, green energy usage, and cost) and offers a secure orchestration
safety authentication.

The subcomponents of the MO’s architecture are the MO API, the asynchronous MO d the
d
at1

with a new

The MO as a service is available with integrations such as cross-cluster ofapg (MNCC), workload
cluster migrations (IBMC), and secure use of Unikernel deployment to isolate crucial parts of
NEMO, which highlights the MO is ready to provide its services f; e MO components and in

extension to different NEMO uses cases.

4
S

Document name: D3.3 Nemo Kernel Final Version Page: 65 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

6 Secure Firmware Management on Far-Edge

In addition to the secure execution environment for microservices discussed in Section 2, the Smart Grid
use case extends the requirements to include firmware updates for far-edge devices. These devices
operate remotely, away from the data centre, and connect to the system solely through wireless
technologies. To address this, a dedicated firmware update system, known as FOTA (Firmware Over-
The-Air), has been integrated into NEMO using meta-Orchestrator calls. This section presents the details
of the FOTA system and its integration.

6.1 Nerves architecture for FOTA system

images to far-edge devices. These devices are often deployed in harsh environmenty with limited
connectivity options, typically relying on public wireless networks such as LTE ighlights the
critical need for secure and atomic firmware upgrades. If an update fails, @w could become
inoperable (bricked) and require manual intervention.

D3.2 introduced the Firmware Over-The-Air (FOTA) system for distributing and deplg ware

Within the NEMO project, far-edge devices function as Phasor Measureraes
a critical role in fault localization for the Grid Disturbance Mitigatio %
and D5.4 [7] . These devices are responsible for collecting high-freq p
the data, and transmitting both alerts and readouts to the main cld
further analysis.

its (PMUs), which play
Jas detailed in D5.3 [6]
se readouts, preprocessing
ere they are available for

6.1.1 The architecture of FOTA

The FOTA architecture, illustrated in Figure 74,
NEMO infrastructure and those located at the
NEMO installation via an API, providi
firmware updates. The cloud-based F
monitoring the status of field devices, lo
available firmware versions.

1stinguishes’between components deployed within the
r edge) The core FOTA system is integrated into the
onalifies for core operations, status inspection, and
manages all firmware-related operations, including
anges, and maintaining an artifact repository of all

At the edge, the system employs a @ lel firmware partitioning approach, where one partition remains
active while the other is prepa SerdgPldyment. This configuration enables a blue-green deployment

infrastructure. Note that far edge devices are on public networks and use SIM cards of public network
providers. This expands the surface of possible attacks as devices at the edge could be stolen,
compromised or the card identities would be spoofed, which could lead to potential DDoS attacks to the
system. The possibility of this event is low, but even in case of happening, the main NEMO services as
brokers and storages would not be affected.

41 MinIO:
42 PostgreSQL:

Document name: D3.3 Nemo Kernel Final Version Page: 66 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

https://min.io/docs/minio/kubernetes/upstream/index.html?ref=docs-redirect
https://www.postgresql.org/

&3¢ NEMO

NEMO Infrastructure

NEMO FAR Edge - Bivio
Meta Orchestrator

Data plane

T T catEwAY R |

3 [<»| (phaser measurement
| Contol plane (nerves based) © unit)

— - o
(" LTE Public)
7 network)
- —y

— -

FOTA NEMO CLOUD SERVICE

g MQTT BROKER —
FOTA |

Contol plane |

NGINX |
(TLS
termination)

API

(for integration) Data plane I

i

MINIO
(block storage)

— T
(" LTE Public)
¢ network

_/

FAR Edge - Siemens

Contol plane

PMU 2
<> (phaser measurement
unit)

Postgres GATEWAY

Data Plane (nerves based)

Figure 74: The schema of F rr)’

6.1.2 Security and System Isolation

Due to security considerations, communicatiof betweeh cloud and edge components is isolated from
other NEMO services. The system relie digsted MQTT broker, MinlO for storage, and a
PostgreSQL database, ensuring greater, oyer scalability, stability, and security. By decoupling
these services, the system can be maintainc@fgnd gRpanded more efficiently while also reducing potential
attack vectors.

