

Disclaimer for Deliverables with dissemination level PUBLIC

This document is issued within the frame and for the purpose of the NEMO project. This project has received funding from the European
Union’s Horizon Europe Framework Programme under Grant Agreement No. 101070118. The opinions expressed and arguments employed

herein do not necessarily reflect the official views of the European Commission.

The dissemination of this document reflects only the author’s view, and the European Commission is not responsible for any use that may be
made of the information it contains. This deliverable is subject to final acceptance by the European Commission.

This document and its content are the property of the NEMO Consortium. The content of all or parts of this document can be used and

distributed provided that the NEMO project and the document are properly referenced.
Each NEMO Partner may use this document in conformity with the NEMO Consortium Grant Agreement provisions.

(*) Dissemination level: (PU) Public, fully open, e.g., web (Deliverables flagged as public will be automatically published in CORDIS project’s

page). (SEN) Sensitive, limited under the conditions of the Grant Agreement. (Classified EU-R) EU RESTRICTED under the Commission

Decision No2015/444. (Classified EU-C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified EU-S) EU
SECRET under the Commission Decision No2015/444.

Next Generation Meta Operating System

D4.3 Advanced NEMO platform &

laboratory testing results. Final version

Keywords:

Integration, validation, API, SDK, Lifecycle Management, Migration Controller, automation

Document Identification

Status Final Due Date 30/05/2025

Version
1.0

Submission Date 17/06/2025

Related WP WP4 Document Reference D4.3

Related

Deliverable(s)

D1.1, D1.2, D1.3,

D2.3, D3.3, D4.1,

D4.2

Dissemination Level (*) PU

Lead Participant INTRA Lead Author Dimitrios Skias

Contributors SYN, INTRA,

AEGIS, SPACE,

ATOS, MAG, ENG,

ESOFT, SU, COMS

Reviewers Enric Pages-Montanera

(ATOS)

Jonathan Klimt (RWTH)

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 2 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Document Information

List of Contributors

Name Partner

Rubén Ramiro ATOS

Enric Pages-Montanera ATOS

Antonis Gonos ESOFT

Dimitrios Skias INTRA

Kostas Vrioni MAG

Astik Samal MAG

Nikos Drosos SPACE

Emmanouil Bakiris SPACE

Theodore Zahariadis SYN

Ilias Seitanidis SYN

Victor Gabillon TSG

Spyros Vantolas AEGIS

Hassane Rahich SU

Matija Cankar COMS

Document History

Version Date Change editors Changes

0.1 19/02/2025 Dimitrios Skias (INTRA) ToC 1st version

0.2 20/04/2025 Dimitrios Skias (INTRA) Final ToC

0.3 13/05/2025 INTRA, SYN, ATOS, UC3M,

TID, TSG, AEGIS, SU, MAG,

COMS

Initial contributions

0.4 20/05/2025 Dimitrios Skias (INTRA) First round of contributions

0.5 23/5/2025 TSG, MAG, TID, SYN Second round of contributions

0.6 30/5/2025 INTRA, ATOS, UC3M, SYN,

COMS

Final round of Contributions

0.7 2/6/2025 RWTH, ATOS Peer-Review ready version

0.8 6/6/2025 INTRA, MAG, TID, SYN, ATOS Reviewers’ comments consolidation

0.9 13/6/2025 INTRA, SYN Document finalization

1.0 17/06/2025 ATOS Quality Control & Submission

Quality Control

Role Who (Partner short name) Approval Date

Deliverable leader Dimitrios Skias (INTRA) 17/06/2025

Quality manager R. Valle Soriano (ATOS) 17/06/2025

Project Coordinator E. Pages (ATOS) 17/06/2025

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 3 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information ...2

Table of Contents ...3

List of Tables ..6

List of Figures ..7

List of Acronyms ..9

Executive Summary ...11

1 Introduction ..12

1.1 Purpose of the document ..12

1.2 Relation to other project work..12

1.3 Relation between D4.3 and D4.2 ...12

1.4 Structure of the document ..14

2 NEMO Integration, Validation & Verification approach and tools..15

2.1 NEMO CI/CD Environment & Tools ..15

2.1.1 Open-Source repository ... 15

2.1.2 NEMO Automated Deployment and Configuration .. 16

2.2 3rd Party documentation of NEMO meta-OS ...17

2.3 Cloud/Edge/IoT Integration and Validation Infrastructure ..25

2.4 Integration & V&V Methodology & Plan ...26

2.4.1 NEMO V&V documentation ... 26

3 NEMO Integrated Platform (Final Version) ...28

3.1 Meta-OS functionality in NEMO ver. 1.0 ..28

3.1.1 NEMO Infrastructure Management ... 28

3.2 NEMO Open Call integration activities ...31

3.2.1 ARGO .. 32

3.2.2 CorMOS ... 32

3.2.3 Eros4NRG ... 33

3.2.4 Genesys .. 33

3.2.5 MARINEMO ... 34

3.2.6 MetaFOX ... 34

4 NEMO Service Management Layer updates ..36

4.1 Intent-based Migration Controller ..36

4.1.1 Overview ... 36

4.1.2 Architecture ... 36

4.1.3 Interaction with other NEMO components .. 38

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 4 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

4.1.4 Conclusion ... 39

4.2 Plugin & Applications Lifecycle Manager ..39

4.2.1 Architecture ... 40

4.2.2 Conclusion ... 41

4.3 Monetization and Consensus-based Accountability ..41

4.3.1 Overview ... 41

4.3.2 Architecture ... 42

4.3.3 Interaction with other NEMO components .. 42

4.3.4 Results ... 43

4.3.5 MOCA Business Models ... 47

4.4 Intent-based SDK/API ...49

4.4.1 Overview ... 49

4.4.2 Architecture ... 49

4.4.3 Interaction with other NEMO components .. 49

4.4.4 Conclusion ... 51

5 NEMO scenario-driven verification & results ..52

5.1 NEMO Cluster registration – resource provisioning..52

5.1.1 Verification scenario .. 53

5.1.2 Results ... 53

5.2 NEMO workload registration & provisioning ...58

5.2.1 Verification scenario .. 63

5.2.2 Results ... 64

5.3 NEMO workload scheduling & orchestration ..68

5.3.1 Verification scenario .. 70

5.3.2 Results ... 71

5.4 NEMO workload lifecycle management ..81

5.4.1 Verification scenario .. 82

5.4.2 Results ... 82

5.5 NEMO Secure Execution Environment ...92

5.5.1 Verification scenario .. 93

5.5.2 Results ... 93

6 Conclusions ..97

7 References ..98

Annex 1-Network Intent ...101

Annex 2-LCM subcomponent ..103

Annex 3 – ServiceProviderModel ..105

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 5 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Annex 4-Intent for network connectivity request ...110

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 6 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

List of Tables

Table 1. Differences between D4.3 and D4.2 ___ 13
Table 2. Integration testing - scenario template ___ 27
Table 3. NEMO integration testing - Checkpoints template __ 27
Table 4. NEMO dev cluster (K8S) __ 28
Table 5. Staging 1 cluster (K8S) ___ 29
Table 6. Staging 2 Cluster (K3S) __ 30
Table 7. Production Cluster (k8S) ___ 31
Table 8. Cluster Metrics ___ 57
Table 9. Intent for network connectivity request. L2S-M network request attributes. ____________________ 61

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 7 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

List of Figures

Figure 1. NEMO code repository in Eclipse Research labs __ 16
Figure 2. NEMO CI/CD organization___ 17
Figure 3. NEMO Login page ___ 18
Figure 4. NEMO main management page ___ 18
Figure 5. Registered Workloads View___ 19
Figure 6. Create Workload View __ 20
Figure 7. Create Workload Instance View ___ 20
Figure 8. Workload Instances main View __ 21
Figure 9. Intent Management View ___ 22
Figure 10. Create Intent View ___ 22
Figure 11. Resource Provisioning View ___ 23
Figure 12. Cluster Registration Form __ 23
Figure 13. Intent-Based API endpoints __ 24
Figure 14. Sample of the expected parameters' body of the workload POST endpoint ___________________ 25
Figure 15: NEMO project phases and main meta-OS version releases _______________________________ 26
Figure 16. IBMC Architecture __ 37
Figure 17. Migration Sequence Diagram __ 38
Figure 18. LCM high-level architecture ___ 40
Figure 19. MOCA architecture __ 42
Figure 20. MOCA integration diagram ___ 43
Figure 21. Example of deploying dataset __ 46
Figure 22. Example of contract deployment __ 47
Figure 23. Final Architecture diagram of Intent-Based API _______________________________________ 49
Figure 24. Cluster registration sequence diagram ___ 52
Figure 25. LCM home page __ 53
Figure 26. Clusters overview page ___ 54
Figure 27. Cluster registration form __ 54
Figure 28. Cluster pending status __ 55
Figure 29. MOCA cluster registration message through RabbitMQ _________________________________ 55
Figure 30. Meta-Orchestrator response ___ 55
Figure 31. Register cluster to blockchain __ 56
Figure 32. Updated cluster status __ 56
Figure 33. Workload provisioning workflow in NEMO ___ 58
Figure 34. NEMO workload deployment workflow __ 59
Figure 35. Network workload deployment workflow ___ 60
Figure 36. Arrival of intent and first filter. ___ 65
Figure 37. Grpc connector execution ___ 65
Figure 38. L2S-M annotations to be used by the workload. __ 65
Figure 39. Network resource created in S1 cluster ___ 66
Figure 40. Network resource created in S2 cluster ___ 66
Figure 41. Pod deployed in S1 with L2S-M annotations___ 67
Figure 42. Pod deployed in S2 with L2S-M annotations___ 67
Figure 43. Ping between pods in S1 and S2 clusters ___ 67
Figure 44. Ping between pods in S1 and S2 clusters ___ 68
Figure 45. Intent-Based Migration Sequence Diagram ___ 68
Figure 46. CFDRL Migration Sequence Diagram ___ 69
Figure 47. Horizontal Scaling Sequence Diagram ___ 69
Figure 48. LCM Workload Initial Visualization ___ 72
Figure 49. Availability Intent Creation __ 72
Figure 50. Ibmc-controller processing the intent __ 73
Figure 51. Dev Cluster Ibmc-agent logs ___ 73