Since far-edge devices operate on ic networks and use Subscriber Identity Module (SIM) cards from
0

commercial providers, they prese al security risks, such as device theft, compromise, or SIM
identity spoofing. Such inci C ad to Distributed Denial of Service (DDoS) attacks on the
system. Although the 1ifeljHo8 o1 e events is low, the main NEMO services, including brokers and
storage, remain un i&g to the segmented system design, ensuring continued stability and
security.

6.1.3 Firmwgfe e sequence

This seque 1 , Figure 75 ,describes the FOTA update process within the NEMO infrastructure,
g sqglireJfirmware deployment to far-edge devices. The process begins with a new firmware
eing*Stored in the FOTA NEMO Cloud Service. The NEMO meta-Orchestrator then requests
afi re update, prompting the FOTA system to securely transmit the update to both Bivio and
ar Edge Gateways via the control plane.

Once the gateways receive the update, they confirm delivery by notifying the MQTT Broker. Following
this, the FOTA system publishes an update message to the MQTT Broker, which then forwards the
update request to the respective gateways. Each gateway then applies the firmware update locally and
sends an update confirmation back to the MQTT Broker.

Document name: D3.3 Nemo Kernel Final Version Page: 67 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

NEMO FOTA System Sequence Diagram

NEMO Meta Orchestrator

| FOTA NEMO Cloud Service
I

| MQTT Broker

Far Edge Gateway (Bivio)

Far Edge Gateway (Siemens)
[

T
| |
| Store new firmware |
| (stored by user) |
| |
|
|
|

Request Firmware Update

Transmit Secure Update via Control Plane
T

R ;

1

Transmit Secure Update via Control Plane
| |
|_ Confirm Deliver Update |

~ 1

Y

|
| |
Publish Firmware Update Message _‘! |

> |

Forward Update Request

»
L

Apply Firmware Update

Send Update Confirmation

F 3

1

I
Forward Update Request

\ 4

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I |
Confirm Deliver Update |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Apply Firmware Update

Send Update Confirmation

A

Log Update Status

Update Successful

I
|
|
|
|
|
| |
| »l
| |
| |
| I
| |
| 1
| |
| I
| |
| I
| |
| |
| |
| I
| I
| |
| I
| |
| I
| |
| I
| |
| |
| |
| |
| I
| |
| I
| |
| |
| |
| I
I I
| lt
I I
I |
= 1
| |
| |

——————— e —— —— —

Figure 75: NE&IO FERT tem Sequence Diagram.

The broker logs the update status reports it to the FOTA system, which ultimately informs the
NEMO meta-Orchestrator that th ware update has been successfully completed. This structured
process ensures secure and relj re updates while maintaining clear communication between
cloud services and far-qglge

6.1.4 FOTA PMUNoU

This section is a resu & T3.1 task and provides the crucial information for the integration of FOTA
management int Vi@ framework. This API provides operations to interact with devices, including
retrieving deviCRy ation, fetching the last recorded data, updating firmware, and listing available
devices.

rvice API documentation

Base
/api/vl

GET /devices

Return a list of all available devices. For each available device it returns all data that is saved for each
device. It also returns the current firmware version, and all data for all phasors.

Document name: D3.3 Nemo Kernel Final Version Page: 68 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

GET /{device_id}/info

Returns a list of device’s information for specific device. Return all the information that is available for
specific device. It also returns data for all phasors that are connected to device.

GET /{device_id}/data

e device id - integer (b\

Return data for all phasors for given device. For each phasor, there is a field na it, angle, and
magnitude. If device do not have available phasors the empty JSON is returned. O

GET /firmware &

Returns the list of available firmware files on the cloud service. na are also the key IDs for
updating firmware using the POST {device}/firmware con%d.
POST {device_id}/firmware

e PATH: device id - integer

e BODY: { "filename": name of fi are file - string}

POST request for updating a speci vice. In body of request filename is specified and based on that,
correct firmware is flashed on dev

>

o

Document name: D3.3 Nemo Kernel Final Version Page: 69 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

&3¢ NEMO

/ Measurement and Validation

This section takes a closer look at the main KPIs set for the NEMO project and the progress made to
date; each KPI has assigned specific goals, whether it is boosting performance, improving security,
streamlining integration, or enhancing functionality, finalizing the following breakdown shows what
has been accomplished so far, and how each component contributes to validating NEMO’s success.