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 8 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 52. Staging Cluster Ibmc-agent logs __ 73
Figure 53. LCM workload final visualization ___ 74
Figure 54. LCM complete workflow view __ 74
Figure 55. Inputs/outputs from CFDRL point of view __ 78
Figure 56. JSON Schema for MO-CFDRL RabbitMQ communication _______________________________ 78
Figure 57. Messages used for Scaling __ 79
Figure 58. Log of the action taken by CFDRL and sent to the Cluster Ibmc ___________________________ 80
Figure 59. Message published by ibmc __ 80
Figure 60. Log of the Migration action being implemented by the cluster IBMC _______________________ 80
Figure 61. CFDRL decides a scaling action and sends it through Rabbit MQ to MO ____________________ 81
Figure 62. Meta orchestrator receives the scaling action and triggers the scaling ______________________ 81
Figure 63. The number of replicas is checked and it is set to 3 as requested ___________________________ 81
Figure 64. Workload Lifecycle Sequence Diagram __ 81
Figure 65. LCM User access ___ 83
Figure 66. Example of intent conditions ___ 83
Figure 67. Intent Evaluator logs ___ 84
Figure 68. Intent API receives the Intent Evaluation report __ 84
Figure 69. Cluster metrics from PPEF __ 85
Figure 70. Cluster metrics RabbitMQ payload __ 85
Figure 71. The CMDT component includes a SwaggerUI endpoint with up-to-date documentation and examples.

 __ 85
Figure 72. Detailed information about the NEMO workload pod showing its location, status, traffic, and

response times. __ 86
Figure 73. Detailed information about the pod’s traffic. Additionally, it displays its internal traffic, as well as

inbound and outbound traffic with foreign pods. __ 87
Figure 74. Tree-like representation of all deployments, replicasets, and pods, excluding non-NEMO workload

components ___ 87
Figure 75. Manage workloads __ 88
Figure 76. Manage workload instances ___ 88
Figure 77. Workload Instance lifecycle timeline___ 89
Figure 78. LCM workload deployment tree __ 89
Figure 79. Workload intents management ___ 90
Figure 80. Resource provisioning __ 90
Figure 81. Cluster performance ___ 91
Figure 82. Intent Fulfilled __ 91
Figure 83. Intent Violation ___ 92
Figure 84. Unikernel creation sequence diagram __ 92
Figure 85. publishToSee endpoint. ___ 95
Figure 86. SEE success message __ 96
Figure 87. Schematic of the communication channels used by the MO API and the SEE _________________ 96

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 9 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation /

acronym

Description

AAA Authentication, Authorization, and Accounting

AI Artificial Intelligence

API Application Programming Interface

CD Continuous Delivery

CFDRL Cybersecure Federated Deep Reinforcement Learning

CIDR Classless Inter-Domain Routing

CLI Command Line Interface

CMDT Cybersecure Microservices’ Digital Twin

CI Continuous Integration

CLI Command-line Interface

CNCF Cloud Native Computing Foundation

CPU Central Processing Unit

CRD Custom Resource Definition

DApps Distributed Applications

DLT Distributed Ledger Technology

DNS Domain Name System

Dx.y Deliverable number y belonging to WP x

E2E End-to-End

EC European Commission

EV Electric Vehicles

FL Federated Learning

GDPR General Data Protection Regulation

GPU Graphics Processing Unit

gRPC Generic Remote Procedure Call

GUI Graphical User Interface

IBA Intent-Based API

IBMC Intent-based Migration Controller

IdM Identity Management

IDS Intrusion Detection System

IPFS Interplanetary File System

IoT Internet-of-Things

IT Information Technology

K8s Kubernetes

LAN Local Area Network

LCM Life-Cycle Manager

LL Living Lab

meta-OS Meta-Operating System

ML Machine Learning

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 10 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Abbreviation /

acronym

Description

MLaaS ML-as-a-Service

mNCC Meta Network Cluster Controller

MO Meta-Orchestrator

MOCA Monetization and Consensus-based Accountability

MQTT Message Queuing Telemetry Transport

NAC NEMO Access Control

OS Operating System

OSS One-stop-shop

PAYG Pay-As-You-Go

PV Photovoltaic

PPEF PRESS & Policy Enforcement Framework

RaaS Resource-as-a-Service

REST Representational State Transfer

SDN Software Defined Network

SEE Secure Execution Environment

SME Small-Medium Enterprise

SMP Slice Manager Plugin

SOM System-on-Module

UI User Interface

UPS Uninterruptible Power Supply

UX User Experience

YAML yet another markup language

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 11 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

The present deliverable, D4.3, entitled “Advanced NEMO platform & laboratory testing results-Final

version” aims to provide a complete and detailed overview of the integration process carried out within

the framework of the Next Generation Meta Operating System project towards its realization. Moreover,

this document sheds light on the final technical specifications of the components that were developed in

the context of the Work Package 4, namely the Intent-based API, MOCA, LCM and the IBMC.

Within the scope of this document several other aspects that enhance the understanding of the integration

and validation process followed in NEMO are discussed. To this end, the infrastructure related aspects,

such as the hardware specifications of OneLab facilities that host the NEMO meta-OS framework are

presented. The ZeroOps configuration and deployment procedure followed, as described, can be utilized

as a paradigm for future deployments of the NEMO meta-OS in 3rd party infrastructures. In addition,

comprehensive documentation tailored for 3rd parties that aim to utilize NEMO meta-OS is included,

presenting the steps that are necessary to access, register and deploy workloads in the NEMO meta-OS.

The present document intents to provide insights on the final integrated version on the NEMO meta-OS

which is the result of a Validation and Verification methodology that is established and adopted. The

associated work concerns also the scenario-driven integration tests that were conducted in laboratory

setting including the supporting CI/CD environment and tools.

Finally, the document is foreseen to be used as the best practices handbook for other projects in terms

of integration and validation procedures. NEMO since its beginning provided state-of-the-art

architectural patterns that made the process of integration and validation easier, in terms of

interconnecting components and debugging issues in the End-to-End system workflows.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 12 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the document

Deliverable D4.3 “Advanced NEMO platform & laboratory testing results-Final version” is the second

and final version of the NEMO platform-laboratory results reporting. This document provides the

updates and optimizations made since the delivery of deliverable D4.2 “Advanced NEMO platform &

laboratory testing results-Initial version” [1] that aimed to provide the main guidelines for the testing

and integrating steps to be followed towards NEMO’s validation. Moreover, the updated workflows

used for these components’ interactions are reported in the following sections. As D4.3 is considered

the final version of the integration deliverables of NEMO, an overview of the workflows used by the

components of other WPs are presented towards an End-to-End workflow presentation.

1.2 Relation to other project work

Deliverable D4.3 is tightly connected to D4.2, as it is the second version of it and reports the updates of

the work initially described in D4.2. In addition, D4.3 reports the issues that the component owners met

during the finalization of their components. D4.3 is also strongly coupled with D4.1 [2] on which the

integration methodology to be followed by the project components was defined as well as some

preliminary integration activities and testing results that took place among the more mature NEMO

components. In D4.3, the final version of the NEMO meta-OS was validated over as well as the updated

integration plan. At Work Package (WP) level, D4.3 is firmly attached with the WP4 tasks. Tasks T4.1-

T4.3 contribute to this deliverable by providing the updates carried out within the individual tools

implemented by each task. Furthermore, task T4.4, responsible for the integration of the NEMO

components vastly committed to the design of the individual integration pipelines as well as monitoring

the procedure of integrating submodules towards the final integration.

Moreover, this deliverable has strong relation with other WPs and the technical work conducted. The

components’ specifications and meta-architecture as well as the functional and non-functional

requirements defined within WP1 [3] and reported on the related deliverables are validated in the current

deliverable and any change of them is reported. The benchmarking definition provided by task T1.3 is

demonstrated through the integration procedures reported in the following sections. While WP4

contributed to WP2 and WP3 in terms of providing the best practices related to the integration procedure,

the integration steps and semantics of these two WPs are being reported in this deliverable.