7.1 Micro-Services Secure Execution Environment KPIs

Table 10: Micro-Service Secure Execution Environment KPIs

(D3.2b)
KPI4.2 | Interface/Federate of at least 2 open-source containers’ platforms and

KPI4.1 | Micro-services SEE increases from TRL-4 to TRL-5 by M24 (D3.2a) and mL 6 by M31

els.

KPI4.3 | Support at least 3 different native OS, e.g. Android, ROS and Lj

Following Table 10:

KPI 4.1 is about the TRL of the SEE interface. The SEE was s llyXeployed and tested in the
OnelLab cluster, and the integration with the meta-Or or rted that this KPI could be
accomplished.

KPI 4.2 demands the interaction of two open-sg containpr platforms and Unikernels. The NEMO
project has demonstrated the interaction of twgf Hermit unikernels on the Kubernetes Infrastructure of
the OneLab Cluster, as well as on a locgl uflikernel fpecific Runtimes. We assert this KPI being
successfully accomplished as well.

KPI 4.3 asserts the flexibility of the develped splution. Supporting HermitOS, as well as many other
OS, such as Ubuntu, Alpine or Debian, this can be considered accomplished as well.

Following Table 11:

KPI 5.2 demands the definition of more than 20 SLO/KPIs for micro-services offloading decision
making process. The NEMO meta-OS digests and considers more than 20 SLOs and KPIs in the form
of either intents or KPIs that drive the orchestration of the NEMO-hosted workloads. These Intents or
KPIs concern the NEMO-managed resource specifications, the NEMO-hosted workloads intents and
the MOCA-managed metrics that concern the monetary aspects of a cluster and a service/application.

Document name: D3.3 Nemo Kernel Final Version Page: 70 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

KPI 5.5 concerns the reduction of energy consumption by 15% and the CO2 footprint reduction by 40%
for the case that RES usage is available. Both objectives are fulfilled through the optimal scheduling
and management of the deployed applications and services (workloads) thought the NEMO meta-OS
framework. More specifically, NEMO applies scaling on deployed workloads and on the corresponding
pods only when it is necessary. This process is triggered once the target values that concern the workload
performance capacity are reaching the boundaries set, thus guaranteeing the optimal energy
management. Regarding the CO2 footprint reduction objective, the NEMO hosted resources (clusters
and infrastructures) declare their power generation sources upon registration to the NEMO meta-OS
framework. Then, the NEMO meta-OS is able to schedule (deploy and migrate) workloads to the
resources that achieve the highest RES usage. This provides for significant RES reductiongRelevant
validation activities will be performed in the context of NEMO Living Lab use cases.

KPI 8.3 The 1* release of the PPEF component was available by M24 and presented in dgfajyin 3.2,
whilst the final release of the PPEF component was available on M31 and described inAD3. ¢ final
version component has been updated for performance, stability and enhanced its fup§iogality through
the monitoring of the GPU received metrics. It is deployed in all OneLab hosted vironments
and in NEMO pilots. 6’

7.3 Cybersecurity & Digital Identity Attestation KPIs

The modules comprising the Cybersecurity & Digital Identity 4
contribute to the materialization of the following two KPIs, Tablg

sub-system of NEMO

KPI8.1 |Cybersecure “by design” component;
>5.

KPI8.2 | Supplementary cybersecurity path

& Djkital Identity Attestation > 6.