1.3 Relation between D4.3 and D4.2

In D4.2, the initial outcomes as well as the guidelines to be followed in the WP4 components integration

were presented, in D4.3 the final updates and optimizations carried out by the components’ owners are

described. In addition, the final workflows of the WP4 and other WPs are presented to provide a

complete picture of the End-to-End workflow of NEMO. While the two deliverables share some

common chapters, they have several differences, for the ease of the reader these changes are described

in Table 1. The structure of D4.3 has been changed compared to D4.2 to provide a better understanding

of the NEMO integration process and the updates of the WP4 tools to the reader. New subsections were

added to incorporate the integration activities carried out by the Open Call projects as well as some of

the subsections of D4.2 were converted to standalone sections in D4.3 to provide more details about the

progress of the Project and the integration pipelines.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 13 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Table 1. Differences between D4.3 and D4.2

Section in D4.3 Section in D4.2 Differences

1. Introduction 1. Introduction Several updates in this section

1.1 Purpose of the document 1.1 Purpose of the document Minor update

1.2 Relation to other project work 1.2 Relation to other project work The section has been updated

1.3 Relation between D4.3 and D4.2 - New section in D4.3

1.4 Structure of the document 1.4 Structure of the document The section has been updated

2. NEMO Integration, Validation &
Verification approach and tools

2. Methodology Several updates in this section

2.1 NEMO CI/CD Environment & Tools 2.1 NEMO CI/CD Environment & Tools Several updates in this Section.

2.2 3rd Party documentation of NEMO meta-
OS

- New Section in D4.3

2.3 Cloud/Edge/IoT Integration and
Validation Infrastructure

2.2 Cloud/Edge/IoT Integration and
Validation Infrastructure

The section has been updated

2.4 Integration & V&V Methodology & Plan 2.3 Integration & V&V Methodology & Plan Minor Updates

3 NEMO Integrated Platform (Final Version) 2.5 NEMO Integrated Platform New Section in D4.3, Updated

3.1 Meta-OS functionality in NEMO v2 2.5.1 Meta-OS functionality in NEMO v1 The section has been updated

3.2 NEMO Open Call integration activities - New Section in D4.3

4. NEMO Service Management Layer 3. NEMO Service Management Layer Major Updates

4.1 Intent-based Migration Controller 3.1 Intent-based Migration Controller Updated

4.2 Plugin & Applications Lifecycle Manager 3.2 Plugin & Applications Lifecycle Manager Updated

4.3 Monetization and Consensus-based
Accountability

3.3 Monetization and Consensus-based
Accountability

Updated

4.4 Intent-based SDK/API 3.4 Intent-based SDK/API Updated

5. NEMO scenario-driven verification &
results

4. NEMO scenario-driven verification &
results

Major Updates

5.1 NEMO Cluster registration – resource
provisioning

4.1 NEMO Cluster registration Major Updates

5.2 NEMO workload registration &
provisioning

4.2 NEMO workload registration,
deployment & provisioning

Major Updates

5.3 NEMO workload scheduling &
orchestration

4.3 NEMO workload migration Major Updates

5.4 NEMO workload lifecycle management 4.4 NEMO workload lifecycle management Major Updates

5.5 NEMO WP3 Integration Activities - New section

6. Conclusions 5. Conclusions The section has been updated

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 14 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

1.4 Structure of the document

The remainder of this report is organized as follows:

• Section 2 contains information on the CI/CD environment of the NEMO meta-OS and on the

OneLab facilities that provide for the integration activities of the first integrated version of the

NEMO meta-OS. In addition, it presents the high-level architecture view of the first integrated

version of the NEMO meta-OS highlighting the key integration activities for each functional

layer and describes the components that are fully or partially integrated.

• Section 3 presents the high-level NEMO Integrated Platform along with the integration

activities of the Open Call Projects with NEMO.

• Section 4 describes the overview, the architecture, the initial results and the interactions with

other components for the modules that are comprising the Service Management Layer of the

NEMO meta- OS platform, namely the intent-based Migration Controller (IBMC), the Plugin

& Application Lifecycle Manager (LCM), the Monetization and Consensus based

Accountability (MOCA) and the Intent-based SDK/API.

• Section 5 sheds light into the integration activities that are conducted and materialized the first

integrated version of the NEMO meta-OS, following the scenario-driven V&V methodology.

• Section 6 provides conclusions and insights of the final version of the NEMO meta-OS.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 15 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

2 NEMO Integration, Validation & Verification

approach and tools

2.1 NEMO CI/CD Environment & Tools

2.1.1 Open-Source repository

NEMO is making use of a GitLab CI/CD framework [4] deployed at the Eclipse Research Labs to house

and keep track of the code stack developed within the project. Moreover, within NEMO a docker registry

repository is being used for storing and deploying the generated containers. The pipeline adopted by

NEMO is integrated with the GitLab repository and utilizes an automated build functionality that

generates the docker container images [5] based on the architectural tool chains of the project. The final

step of the pipeline involves the automated deployment of the latest image generated to the appropriate

server. The use of a centralized versioning system such as GitLab provides several benefits:

• Automates repetitive tasks like running tests and building code.

• Integrates code frequently, allowing teams to catch issues sooner.

• Run automated tests and static analysis tools with every commit.

• Automatically deploy to staging or production environments.

• Track the state of builds, tests, and deployments in real time.

• Keep a record of who deployed what, when, and why.

• Link code changes directly to issues or feature requests.

• Allow for code review and discussion before merging.

• Detect vulnerabilities in dependencies or container images.

On the other hand, apart from the technical benefits of using a version control repository, there are other

benefits as well. NEMO since its conception aimed to provide an opensource meta-OS framework that

will enable local organizations to deploy and use a load management system in the IoT-Edge-Cloud

continuum. For this reason, the NEMO’s repository1 is public and accessible along with the Open Call

projects2,3 that aim at validating and enhancing NEMO. The repository follows a sub-project

organization, Figure 1, where the components are grouped based on the implemented outcomes of the

relevant tasks, while two major subprojects, Open Call 1 and Open Call 2, house the services enhancing

and validating NEMO.

1 https://gitlab.eclipse.org/eclipse-research-labs/nemo-project
2 https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/opencall-1
3 https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/opencall-2

https://gitlab.eclipse.org/eclipse-research-labs/nemo-project
https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/opencall-1
https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/opencall-2

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 16 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 1. NEMO code repository in Eclipse Research labs

2.1.2 NEMO Automated Deployment and Configuration

In Software development one of the fundamental steps in the lifecycle of a system is the CI/CD

development methodology. In this context, within NEMO a CI/CD pipeline was set up to automate the

deployment and configuration of the NEMO components in various environments. In D4.2 the basic

functionality of the NEMO CI/CD was described along with a short guide4 for the developers.

The NEMO components are organized in a cluster-oriented hierarchy within the Flux CD [6] [7]

continuous delivery solution as depicted in Figure 2. Each directory contains the configuration files of

the components deployed at that particular cluster. In the final version of the NEMO meta-OS, apart

from the component integration, the integration of 3rd party infrastructures took place. Figure 2 illustrates

both the OneLab clusters and the pilot environments. The NEMO CI/CD [6] played a pivotal role as it

was possible to deploy all the NEMO core components in the Pilots’ clusters without the need for

extensive configuration and involving the components’ owners achieving a high impact with low effort

curve.

4https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo/-/blob/main/CI-CD%20Integration.md?ref_type=heads

https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo/-/blob/main/CI-CD%20Integration.md?ref_type=heads

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 17 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 2. NEMO CI/CD organization

2.2 3rd Party documentation of NEMO meta-OS

Within the NEMO Meta-OS project, a framework that will enable the effortless deployment of services

through Zero DevOps Tools was designed and implemented. The derived framework based on the best

practices of microservices [8] architecture deployment in a Kubernetes [9] [10] [11] cluster environment

provides to the 3rd party user two interfaces to interact with. A user-friendly graphical user interface

based on the best practices of UI/UX and a REST API for service-to-service interaction with NEMO,

allowing the 3rd party user to develop tailored interactions with NEMO.

The User is initially landed on the Login page of NEMO, Figure 3, to authenticate and be categorized

based on the user categories described in deliverable D1.3 [12]. The authentication mechanism used is

based on the Keycloak [13] framework which is a well-known and established identity management

system widely used in modern critical systems. After the user is successfully authenticated, he is

redirected to the main NEMO management page, Figure 4. In this view the main action categories for

using NEMO are displayed:

• Workload Monitoring

• Workload Instances

• Intent Management5,6

• Resource Provisioning

More details about the functionalities of each category will be provided later in this section. Finally, the

option log out on the top right corner of the view concludes the list of actions for this view.

5https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-service-management/intent-based-sdk_api/intent-api/-

/blob/main/intent-examples.yml?ref_type=heads
6https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-service-management/intent-based-sdk_api/intent-api/-

/blob/main/network-intents.yaml?ref_type=heads

https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-service-management/intent-based-sdk_api/intent-api/-/blob/main/intent-examples.yml?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-service-management/intent-based-sdk_api/intent-api/-/blob/main/intent-examples.yml?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-service-management/intent-based-sdk_api/intent-api/-/blob/main/network-intents.yaml?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-service-management/intent-based-sdk_api/intent-api/-/blob/main/network-intents.yaml?ref_type=heads

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 18 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 3. NEMO Login page

Figure 4. NEMO main management page

The Registered Workloads View, Figure 5, provides a complete monitoring interface for the already

submitted workloads. Each workload record has its unique identification number sorted in a descending

order. The Workload Name and Version attributes are the unique identifiers upon the creation of each

Workload record, meaning that for a given workload name there cannot be two records with the same

version. In the example displayed in Figure 5, the ml-retrain workload task is displayed multiple times,

however the version differs each time. Then, there is the Status attribute, the values of this attribute are

Pending and Accepted. When a workload is created it gets in the pending status until it is evaluated and

validated by the NEMO framework. After this procedure is finished the workload gets in the accepted

status. Next there is the Ingress Support field that denotes if the workload supports or not network

communication with services outside of the NEMO environment. The User field displays the user that

created, and it is used for trackability of user actions within the NEMO framework. Finally, the Actions

column houses the functionalities related to the management of each workload. The first item is a file

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 19 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

uploader, and it is used to upload the HELM [14] file of the workload. The file can be uploaded after

the creation of the workload and the workload cannot transit to the accepted status before this action is

performed. The second item is the instance creation button, it is used to create a workload instance based

on the workload’s configuration, both from the workload creation page and the uploaded HELM file.

The third item in the row is the deletion action in case the user wants to delete the workload. Finally,

the associated instances button is a shortcut for the Workload instances view for this specific workload.

In Figure 5 within the Actions column the HELM file uploader and the deletion buttons are faded, until

a workload gets to the accepted status, the user is able to upload a new HELM file and/or delete the

workload. After the workload is marked as accepted, the user cannot modify the existing workload, any

change required on the existing workload requires the creation of a new workload.

Figure 5. Registered Workloads View

In Figure 6 the workload creation form is displayed. In this view the user enters the basic information

of the workload to be used, as we explained earlier the combination of the name and version attributes

need to be unique and these fields are mandatory. The field Supported Intents contains a dropdown list

of the available intent categories that the user can select for deploying the workload in a cluster based

on the needs of the service, e.g., availability, existence of dedicated GPU, energy, etc. The user can

modify the intents to be used on the cluster selection by the Meta-Orchestrator also after the workload’s

creation through the Intent Management view. Finally, there is the Ingress Support attribute discussed

before. The values assigned are True or False, with False being the default value for security purposes.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 20 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 6. Create Workload View

The last step in the pipeline defined for executing a service in NEMO is the workload instance creation,

Figure 7. After a workload is created and gets on the accepted status, an instance of it can be created.

The user has to fill the name of the instance (Release Name) and if applicable a proposed cluster to be

executed. The attributes: Values Override, Include CRDs, Is Upgrade and NoHooks are out of scope of

NEMO as these are Kubernetes oriented parameters. The workload instance can be created without any

further action, however, by clicking the Create Intent Template button a submenu opens. In this submenu

the user is able to select one or more requirements that will enhance the execution of his service. In the

sample displayed in Figure 7 shows that the desired execution environment for the service is a cluster

able to provide an availability higher than 90%. Moreover, the user is able to set a specific time range

that wants this migration to take place, e.g., high intense processing periods, etc.

Figure 7. Create Workload Instance View

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 21 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Another high-level category in the NEMO platform is Workload Instance View, Figure 8. In this view

the user can see the status of the workload instances previously deployed and manage them. The Release

name refers to the name provided in the previous form while the Workload ID refers to the parent

workload created at the first step. The status denotes whether the instance is Rendered, Deployed or

deleted. The Cluster field shows the cluster that the current instance is deployed based on the Meta-

Orchestrator’s decision-making algorithm and the requirements (Intents) that the user set up. The

instance ID is the unique identifier of each instance. The combination of Release name and Instance ID

is unique identifier of each deployed workload instance across all clusters connected to NEMO.

Moreover, a set of useful interactions in terms of status monitoring and management are provided in the

action column. First, a historic representation of the various statuses of the workload instance, e.g.,

created, deployed, suspended, deleted along with the timestamp of each status update. Then there is the

manifest viewer, which can be used for examining the configuration parameters in case an error occurs

and finally the deletion button can be used to permanently terminate the service instance.

Figure 8. Workload Instances main View

NEMO was designed to migrate workloads based on specific requirements (Intents), for this reason the

migrations take place based on tailored and sticked requests. NEMO provides to the user the possibility

to modify on the fly these requirements for any given running workload instance. In this context, the

Intents management View was created to house this functionality, Figure 9. As with the previously

described views, the status field denotes the current condition of a specific Intent type on a specific

workload instance. The status can be Fulfilled or not fulfilled, compliant, degraded or fulfilmentfailed.

In the Intent Type column, the specific requirement (Intent) is displayed while in the next column the

specific Workload instance is given. It is worth noting that one workload instance can have multiple

intent types, even of different types. In the actions column there is the Intent Report option which

provides helpful insights for understanding why an Intent failed by displaying detailed information of

the error occurred. In addition, the user can modify the existing Intent by altering the desired target

value. Finally, a simple control panel offers to the user the possibility to start and suspend the execution

of an Intent with the related buttons as well as to delete it.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 22 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 9. Intent Management View

From the Intents Management main View, the user is able to see the existing Intents but also to create

new Intents, in Figure 10 the form of adding new Intents to an existing workload is displayed. The

advantage of this view is that the user can add intents after the creation of a workload instance as well

as for advanced users to create an intent using YAML files. The use of YAML files is used within

NEMO for the connection and orchestration of complex components such as the mNCC for network

creation for pods across the clusters.

Figure 10. Create Intent View

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 23 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

The last menu provided by the NEMO Management User Interface is the Resource Provisioning View,

Figure 11. In this View the user can see the available clusters connected to the NEMO platform along

with some useful information such as their processing capabilities and real-time performance metrics.

Figure 11. Resource Provisioning View

Moreover, through this menu option, the users providing their own cluster infrastructure can register

them through this view, Figure 12. The infrastructure providers need to fill the information related to

the processing, environmental and financial aspects of their machines. The cluster registration process

is divided into two steps, a) provide the basic information used by the NEMO components for the

decision-making process of pods’ deployment and b) the underlying inter-cluster connectivity. The

registration form presented is responsible for tackling the first part of the registration, while the second

part of the registration is achieved by uploading the kubeConfig file of the Kubernetes cluster to be

registered. The Graphical User Interface previously described is one of the ways to interact with the

NEMO platform. The GUI is indented to be used from non-technical personnel that need to effortlessly

deploy a workload.

Figure 12. Cluster Registration Form

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 24 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Another way of interacting with NEMO is through a REST API [15] , Figure 13. Intent-Based API

endpoints. Through this solution a power user can make a set of API calls in order to create tailored

pipelines in terms of deploying, configuring and monitoring applications (workloads). A documentation

page7 was created to enable 3rd party interactions by providing both a complete set of instructions and

the data types that are being used as well as a sandbox environment where the user can interact without

coding or an external GUI for REST calls.

Figure 13. Intent-Based API endpoints

Figure 14, presents a sample of the expected parameters' body of the workload POST endpoint.

7 https://intent-api.nemo.onelab.eu/api/v1/swagger/

https://intent-api.nemo.onelab.eu/api/v1/swagger/

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 25 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 14. Sample of the expected parameters' body of the workload POST endpoint

2.3 Cloud/Edge/IoT Integration and Validation Infrastructure

The complete integration of different systems in the Cloud-Edge-IoT continuum into a single framework

is a very complex task and requires a lot of effort and precision. The individual systems in each layer of

the continuum Cloud, Edge and IoT are designed to provide max throughput, low latency and increased

processing capabilities to meet the requirements of a modern system. While these systems can flawlessly

work individually, several issues may arise when they need to be interconnected. NEMO is a complex

framework that aims to provide severe automations at a low level across the continuum in terms of

deployment and device management. In a typical Cloud-Edge-IoT continuum, the cloud computing

layer provides a centralized environment where the main processing power and storage space exist. On

the contrary, Edge serves, as the frontier of processing as they are located close to the IoT devices. These

are responsible for processing the incoming data and taking decisions in real-time.

Within the NEMO framework an operational management of the Cloud-Edge-IoT continuum takes

place. The infrastructure where the NEMO meta-OS platform is being deployed varies based on the

equipment present on the Pilots’ premises. To guarantee a complete and flawless integration of the

platform, a set of minimum requirements was distributed among the partners. This guaranteed that the

underlying technologies, such as Kubernetes can work without issues. Typically, the main issue within

the Cloud-Edge-IoT continuum interactions is the connectivity due to the communications taking place

over different technologies with varying capabilities, e.g., wireless channels, low bitrate channels, etc.

In NEMO, this was considered since the design phase where lightweight communication protocols and

messaging mechanisms, such as RabbitMQ [16] that are resilient to packet loses and require a small set

of resources. These channels within the proposed meta-OS are used to exchange real-time information

about the resource availability on the connected clusters which is crucial for the NEMO users as it can

be used for taking strategical decisions on where a workload should be deployed. In addition, the

channels are able to handle high volume data images for migrating the workloads along with the related

data volumes.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 26 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

2.4 Integration & V&V Methodology & Plan

Since the NEMO conceptualization phase, a detailed plan for the integration and validation phases was

created. This plan was initially presented in deliverables D1.3 and D4.1 while an updated version

reporting the alignment with that plan as well as the updates of the tools was presented in deliverable

D4.2. The plan was aiming to create a universal cross component and pilot template for monitoring the

various phases of development to keep track of the updates and to identify any risks arose. The plan

adopted is based on the best modern practices of software development, NEMO followed an agile and

incremental approach of iteration cycles, grouped in 3 Phases, as depicted in Figure 15.

Phase 1: Baseline (M1-M18). Provides the initial NEMO Proof of Concept. Phase 1 starts with system,

specification of the meta-OS Architecture and decomposition (WP1), design analysis, prototyping

(WP2-WP4), integration, testing and validation of all key meta-OS components (WP4). The outcome

will be NEMO Ver. A and initial Living Labs validation and the selection of the new consortium

members and new components from Open Call #1 to be implemented with Phase 2.

Phase 2: Advance (M19-M30). All NEMO components are further developed (WP2-WP4), while

NEMO is expanded with new functionality added from the new consortium members accepted via Open

Call #1. Stronger integration with 5G networks and MANO systems will be realized and validated in

Living Labs). The outcome will be NEMO Ver. B and Living Labs validation, along with new AIoT

applications and services from Open Call #2.

Phase 3: Mature (M30-M36). Focus on validation and optimization, and more realistic field conditions

testing and verification, not only from NEMO consortium but also from 3rd parties selected via Open

Call #2, increasing system TRL and preparing NEMO Ver. 1.0, validated in Living Labs. This phase

also strengthens activities related to engagement of open-source communities and relevant initiatives,

ensuring accessibility, sustainability and availability in open-source platforms.

Figure 15: NEMO project phases and main meta-OS version releases

At the competition of each phase a retrospective analysis along with a risk management assessment took

place. This guaranteed that the project would proceed based on the plan conducted at the beginning of

the project and any deviation or risk appeared during the development phase would be immediately

identified and resolved without jeopardizing the progress of the project. The template presented in the

following subsection was used to document and monitor any issues occurred.