Security by Design incorporates a set of nigal principles that aim to embed security controls and
threat mitigation strategies directly ingo the arfhitecture and codebase from the earliest design stages. In
order for a component to be CybergeQre “by design” they should support one or more of the following
features. A foundational concept is'Whe’R

services, and users should opgfat the permissions they need to function by reducing the attack
surface and limitingthe s of a compromise. This is enforced through fine-grained access
controls, privilege sep d the use of secure tokens or scoped API keys. Defense in Depth (DiD)
extends this approac yering security mechanisms across multiple tiers such as input validation,

states are ¢ togvoid exposing sensitive data, stack traces, or internal logic; defaults are set to deny
acc l@p icitly permitted. Secure defaults ensure that all deployments begin with hardened
c tionS like disabled debug modes, strong password policies, and TLS enabled by default
minin¥ging risk from misconfiguration. During the design phase, threat modelling is conducted to
identify Jpotential attack vectors, using methodologies like STRIDE or DFDs (Data Flow Diagrams) to
systematically analyze data paths and trust boundaries. Identified threats are mitigated with specific
controls such as input sanitization, rate limiting, or authentication checks. Throughout the development
lifecycle, continuous testing and validation are performed via automated static and dynamic analysis,
dependency scanning (e.g., Snyk, OWASP Dependency-Check), fuzz testing, and regular penetration
testing. Security findings feed back into the CI/CD pipeline, ensuring secure code is maintained across
iterations. By implementing these technical practices consistently, systems achieve a resilient, security-
first posture that can withstand real-world adversaries.

Document name: D3.3 Nemo Kernel Final Version Page: 71 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

In that respect, in terms of KPI8.1 the intercommunication module is cybersecure by design since it
fully supports secure defaults and defence in depth through the relevant modes and layers of TLS, The
Identity management system has been developed from scratch so as to be full in line with the defence
in Depth approach, by layering several mechanisms for access controls, encryption, monitoring. The
CNAPP - Cloud-Native Application Protection Platform developed is perfectly inline, by design, with
continuous testing and validation testing throughout the development and operation phases. As a result,
the modules developed as part of the Cybersecurity & Digital Identity Attestation sub-system have three
distinct components that contribute to KPIS.1.

Moreover, a number of additional such components which support the security “by design “principle
will be listed in the final deliverable of WP4.

In terms of KPI8.2 Modern cybersecurity methods leverage a layered and adaptive approach inteSgting
preventive, detective, and responsive controls to protect systems against evolving % ore
techniques include network segmentation, zero trust architecture, multi-factor authenfigati FA),
behavioral analytics, and endpoint detection and response (EDR). Cryptographic pr: such as TLS
1.3, mutual TLS, and elliptic curve cryptography (ECC) are employed to ensure g€8@ge communication
and data integrity, while tokenization, hardware security modules (HSMs), an snclaves are used
to protect sensitive assets at rest and in use. Within this context, Digital tity Attestation systems
play a critical role in verifying the authenticity and integrity of user and dé¥ige tities. These systems
often rely on Public Key Infrastructure (PKI), biometric verification, # le credentials (VCs), and
' ¢ and privacy-preserving
thortties, leveraging standards
Verifiable Credentials, with
r réplay attacks.

manner. Identity proofs may include signed assertions from t
such as OAuth 2.0, OpenID Connect, FIDO2/WebAut
attestation mechanisms built to detect device spoofing, tampg#ing

Across those lines the developed Cybersecurity igital [§entity Attestation sub-system of NEMO

complying with the OAuth2.0 standard.
& Digital Identity Attestation sub-syst
Identity Attestation systems thus contributi

Moreover, three additional cyberscedgity methods are employed in the CFDRL sub-system developed
in WP2 for increasing the resista berattacks to distributed Al systems thus contributing with
re

modules developed as part of the Cybersecurity
porthone full set and cybersecurity methods as well as two
18.2 with three elements.

three more elements to KPIS. nts of KPI&.2 will be listed in the final deliverable of WP4.
[]

7.4 NEMO me rator KPIs

Table 13: MO KPIs

o-services discovery 10k; Simulated repositories> 100.

Low latency dynamic migration decision (<1 sec), zero-downtime service reschedules
(Blue-Green) (<10 ms).

Following Table 13:

KPI5.1: The main solution that allows NEMO to orchestrate multiple microservices is Kubernetes
(K8s), the meta-Orchestrator relies on OCM which supports the entire lifecycle of a K8s cluster, and it
is used to provide multi-cluster orchestration across diverse computational environments. In the initial
phase of the NEMO project the main K8s distribution tested where K8s, K3s, Kind and OpenShift
nevertheless other distributions are also supported by this solution (Amazon EKS, Google GKE, Azure
AKS, among others).