2.4.1 NEMO V&V documentation

The NEMO End-to-End integration pipeline is a complex procedure; in order to provide high-quality

tests, the End-to-End pipeline was divided in smaller and simpler test pipelines. Associated technical

details and stemming results are provided in Section 5 of this document. As mentioned earlier, a common

template applicable across the different functional scenarios present in NEMO was defined. This played

a pivotal role as it allowed to properly document all the possible steps and interaction took place in an

organized and well-written manner. At each iteration phase presented before, the following template

was evaluated, and new features were introduced in case a feature was missing or modified in case it

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 27 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

was not adding value to the project. To better understand what needs to be done as well as to verify the

goals’ success, three main attributes were defined:

• Scenario

• Outcome

• Checkpoints

In Table 2 the template for the integration tests explaining the scenarios and what needs to be tested

along with the functional and non-functional requirements for each scenario are documented. Moreover,

an overview of the test plan is present to assist the engineers to perform the tests. After the completion

of a test procedure, the involved partners were filling in the integration scenario checkpoint template,

Table 3, which was later used in the retrospective analysis to provide information about the open issues.

Table 2. Integration testing - scenario template

Test 1:

Objective

Components

Requirements

alignment

Features to be

tested

Test setup

Steps 1.

2.

3.

Table 3. NEMO integration testing - Checkpoints template

Checklist for Test1

 Yes No Comments

1 Is a service created?

2 Is the device registration completed successfully?

3 Is the device sending its data successfully?

4 Is the data stored in Database / Registry?

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 28 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

3 NEMO Integrated Platform (Final Version)

The final version of the NEMO meta-OS was established following a comprehensive integration and

validation procedure. The conducted integration tests concerned both the NEMO developed technical

solutions and the 3rd party ones introduced by the 2 Open Calls.

3.1 Meta-OS functionality in NEMO ver. 1.0

3.1.1 NEMO Infrastructure Management

The infrastructure management across the various Kubernetes clusters has been designed for scalability,

flexibility, and high availability, utilizing a multi-cluster approach. Several clusters have been deployed,

each tailored for specific roles such as control planes, worker nodes, and specialized hardware, including

GPU-enabled nodes.

• Nemo main cluster: A control-plane node (nemo-dev-master) and five worker nodes (nemo-

dev-worker1 to nemo-dev-worker5) have been configured within this development cluster,

running Kubernetes version 1.29.13. This setup provides a robust environment for development

and testing purposes. Table 4 provides a detailed view of the technical specifications of the

NEMO main cluster.

Table 4. NEMO dev cluster (K8S)

 Node name Node Type Specifications

k8smaster.onelab.eu Master • CPU: 8 CPU Cores

• RAM: 16GB

• Storage: 140GB Ephemeral

• OS-Image: Ubuntu 22.04.4 LTS

• Kernel Version: 5.15.0-116-

generic

• Container Runtime:

containerd://1.6.28

k8sworker1.onelab.eu Worker and

Storage
• CPU: 16 CPU Cores

• RAM: 32GB

• Storage: 120GB Ephemeral +

150GB Ceph

• OS-Image: Ubuntu 22.04.4 LTS

• Kernel Version: 5.15.0-116-

generic

• CONTAINER-RUNTIME:

containerd://1.6.28

k8sworker2.onelab.eu Worker and

Storage
• CPU: 16 CPU Cores

• RAM: 32GB

• Storage: 120GB Ephemeral +

150GB Ceph

• OS-Image: Ubuntu 22.04.4 LTS

• Kernel Version: 5.15.0-116-

generic

• CONTAINER-RUNTIME:

containerd://1.6.28

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 29 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

 Node name Node Type Specifications

k8sworker3.onelab.eu Worker and

Storage
• CPU: 16 CPU Cores

• RAM: 32GB

• Storage: 120GB Ephemeral +

150GB Ceph

• OS-Image: Ubuntu 22.04.4 LTS

• Kernel Version: 5.15.0-116-

generic

• Container Runtime:

containerd://1.6.28

k8sworker4.onelab.eu Worker and

Storage
• CPU: 16 CPU Cores

• RAM: 32GB

• Storage: 120GB Ephemeral +

150GB Ceph

• OS-image: Ubuntu 22.04.4 LTS

• Kernel Version: 5.15.0-116-

generic

• Container Runtime:

containerd://1.6.28

k8sworker5.onelab.eu Worker and

Storage
• CPU: 16 CPU Cores

• RAM: 32GB RAM

• Storage: 120GB Ephemeral +

150GB Ceph

• OS-image: Ubuntu 22.04.4 LTS

• Kernel Version: 5.15.0-116-

generic

• Container Runtime:

containerd://1.6.28

• Nemo Staging 1 Cluster: Focused on scaling operations, this cluster comprises a control-plane

node (nemo-s1-master) and several worker nodes (nemo-s1-worker1 to nemo-s1-worker3),

running Kubernetes versions 1.30.7 and 1.31.3, thus ensuring reliability for both development

and production workloads. Table 5 presents the technical details of the NEMO Staging 1 cluster.

Table 5. Staging 1 cluster (K8S)

 Node Name Node Type Specifications

nemo-s1-master Master • CPU: 8 CPU Cores

• RAM: 16GB

• Storage: 120GB Ephemeral + 150GB Ceph

• OS Image: Ubuntu 22.04.3 LTS

• Kernel Version: 5.15.0-78-generic

• Container Runtime: containerd://1.7.12

nemo-s1-worker1 Worker and

Storage
• CPU: 16 CPU Cores

• RAM: 16GB

• Storage: 120GB Ephemeral + 150GB Ceph

• OS Image: Ubuntu 22.04.3 LTS

• Kernel Version: 5.15.0-78-generic

• Container Runtime: containerd://1.7.12

nemo-s1-worker2 Worker and

Storage
• CPU: 16 CPU Cores

• RAM: 16GB

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 30 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

 Node Name Node Type Specifications

• Storage: 120GB Ephemeral + 150GB Ceph

• OS Image: Ubuntu 22.04.3 LTS

• Kernel Version: 5.15.0-78-generic

• Container Runtime: containerd://1.7.12

nemo-s1-worker3 Worker and

Storage
• CPU: 16 CPU Cores

• RAM: 16GB

• Storage: 120GB Ephemeral + 150GB Ceph

• OS Image: Ubuntu 22.04.3 LTS

• Kernel Version: 5.15.0-78-generic

• Container Runtime: containerd://1.7.12

• Nemo Staging 2 Cluster: The lightweight k3s-based cluster consists of a control-plane node

(nemo-k3s-master) and three worker nodes (nemo-k3s-node-1 to nemo-k3s-node-3), operating

on version 1.30.6+k3s1. A specialized AMD-based worker node (nemo-k3s-node-3) was added

to support the integration of the NEMO component, ensuring optimal performance for resource-

intensive tasks. More details about the Staging 2 cluster are presented on Table 6.

Table 6. Staging 2 Cluster (K3S)

 Node name Node

Type

Specifications

nemo-k3s-master Master • CPU: 4 CPU Cores

• RAM: 8 GB

• Storage: 64 GB External SSD

• OS Image: Ubuntu 24.10

• Kernel Version: 6.11.0-1004-raspi

• Container Runtime: containerd://1.7.22-k3s1

nemo-k3s-node-1 Worker

and

Storage

• CPU: 4 CPU Cores

• RAM: 8 GB

• Storage: 1TB External SSD

• OS Image: Ubuntu 24.10

• Kernel Version: 6.11.0-1004-raspi

• Container Runtime: containerd://1.7.22-k3s1

nemo-k3s-node-2 Worker

and

Storage

• CPU: 4 CPU Cores

• RAM: 8 GB

• Storage: 64 GB External SSD

• OS Image: Ubuntu 24.10

• Kernel Version: 6.11.0-1004-raspi

• Container Runtime: containerd://1.7.22-k3s1

nemo-k3s-node-3 • CPU: 16 CPU Cores

• RAM: 16 GB

• Storage: 120GB Ephemeral + 150GB Ceph

• OS Image: Ubuntu 24.10

• Kernel Version: 6.11.0-19-generic

• Container Runtime: containerd://1.7.12

• Nemo Production Cluster: Dedicated to production workloads, this cluster includes a GPU-

enabled worker node (nemo-prod-gpu-worker) and several worker nodes (nemo-prod-worker1

to nemo-prod-worker3), along with a control-plane node (nemo-prod-master), all operating on

Kubernetes version 1.30.7. This configuration ensures high-performance processing for tasks

such as machine learning. The NEMO Production cluster details are demonstrated on Table 7.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 31 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Table 7. Production Cluster (k8S)

 Node Name Node Type Specifications

nemo-prod-master Master • CPU: 4 CPU Cores

• RAM: 8 GB

• Storage: 80 GB Ephemeral

• OS Image: Ubuntu 22.04.3 LTS

• Kernel Version: 5.15.0-78-generic

• Container Runtime: containerd://1.7.12

nemo-prod-worker1 Worker and

Storage
• CPU: 8 CPU Cores

• RAM: 16 GB

• Storage: 250GB Ephemeral + 150GB Ceph

• OS Image: Ubuntu 22.04.3 LTS

• Kernel Version: 5.15.0-78-generic

• Container Runtime: containerd://1.7.12

nemo-prod-worker2 Worker and

Storage
• CPU: 8 CPU Cores

• RAM: 16 GB

• Storage: 120GB Ephemeral + 150GB Ceph

• OS Image: Ubuntu 22.04.4 LTS

• Kernel Version: 5.15.0-78-generic

• Container Runtime: containerd://1.7.12

nemo-prod-worker3 Worker and

Storage
• CPU: 8 CPU Cores

• RAM: 16 GB

• Storage: 120GB Ephemeral + 150GB Ceph

• OS Image: Ubuntu 22.04.2 LTS

• Kernel Version: 5.15.0-78-generic

Container Runtime: containerd://1.7.12

nemo-prod-gpu-

worker

Worker and

Storage
• CPU: 4 CPU Cores

• RAM: 8 GB

• Storage: 120GB Ephemeral + 150GB Ceph

• OS Image: Ubuntu 22.04.4 LTS

• Kernel Version: 5.15.0-78-generic

• Container Runtime: containerd://1.7.12

To mitigate the impact of power outages, dedicated UPS systems have been implemented for each host

running virtual machines that support the cluster nodes. This solution ensures uninterrupted operation

during power failures, effectively reducing downtime. These infrastructure improvements, along with

the addition of specialized hardware for NEMO integration, have significantly enhanced the resilience,

performance, and reliability of the entire system.