Document name: D3.3 Nemo Kernel Final Version Page: 72 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

Through the SEE, NEMO is able to address secure and lightweight deployments on the Hermit operating
system which is a rust-based, lightweight unikernel.

Specialized deployments on embedded systems through BEAM virtual machines are supported in
NEMO thanks to FOTA component.

KPI:5.3: The programmatic entry path for NEMO platform is the Intent-API SDK. The service
application K8s descriptors can be package as Helm charts that are processed by the Intent-API to check
its syntax and break it down into custom resource definitions that our meta-Orchestrator is able to
process across the different target clusters managed by the NEMO platform. There are thousands of
Helm charts available, most of them in public repositories that include a large catalog of prezpackaged
KS8s applications. Furthermore, Helm charts can be based on docker public images hoste ublic
repositories like DockerHub which extend further the possibility to package our serviceg, baSed on
container public images. ‘b

KPI5.4: The dynamic migration decision may vary depending on the constraints defiged for ®deployed
service, these constraints are assessed by the PPEF and evaluated by the CFDRL ‘m in order to
communicate to the NEMO kernel which is the best placement or rescheduling 3 scaling/migrate)
for a concrete workload, taking into consideration the overall conditions of % naged clusters.

When it is requested the migration action is triggered by the IMC compgiaen®ay, charge of backing up
the resources and persistent volumes and restore them to a different ts

@ er with zero-downtime
from users’ perspective.

4
S

Document name: D3.3 Nemo Kernel Final Version Page: 73 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

8 Conclusions

This deliverable D3.3 is the culmination of the work done in Work Package 3 (WP3) of the NEMO
project, including all the technical effort, evaluations, and integrations made over the last months and
transformed into a complete and mature version of the NEMO Kernel. The four core components (SEE,
PPEF, Cybersecurity & Digital Identity Attestation, and NEMO meta-Orchestrator) have matured to a
stable and working state.

As development progressed, efforts were established not only to implement advanced featu
to integrate each component into the NEMO ecosystem. The SEE component can manage lig
unikernels and migration in Kubernetes nodes, allowing NEMO to achieve performance

distributed edge-to-cloud systems, decreasing time and memory usage and making theﬁi r edge

environments.
orks with well-
iccyevel targets, its tools

and NEMO services,

The PPEF component has matured into key monitoring tools for services a
defined intents, promoting better resource utilization and compliance with s
can collect metrics, analyze them, and pipeline insights into other commmge
such as the meta-Orchestrator and the CFDRL, acting as the learning s

The Cybersecurity and Digital Attestation component, working
an integral layer of trust, with secure access control an
component incorporates Cloud-Native Application Protect or
applications throughout the full software lifecycle.

i ith!its modules, now provides
geurity checks. In addition, this

(CNAPP) principles to secure

Now, there is the meta-Orchestrator, which bin@s it all tggether, becoming a microservice for workload
n nication. As such, it will use metrics from the
geep the system operating optimally in a distributed

other modules and apply intelligent ce
environment.

Finally, the NEMO kernel has evo
a secure, extensible, and effic]
accommodate use casesgpil

o

possible. The base laid is robust and sufficiently generic to
fations yet to come outside of WP3 scope.

Document name: D3.3 Nemo Kernel Final Version Page: 74 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

9 References

[1] NEMO D3.1 - Introducing NEMO Kernel. Lead Participant: RWTH. HORIZON - 101070118 -
NEMO Deliverable Report, 2023.

[2] NEMO D3.2 - Nemo Kernel Initial Version. Lead Participant: ATOS. HORIZON - 101070118 -

NEMO Deliverable Report, 2024.
[3] NEMO D2.3- Enhancing NEMO Underlying Technology. Lead Participant: TID. XN -
101070118 - NEMO Deliverable Report, 2024.

[4] NEMO D4.2 Advanced NEMO platform & laboratory testing results. Init sion. Lead
Participant: INTRA. HORIZON - 101070118 - NEMO Deliverable Report

[5] NEMO D4.3 Advanced NEMO platform & laboratory testing re . Fmal version. Lead
Participant: INTRA. HORIZON - 101070118 - NEMO Deliverabl rty2025 (Not submitted)

[6] NEMO D5.3 NEMO Living Labs use cases evaluation resul iti rsion. Lead Participant:
ASM. HORIZON - 101070118 - NEMO Deliverable Report,

[7] NEMO D5.4 Living Labs use cases evaluation resulty/ Fidal version. Lead Participant: ASM.
HORIZON - 101070118 - NEMO DeliverablgReport, 2025 (Not submitted)

4
S

Document name: D3.3 Nemo Kernel Final Version Page: 75 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

&3¢ NEMO

10 Annexes

10.1 Guidelines for TDX and Confidential Containers Technology

First, the server should have enough hardware capabilities to enable TDX. To do so, it has been used
this guide 6, the beginning starts with the following commands as can be observed in Figure 76, and
Figure 78:

git clone -b main
cd tdx (b

sudo ./setup-tdx-host.sh ,‘

Figure 76: Enable Intel TDX in Host OS N
After that, reboot the machine.

10.1.1 Enable the TDX in the BIOS Q&

To enable the BIOS in a proper way it is necessary to follow the ¢ as is represented in Figure
77:

Required BIOS Settings for Intel TDX:
¢ Memory Settings:
o Disable Node Interleaving
e Processor Settings:
o Enable x2APIC Mode
o Disable CPU Physicgl AddreBs Limit
e System Security:

o Set Mer.nory p Multiple Keys.

o Disakle Glob mory Integrity.

o Enabjeqgte sted Domain Extension (TDX).

o Set T/TDX Key Split to a non-zero value (such as, 1)

o AEnalle TDX Secure Arbitration Mode Loader (SEAM).

@E le Intel(R) SGX.

Document name: D3.3 Nemo Kernel Final Version Page: 76 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

https://github.com/canonical/tdx.git

&3¢ NEMO

System Security

System BIOS Settings « System Security

H ® Ol O
Memory Encryption @ Multiple Keys O Single Key O Disabled
Global Memory Integrity O Enabled @ Disabled
TME Encryption Bypass @ Disabled O Enabled
Intel Trust Domain Extension (TDX) @ Enabled O Disabled
TME-MT/TDX Key Spilt to non-zero value S 1
TDX Secure Arbitration Mode Loader(SEAM) @® Enabled O Disabled
Intel(R) SGX O Off @® On
Figure 77: System BIOS settings. O
sudo dmesg | grep -i tdx
Figure 78: Verify Intel TDX is Enabled o O
If you have “virt/tdx: module initialized” as the output ofyghe mes eans that TDX has initialized

properly.

TDX in the server has been enabled; to give it affry deploying a TD and enable the remote attestation to
follow the steps 6, 7 and 8 of this guide [2].

Install Confidential Containers
Deploy the operator by running the followi$¢ command (we are using the latest version, which is
v0.12.0) like in Figure 79:

kubectl apply github.com/confidential-containers/operator/
config/ r‘elease?r‘e{=v

Figure 79: Operator deployment.
ATUS “Running” like in Figure 80:

n confidential-containers-system --watch

Wait until the pod h

Figure 80: wait for “Running” status

samples/ccruntime/default?ref=v0.12.0

Figure 81: CC Runtime deployment
Wait until the pod has the STATUS “Running” as like in Figure 82:

kubectl get pods -n confidential-containers-system --watch

Figure 82: wait for “Running status”

To verify that everything has been installed correctly like Figure 83 below:

Document name: D3.3 Nemo Kernel Final Version Page: 77 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 Status: |Final

&8s NEMO

kubectl get runtimeclass l

Figure 83: Kubectl get runtimeclass

The output should be Table 14:

Table 14: Kata container installation.