3.2 NEMO Open Call integration activities

In order to provide homogenised, flexible orchestration of varied workloads across heterogeneous and

scattered devices, the concept of the meta-Operating System (meta-OS) refers to the efficient integration

of highly diversified hardware and software resources. Because of NEMO's expandable architecture,

additional features can be added as NEMO plugins. Since the NEMO Kernel serves as the core system,

plugins are designed to add capabilities to the core, such as flexibility, extensibility, and isolation of

bespoke meta-OS logic or applications. Horizontal or domain-independent services that seek to offer

some fundamental and standard features that expand the NEMO capabilities are referred to as plugins.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 32 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

NEMO has already realized extensions through additions developed by the 1st Open Call projects. NEMO

1st Open Call invited SMEs active as edge computing, edge and/or native cloud software development,

operating systems, IoT/5G networks and IoT manufacturing entities to join the NEMO ecosystem by

offering: a) NEMO meta-architecture extensions b) software components/plugins not covered by current

NEMO implementation plan c) new network or service/resources metering/automated control

components or d) porting NEMO on new, highly heterogeneous IoT devices.

Six winning proposals have been identified, specifically MetaFOX, by Vodéna, Serbia working on

Machine Learning and AI technologies; CorMOS, by Business & IoT Integrated Solutions, Cyprus

focusing on cross-domain orchestration of Meta-OS edge resources; ARGO, by Intellia ICT, Greece,

investigating porting AR/XR technologies in the meta-OS; Eros4NRG, by Martel Innovate BV,

Netherlands offering ZeroTrust IoT Analytics with focus on Smart Energy applications; GENESYS, by

SWHARD srl, Italy providing an edge gateway for the NEMO Meta-OS; and MARINEMO, by BEAM

Innovation, Romania working on an efficient resource utilization and maritime network slicing plugin

for the NEMO Meta-OS.

In addition, NEMO introduced Open Call #2 in the framework of which the finalized NEMO integrated

framework will be further validated, as the NEMO Open Call #2 projects will utilize the NEMO meta-

OS functionality supporting the various use cases realized by the 3rd parties.

The rest of the chapter provides a brief description of the NEMO Open Call #1 projects’ technical

concept and describes the integration details of each technical solution developed as a NEMO meta-OS

architecture extension.

3.2.1 ARGO

The ARGO project, standing for "Augmented Reality next Generation Operational Systems in NEMO",

is a pioneering initiative designed to align seamlessly with the objectives and scope of the Next

Generation Meta Operating System (NEMO) program. The motivation behind ARGO's proposition lies

in its integration with the NEMO architecture, enhancing the existing framework with innovative AR

solutions. At the core of ARGO is the integration of NEMO's flexible meta-architecture with specialized

AR devices, such as the Vuzix M4000 and Vuzix Shield, and the backend support system of the AR

devices. These lightweight, monocular, and binocular AR glasses are designed for prolonged industrial

use, offering immersive experience without compromising user comfort during full-shift operations.

ARGO’s target is to enhance industrial efficiency, safety, and training using advanced AR technology.

The ARGO system has been already deployed on the NEMO provided development environment in

OneLab and preliminary tests of the system on the premises of the Foundation of the Hellenic World

(FHW) in the context of Smart Media/ City & XR Living Lab were conducted.

3.2.2 CorMOS

The CorMOS Orchestration Engine is a specialized software component developed to facilitate the

deployment of applications to appropriate cluster nodes based on user-defined requirements, goals, and

intents. The functionality of this software component relies on data stored in a JSON file that captures

the application’s or users' goals/intents in a platform-independent way, along with a YAML file that

specifies the internal components of the application, their interactions, and additional resource

constraints. The CorMOS Orchestration Engine further analyses the data in the JSON file and updates

the YAML file with the appropriate instructions (e.g., node selectors and/or affinity rules) to ensure that

the components of the application are deployed to the correct nodes of the cluster, thus achieving user

goals such as performance optimization and efficient resource utilization. Moreover, the CorMOS

developed Telemetry Data Management system focuses on a few parameters of particular interest that

directly affect the behavior of the CorMOS Orchestration Engine.

The CorMOS orchestration engine will be integrated with the NEMO architecture and its logical

placement would be within or alongside the Meta-Orchestrator (MO). The Meta-Orchestrator plays a

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 33 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

critical role in coordinating workload execution, deployment, and migration across the IoT-Edge-Cloud

continuum. Given its pivotal function, the CorMOS Orchestration Engine could interact with key

NEMO components to ensure seamless integration and to leverage the platform’s existing capabilities

effectively. From an architectural standpoint, the CorMOS Orchestration Engine should be positioned

as a high-level component within the orchestration layer. This placement would allow it to either extend

the Meta-Orchestrator (MO) functionality while serving as the decision-making hub for workload

execution in context-specific infrastructures and environments. To achieve optimal orchestration, the

CorMOS Orchestration Engine should retrieve information from various monitoring, networking,

security, and policy enforcement components, ensuring that workload placement and execution are

conducted in an intelligent, secure, and resource-efficient manner.

3.2.3 Eros4NRG

Eros4NRG is a platform designed to monitor and analyse energy production and consumption, enabling

more efficient decision-making through predictive analytics. It acts as a one-stop-shop (OSS) for energy

stakeholders by integrating data from electric vehicles (EVs), EV charging stations, photovoltaic (PV)

plants, and smart headquarters. The platform enhances trust and transparency in energy data, while

addressing key challenges such as: (i) Unreliable data from IoT sources impacting machine learning

operations; (ii) poor organization of static energy data leading to information loss; and (iii) the need for

user-friendly AI/ML insights for non-technical stakeholders.

Eros4NRG’s final integration is guided by a set of clear functional and non-functional requirements,

ensuring that the system operates efficiently across modern cloud-native infrastructures (such as MinIO,

PostgreSQL, and Docker). Designed with a service-oriented architecture, the platform enables

streamlined data collection, processing, visualization, and security. The Eros4NRG project relies on

extracting raw data from EMOTION and ASM Terni systems via API calls. This continuous stream of

data enables the platform to monitor and analyse energy consumption and production, as well as EV

battery performance in (near) real time. The module starts by sending API requests to the EMOTION

and ASM Terni systems. Building on the final integration, Eros4NRG will undergo several

enhancements and additions to maximize its potential and improve user experience.

3.2.4 Genesys

GENESYS project aims to extend NEMO's scope and technology by porting the meta-operating system

on a new IoT Edge device, fully customisable and industry-ready, developed by SWHARD. Targeting

the Industry 5.0 and G-IoT paradigms, aligned with the NEMO Smart Manufacturing & Industry 4.0

Use Cases & Living Lab, the project's primary goal is to install NEMO on an industrial-grade System-

on-Module (SOM), delivering a functional product while providing extensive documentation for

seamless installation on Edge platforms.

FLEX is categorised as a micro-edge system. Conventionally, the purpose of this class of edges is to

collect data from field sensors, do some light pre-processing and transfer aggregated information to the

cloud. Despite the low resources available (by definition), the expected average workload for the CPU

is usually very low in a common edge-cloud design.

In NEMO’s perspective the micro-edge is a cluster node which still serves the two purposes above.

Being part of the cluster, it will also provide processing power not only for the elaboration of its “own”

sensors, but for other tasks. The Meta-Orchestrator is responsible to decide, deploy and monitor the

tasks to be run in every node, including the micro-edges. This concept leads to a greater optimization of

all the available resources in the cluster.

Following the MVP implementation of the Genesys framework, the successful porting of the Software

components required to let the FLEX enter the NEMO META-OS ecosystem, is the keystone of

GENESYS. Although the work has not yet demonstrated with a real application, the FLEX nodes have

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 34 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

been successfully joined the test cluster, ran a simple application and a set of benchmarks. A side activity

that has been done was the test of the integration of Coral NPU into the cluster.

3.2.5 MARINEMO

The MARINEMO Slice Manager Plugin (SMP) is designed as an add-on for 5G-enabled cellular

networks, its main purpose being to efficiently optimize the communication resources of the targeted

systems by applying AI/ML-powered intents for slicing and user profile reconfigurations.

The API Engine of the Slice Manager Plugin facilitates external interactions, providing a crucial

interface for third-party systems to influence and monitor the network's behaviour. It offers APIs for

defining testbed-specific operational parameters, alerting mechanisms, and performance analysis. This

component not only enhances the plugin’s adaptability to different environments but also ensures that it

can serve a broad range of use cases from operational adjustments to detailed performance analytics.

Regarding the Slice Manager Plugin integration points, the plugin needs to be connected to testbed-

specific agents for network API exposure and performance monitoring. Specifically, the MARINEMO

Slice Manager Plugin will be integrated within META-OS ecosystem through the Telefonica Private 5G

testbed and its Cumucore 5G Core Network APIs. Furthermore, the SMP will be instantiated on top of

a container orchestration platform, more specifically, the OneLab Kubernetes cluster.