Name Handler Age
kata kata-gemu 37h
kata-clh kata-clh 37h
kata-gemu kata-gemu 37h
kata-gemu-sev kata-gemu-coco-dev 37h Q(b
kata-gemu-sev kata-gemu-sev 37h
kata-gemu-snp | kata-gemu-snp 37h
kata-gemu-tdx kata-gemu-tdx 37h

Deployment of the Pod in CoCo by Encrypting and Signing the |

Clone KBS git repository

git clone https://github.com/confidentjal-cont@iners/trustee.git
cd trustee/kbs
export KBS _DIR_PATH=$(pwd)

Generate a user auth key pai
openssl genpkey -algorithm ed2551 config/private.key
openssl pkey -in config/ te.key -pubout -out config/public.pub

Start KBS cl \

docker-com -d

Figure 84: CoCo deployment
En g age

To eM@Eypt the image, we use skopeo. To install it, follow these instructions [3]. You must have at least
version $16.0 of skopeo®. For this example, the image busybox:latest has been used, but any image can
be used, as can be observed in Figure 85.

cd .. L4

43

Document name: D3.3 Nemo Kernel Final Version Page: 78 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

https://github.com/containers/skopeo/blob/main/install.md

edit ocicrypt.conf
tee > ocicrypt.conf <<EOF

{
"key-providers": {
"attestation-agent": {
"grpc": "127.0.0.1:50000"
}
}
}

encrypt the image

OCICRYPT_KEYPROVIDER_CONFIG=ocicrypt.conf skopeo copy --insg 2-policy --
encryption-key provider:attestation-agent docker ary/busybox
oci:busybox:encrypted

&

Figure 85: Image encryption.

With this last command, several things happen inside the cluster:

e The CoCo Keyprovider generates a random key a key 1 ier. Then, it encrypts the image

using this key. k ?v
e The CoCo Keyprovider registers the key with the key identifier in the KBS.

Now, upload the image, Figure 86:

1
skopeo copy oci:busybox:encrypts;k[HEME]£ //[REGISTRY_URL]:encrypted

1 :\Upload image.

In our case, Figure 87:

cosign sign --key cosign. ker.io/jorgealmansa/busybox:encrypted

o S igure 87: Image Signing.
Next, edit an image pi \%'on policy file.

The file is called sec % olicy.json:

o

Document name: D3.3 Nemo Kernel Final Version Page: 79 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

"default"”: [{"type": "reject"}],

"transports": {

"docker": {
"[REGISTRY_URL]": [
{
"type": "sigstoreSigned",
"keyPath": "kbs:///default/cosign-key/1"
}
]
}

Q@

Figure 88: Security policy

You need to replace [REGISTRY URL] with docker.io/jorgealmans
Register security-policy.json in the KBS storage:

xXncrypted in our case.

mkdir -p $KBS_DIR_PATH/data/kbs-storage/defa

cp security-policy.json $KBS_DI

security-policy/test

PATH/data/kbs-storage/default/

-policy

Figure 89: Register sWicy in KBS storage.
Deploying an Encrypted Image Using CaCo dg C

This is an example YAML file for deployig engfypted images:

-test-busybox.yaml
apiVersion: vl

cat << EOT | tee encrypteg-i
. [J

kind: Pod

metadata:

labels: \
run: crgpted-image-test-busybox
name; C ed-image-test-busybox
o‘%EZ)ns:

io.containerd.cri.runtime-handler: [RUNTIME_CLASS]
spe
containers:

[REGISTRY_URL]:encrypted

name: busybox

- image:

dnsPolicy: ClusterFirst
runtimeClassName: [RUNTIME_CLASS]
EOT

Figure 90: Deploying encrypted images.

Document name: D3.3 Nemo Kernel Final Version

Page: 80 of 83

Reference: D3.3 [Dissemination: [PU [Version: [1.1

Status: Final

In our case, we replace [RUNTIME CLASS] with kata-gemu-tdx and [REGISTRY_ URL] with
docker.io/jorgealmansa/busybox.

Finally, the IP of the KBS service must be configured in the file /opt/kata/share/defaults/kata-
containers/configuration-qemu-tdx.toml.

To do this, perform a docker network inspect of the KBS cluster to see the IPs of each container.
Then, modify the kernel params line so that it contains agent.aa_kbc _params=cc_kbc::<KBS URI>,
for

"agent.aa_kbc_params=cc_kbc::http://172.19.0.1:8080" (for example).

If you encounter the error tee gv_get collateral failed: 0xe019, it is due to a network is ing
that your AS cannot connect to the local PCCS.

There are two ways to resolve this:

- If you do not have the PCCS service installed, use @owing line in

/config/sgx_default gcnl.conf: '

{"collateral_service": "https://api.trys es.intel.com/sgx/

certification/v4/"}

Figure 91: Resolving PC{J2

- If PCCS is installed (sudo systemctl sta cs), yow'should use your machine's IP in the file
/config/sgx_default_gcnl.conf, since th AS container must connect to that IP, Figure 92:

4
S

Document name: D3.3 Nemo Kernel Final Version Page: 81 of 83
Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

// *** ATTENTION : This file is in JSON format so the keys are case sensitive.
Don't
change them.

//PCCS server address
"pccs_url": "https://<IP-SERVER>:8081/sgx/certification/v4/"

// To accept insecure HTTPS certificate, set this option to false
,"use_secure_cert": false

// You can use the Intel PCS or another PCCS to get quote@

collateral. Retrieval of PCK

// Certificates will always use the PCCS described in When
collateral_service is not defined, both

// PCK Certs and verification collateral will be retrij ing pccs_url

//,"collateral_service":

"https://api.trustedservices.intel.com/sgx/certifi N4/ "

// If you use a PCCS service to get the q
can specify which PCCS API version is to be u§€d.

// The legacy 3.0 API will retur s in X encoded DER format and the
sgx_ql_qve_collateral_t.version willl be set to 3.0, while

// the new 3.1 API
sgx_ql _qve_collateral_t.versi

ation collateral, you

1 retyfn raw DER format and the
set to 3.1. The pccs_api_version

service is set to the Intel PCS. In this

// setting is ignored if coll 4
to be 3.1

case, the pccs_api_version is for

// internally. Curren only values of 3.0 and 3.1 are valid. Note, if
you set this to 3.1, the e to retrieve

// verlflcatlog co st support the new 3.1 APIs.

//,"pCCS ap ||

// Maximyg times for QCNL. If RETRY is not defined or set to @, no

retry wil *-rformed

// I lPSt wait one second and then for all forthcoming retries it
i d b1 the waiting time.

i By using retry_delay you disable this exponential backoff algorithm
) ry_times": 6

// Sleep this amount of seconds before each retry when a transfer has failed
with a transient error

,"retry_delay": 10

// If local_pck_url is defined, the QCNL will try to retrieve PCK cert chain
from local_pck_url first,

// and failover to pccs_url as in legacy mode.

Document name: D3.3 Nemo Kernel Final Version Page: 82 of 83

Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

//,"local_pck_url": "http://localhost:8081/sgx/certification/v4/"

// If local_pck_ url is not defined, set pck_cache_expire_hours to a none-
zero value will enable local cache.

// The PCK certificates will be cached in memory and then to the disk drive.

// ===== Important: Once the local cache files are created, currently there
is no other way to clean them other

// than to delete them manually, or wait for them to expire
after "pck_cache_expire_hours" hours.

// To delete the cache files manually, go to these fod

// Linux : $AZDCAP_CACHE, $XDG_CACHE_HOME 4
$TMPDIR, /tmp/

// Windows $AZDCAP_CACHE, $LOCALAPPDATA\. 4 ocallLow

// If there is a folder called .dcap- delete it.

Restart the service after all cache

// folders were deleted. The sa &od applies to
"verify_collateral_cache_expire_hours"” Q

,"pck_cache_expire_hours": 168

// To set cache expire time for quote veri on lateral in hours

rs for more information on
the local cache.

,"verify collateral_cache_expire_|

// You can add custom requ h s and parameters to the get certificate
APT.

// But the default PCCS i pleme ation just ignores them.
//,"custom_| request opti
// "get_cert"

// "headers®
// "hea \,\
//
//
// paml": "valuel®

paramz : "value2"

1 }
}
/1}
}
Figure 92: PCCS config file.
Document name: D3.3 Nemo Kernel Final Version Page: 83 of 83

Reference: D3.3 [Dissemination: [PU [Version: [1.1 [status: [Final