Τhe MARINEMO SMP will be deployed on the META-OS Kubernetes-based virtualization platform

by following the next steps.

• Access to the Kubernetes cluster for testing the plugin - for testing and validating the SMP

interactions with the META-OS APIs the plugin docker-based container will be directly

deployed on the NEMO Kubernetes cluster. Access to the META-OS Docker Hub repository -

for testing and validating the deployment capabilities of the NEMO META-OS platform, access

to the META-OS Docker Hub repository will be used for uploading the SMP docker image and

instantiating the container on the Kubernetes cluster by running the META-OS Gitlab CD

scripts.

• Access to the Gitlab META-OS repository for complete CI/CD - for testing and validating the

complete CI/CD capabilities of the META-OS platform, access to the project-related Gitlab

repository will be used for uploading all the SMP source code and running the CI scripts for

creating the plugin docker image and the CD scripts for instantiating the container on the

Kubernetes cluster.

3.2.6 MetaFOX

The MetaFOX project8 is an advanced automated machine learning (AutoML) component, which

significantly simplifies the initial model creation within NEMO META-OS by automating the process

of model selection, feature engineering, and hyperparameter tuning. AutoML is a transformative

approach that simplifies complex machine learning processes, enabling both experts and non-specialists

to design and deploy models efficiently. MetaFOX uses the power of automation in machine learning

to streamline model development, enhance the quality of models, and democratize AI accessibility. It

significantly simplifies the initial model creation for federated learning (FL) and transfer learning (TL)

by automating the process of model selection, feature engineering, and hyperparameter tuning.

The MetaFOX solution, when deployed on Kubernetes, consists of a collection of components running

in separate Pods, each governed by Deployments that handle the creation and scaling of these Pods.

Services provide stable network endpoints for communication within the cluster, while Persistent

Volumes (PVs) and Persistent Volume Claims (PVCs) ensure the durability of data for stateful

components. In the context of the deployment, Minikube was used as the Kubernetes environment on a

8 https://metafox.readthedocs.io/en/latest/

https://metafox.readthedocs.io/en/latest/

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 35 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

dedicated Linux server, providing a local cluster suitable for both development and production-like

evaluations.

Preliminary integration tests were conducted achieving a successful deployment providing for early

validation of the component’s compatibility with OneLab’s infrastructure. The successful deployment

carried out has provided sufficient evidence of the MetaFOX component’s compatibility with the

OneLab environment. These results support the feasibility of full-scale integration, and they lay the

groundwork for further testing and optimization. Future work will focus on consolidating these findings

into a robust deployment procedure tailored for OneLab.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 36 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

4 NEMO Service Management Layer updates

This section reports the latest specifications and design options for the NEMO components of the

Service Management layer in the NEMO architecture. These components provide middleware between

core NEMO functionality and workloads but also end users. They support ZeroOps principles and

expose interfaces to external entities (services or users). Moreover, the supported services include

Lifecycle Management and DLT-based accountability of workload or infrastructure usage and

collectively contribute to NEMO openness and adoption by third parties, referring to application or

infrastructure owners, as well as developing entities.

4.1 Intent-based Migration Controller

4.1.1 Overview

The Intent-based Migration Controller (IBMC) is responsible for orchestrating the seamless transfer of

workloads across the IoT, Edge, and Cloud Continuum. Rather than relying on manual configurations,

it uses intent-based networking to automatically interpret high-level objectives and translate them into

concrete migration actions. This allows the system to adapt to changing conditions, ensure efficient use

of resources, scale effectively, and uphold service reliability. The IBMC’s role is essential in managing

the highly dynamic and distributed nature of the meta-OS environment.

4.1.2 Architecture

The IBMC architecture is represented in Figure 16, which follows the hierarchical structure of the Open

Cluster Management (OCM) HUB-managed cluster9. The key sub-components that make up this

architecture are described below:

• Ibmc-controller: This component serves as the entry point for initiating the workload migration

process. Upon receiving a new intent from the Intent-Based API, the ibmc-controller checks the

current workload status and determines whether it complies with the specified intent parameters.

If any of these parameters are not satisfied, the controller selects a suitable target cluster from

the list of available managed clusters and sends a migration trigger message to the ibmc-agent

deployed in the selected cluster.

• Ibmc-agent: The ibmc-agent functions as a black-box component responsible for executing the

actual migration process. Each cluster runs its own ibmc-agent, which listens to a dedicated

RabbitMQ queue for incoming migration messages. When a message arrives at the source

cluster, the corresponding ibmc-agent initiates a backup of the specified workload using

Velero10. Upon successful completion of the backup, a message is sent to the target cluster,

where the local ibmc-agent receives the message and proceeds to restore the workload

accordingly.

• Velero: Velero is a key technology in the workload migration process, as it is deployed across

all clusters and ensures that workloads can be efficiently backed up and restored, enabling

seamless transitions between clusters. Its integration into the migration workflow allows for

consistent data protection and minimizes downtime during migrations.

• Rook Ceph: Rook Ceph11 is used as an S3-compatible object store for Velero, providing reliable

and scalable storage for backup data. By integrating with Velero, Rook Ceph ensures that

9 https://open-cluster-management.io/docs/concepts/architecture/
10 https://velero.io/
11 https://rook.io/docs/rook/latest/Storage-Configuration/Object-Storage-RGW/object-storage/

https://open-cluster-management.io/docs/concepts/architecture/
https://velero.io/
https://rook.io/docs/rook/latest/Storage-Configuration/Object-Storage-RGW/object-storage/

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 37 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

workload snapshots and metadata are securely stored and readily available for restoration during

migration processes.

Figure 16. IBMC Architecture

Figure 17, depicts the sequence diagram that concerns the NEMO workload migration process. The

corresponding integration and validation test are presented in section 5 of the document.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 38 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

4.1.3 Interaction with other NEMO components

Figure 17. Migration Sequence Diagram

1. The Intent-API publishes in the ‘notify’ Rabbitmq queue an Intent with one or more

requirements (Availability, GreenEnergy, CPU, Memory etc).

2. The ibmc-controller retrieves workload status from the Intent-API.

3. The ibmc-controller retrieves from the MO the information related to each of the managed

clusters.

4. If the workload is already deployed in any cluster and the intent requirements are not met, then

a migration action is triggered.

5. A new target cluster that complies with the intent requirements is selected from the available

Managed Clusters list.

6. The ibmc-controller sends a message via RabbitMQ queue to the ibmc-agent containing the

workload ID and the selected target cluster.

7. A backup is created with all of the workload associated resources and it is uploaded to the Rook

Ceph S3 Bucket located in the HUB cluster.

8. When the backup is completed, a message is sent to the target cluster’s ibmc-agent to continue

with the migration process.

9. The backup is restored in the target cluster, creating all the workload resources.

10. A message is sent to the MO notifying about the workload migration completion.

11. The MO updates the corresponding Manifestwork so that it matches the new workload

deployment status.

12. A similar message is sent to the Intent-API updating the workload status, specifying the cluster

where it has been deployed.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 39 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

4.1.3.1 Meta-Orchestrator (MO)

The IBMC integrates with the MO primarily to gather cluster-related data and coordinate migration

execution. The ibmc-controller queries the MO to retrieve up-to-date information about all managed

clusters, which it uses to evaluate compliance with intent requirements. After a migration is completed,

the ibmc-agent notifies the MO, which then updates the ManifestWork to reflect the workload’s new

deployment state.

4.1.3.2 Intent-Based API

The Intent-Based API maintains all information related to deployed workloads and is responsible for

creating and managing the intents that initiate workload migrations. When a migration is triggered, the

intent’s requirements are used to identify the new target cluster, which must meet all specified criteria.

Upon completion of the migration, the ibmc-agent sends a notification to the Intent-API, updating the

workload’s status, including the new cluster where it has been deployed. This ensures that the Intent-

API remains synchronized with the latest workload deployment state.

4.1.3.3 MNCC

The notify queue to which the ibmc-controller listens, is also used for the L2S-M network creation

process which also relies on Intents. The creation of these networks, like workload migrations, is

triggered by specific intent requirements. For more details, refer to Section 5.2.

4.1.3.4 CFDRL

The CFDRL uses machine learning and relies on trained models to detect the sub-optimal workload

operation, leading to the triggering of the workload migration. When this occurs, the CFDRL sends the

required information to the IBMC, in order perform the migration.

4.1.4 Conclusion

The IBMC, has completed its functionality implementation and has been successfully integrated with

the other components, including MO, Intent-Based API, mNCC, and CFDRL. This integration enables

the IBMC to support seamless workload deployment and migration across the IoT-to-Edge-to-Cloud

continuum, maintaining operational efficiency within the dynamic meta-OS environment.

The functionality of the Intent-Based Migration Controller (IBMC) has been significantly extended to

support intelligent redeployment decisions driven by dynamic, user-defined intents. This enhancement

enables the IBMC to continuously monitor the operational environment and autonomously evaluate

incoming intents, which encapsulate high-level objectives such as performance optimization, energy

efficiency or latency reduction requirements.

The addition of this intent-driven redeployment logic marks a shift toward a more proactive and adaptive

control mechanism within the meta-OS framework, ensuring that service delivery remains aligned with

evolving user needs and operational constraints.

The IBMC is deployed across the NEMO pilots’ infrastructures, where it will be validated through pilot-

specific use cases to demonstrate the IBMC’s potential to enhance service continuity and resource

efficiency in complex, distributed computing environments.

4.2 Plugin & Applications Lifecycle Manager

The Plugin & Applications Lifecycle Manager (LCM) is a flexible and unified solution for managing

plugins and applications across the NEMO ecosystem. Acting as the interface between NEMO users

and the system, the LCM enables on-demand deployment of workloads (services, applications, and

plugins) within the NEMO environment.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 40 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

While workloads operate on the NEMO meta-OS, an event-driven system continuously monitors key

performance metrics. Simultaneously, a dedicated security controller tracks security-related events,

alerts users to anomalies, and takes proactive steps to mitigate potential cyber threats.

The LCM’s user interface is designed to integrate seamlessly with other core NEMO components - such

as the Intent-based API, PPEF, MOCA, and CMDT - delivering unified and intuitive user experience.

It provides access to features including user profile management, workload deployment and monitoring,

security oversight, and historical data analysis, all tailored to specific user roles of NEMO ecosystem.

4.2.1 Architecture

The LCM comprises of a set of subcomponents namely the LCM CD, LCM Controller, Security

Controller, Event-based Response, LCM Repository and LCM Dashboard.

The final LCM high-level architecture of NEMO meta-OS is depicted in the development view diagram

in Figure 18. In brief, the software components that make up the LCM module are the following.

LCM CD is based on ARGO CD framework [17] [18] [19] to manage NEMO workloads provided by

NEMO partners or NEMO Open Call participants and deploys workloads in S3 bucket container.

LCM Controller is a control mechanism that facilitates communication between LCM submodules and

the NEMO ecosystem, offering endpoints for sending and receiving information.

Security Controller handles runtime security monitoring of NEMO workloads, notifying both users

and relevant NEMO components of detected events.

Event-based Response module is designed to implement automated actions in response to events

initiated by user input or detected by other NEMO components.

LCM Repository is used to store data related to workload lifecycle, security incidents, detected events

and other workload related information to provide historical analysis and runtime statuses.

LCM Dashboard serves as the gateway between end-users and the NEMO meta-OS ecosystem,

granting privileged users access to manage their workloads and monitor both performance and security.

Figure 18. LCM high-level architecture

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 41 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

4.2.1.1 LCM Repository

LCM Repository uses Elasticsearch12 for storing, searching, and analysing data provided by various

NEMO components like Intent-based API, PPEF, MOCA and CMDT. Elasticsearch provides fast search

responses and comes with extensive REST APIs for storing and searching the data. Stored data include

the status and lifecycle of the workloads, security events detected, workload performance and resource

usage.

4.2.1.2 LCM Visualization

LCM Visualization serves as the primary interface of the NEMO ecosystem, offering tailored tools for

each user role to manage workloads and resources within the NEMO meta-OS and monitor activities.

Its goal is to deliver an intuitive and seamless experience across the NEMO ecosystem, catering to both

advanced users and those with less technical expertise. The interface presents relevant information about

the workload lifecycle, usage, and security of workloads and resources in a clear, concise format, with

multiple levels of detail (e.g., workload, resource, user, and system views). Detailed explanation of the

LCM views were provided in section 2.2, as part of the 3rd party documentation and are also described

extensively in the context of section 5.

4.2.2 Conclusion

The LCM component has been successfully integrated into the NEMO ecosystem, deployed in OneLab

environment, providing features that include:

• Workload lifecycle management and monitoring

• Resources provisioning and usage monitoring

• Security/vulnerability scanning and monitoring

• Visual interface for experienced and non-experienced users

The final result offers seamless workload deployment and monitoring through an intuitive interface.

4.3 Monetization and Consensus-based Accountability

4.3.1 Overview

The Monetization and Consensus-based Accountability (MOCA) component lies at the heart of

NEMO’s pre-commercial ecosystem, providing a secure, transparent, and equitable framework that

enables both resource providers (offering compute, storage, network, or data) and service consumers to

seamlessly earn and spend “credits” across the AIoT–Edge–Cloud continuum. As the backbone of

NEMO’s Resource-as-a-Service (RaaS) marketplace, MOCA guarantees timely, accurate reward

settlement for providers and precise billing for consumers, all underpinned by a tamper-proof audit trail

maintained on a distributed ledger.

Since the previous deliverable, D4.2, significant progress has been made to expand MOCA's capabilities

and refine its functionalities. Key advancements include:

• Smart Contract Deployment Tool: Implementation of a dedicated tool to streamline the

deployment and management of smart contracts utilized by MOCA.

• ML-as-a-Service (MLaaS) Smart Contract: Development and deployment of a specific smart

contract tailored for the accounting and monetization of Machine Learning services offered and

consumed via the NEMO platform.

• Enhanced Reward Mechanisms: Introduction of more sophisticated smart contract

functionalities to accurately reward service providers based on various contribution factors.

12 https://www.elastic.co/elasticsearch

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 42 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

• Network Resource and Data Monetization: Extension of the MOCA framework to encompass

the accounting and potential monetization of network resources and data assets within the

NEMO ecosystem.

These enhancements aim to increase MOCA's flexibility, broaden the scope of monetizable resources

and services, and support more complex business models emerging within the NEMO continuum,

further solidifying its role in facilitating a trustworthy Resource-as-a-Service (RaaS) marketplace.

4.3.2 Architecture

MOCA’s architecture has been described in detail in D4.2. In the current document, there is one notable

addition to the component’s architecture, namely the Smart Contract Deployment Tool. In Figure 19

the updated architecture diagram for MOCA is depicted. The Smart Contract Deployment Tool is

responsible for allowing the users to upload their own contracts to the Smart Contracts component and

allow them to enhance the tool with new accounting logic.

Regarding the workflow presented in the deliverable D4.2, it remains the same without any major

changes. The component can be accessed through the Event Server’s REST API, to comply with the

original component architecture, where the Event Server acts as the main communication interface with

the rest of the MOCA sub-components.

Figure 19. MOCA architecture

4.3.3 Interaction with other NEMO components

The interactions of the MOCA component with other NEMO components have remained the same as

presented in deliverable D4.2. However, for consistency, in Figure 20 an updated version of the

integration diagram is provided including the Smart Contract Deployment Tool subcomponent.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 43 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 20. MOCA integration diagram

4.3.4 Results

In deliverable D4.2 the initial set of MOCA’s features and capabilities were described; in this document

the vastly expanded accounting capabilities of the component are presented. Initially, MOCA utilized a

set of smart contracts to perform the necessary calculations of the rewards and costs in the NEMO

continuum, namely (a) NemoTokenEstimation, (b) NemoFunds, (c) InfrastructureOwnerModel and (d)

ServiceProviderModel. In addition to these smart contracts, MOCA was enriched with supplementary

calculation methods that enhanced its versatility, such as:

• Calculate the costs of network usage of a workload

• Calculate the costs of the Machine Learning workloads

• Allow the users to upload a dataset and reward them

• Apply cost deductions for workloads that run on energy efficient clusters

4.3.4.1 Network Resource Monetization

To calculate the network usage costs, a new smart contract, the NetworkUsageModel, Listing 1, has

been created to make the necessary cost calculations for a workload. It is worth noting that only the

workloads that are exposed through NEMO, with the usage of the ingress attribute, are subject to this

cost deduction. As an incentive, when the workloads with the ingress attribute enabled are registered,

MOCA rewards them with 5 additional tokens, apart from the initial 5 tokens for the registration. Every

workload which is deployed as an external service is given 5GBs of free network usage before they start

getting charged. Above this threshold, the workload is charged per GB consumed. The network usage

of a workload is calculated periodically by MOCA and it is defined as the sum of the transmitted and

received data of the workload.

NetworkUsageModel.sol

pragma solidity ^0.8.0;
import "./NemoFunds.sol";
contract NetworkUsageModel {
 NemoFunds public nemoFunds;
 uint256 constant MAX_FREE_NETWORK_USAGE = 500000000;

 uint256 constant CHARGE_PER_GB = 10000000;
 struct NetworkMetrics {
 string serviceId;
 string clusterId;
 uint256 networkUsage; // in GB
 }
 event NetworkComputeTokens(
 string serviceId,
 string clusterId,
 uint256 networkUsage,

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 44 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

 uint256 tokens
);
 constructor(address _nemoFundsAddress) {
 nemoFunds = NemoFunds(_nemoFundsAddress);
 }
 function computeCredits(NetworkMetrics memory _metrics) public {
 require(
 nemoFunds.isCustomerRegistered(_metrics.serviceId),
 "The service is not registered!"
);
 uint256 _networkUsage = _metrics.networkUsage;
 uint256 _tokens = 0;
 if (_networkUsage > MAX_FREE_NETWORK_USAGE) {
 _tokens =
 ((_networkUsage - MAX_FREE_NETWORK_USAGE) * CHARGE_PER_GB) /
 10 ** 8;
 }
 nemoFunds.makeTransaction(
 _metrics.serviceId,
 _metrics.clusterId,
 _tokens
);
 emit NetworkComputeTokens(
 _metrics.serviceId,
 _metrics.clusterId,
 _networkUsage,
 _tokens
);
 }
}

Listing 1. The NetworkUsageModel smart contract details

4.3.4.2 ML-As-A-Service (MLaaS)

NEMO supports the deployment of Machine Learning models, which usually require GPU power to

perform efficiently processing intensive processes such as the training of a large model. In this context,

it was vital to offer a smart contract dedicated to the use of GPU resources, MLModel, Listing 2. The

NEMO continuum offers GPUs with time slicing enabled, which allows for multiple jobs to be executed

in parallel simultaneously. Therefore, to accurately calculate the usage cost for a Machine Learning

workload, it was important to consider, except for the GPU percentage that has utilized, also the time it

had reserved that particular resource. Another crucial aspect that was used for the MLaaS was the

deployment cost of such infrastructure based on socioeconomic factors.

MachineLearningModel.sol

pragma solidity ^0.8.0;

import "./NemoTokenEstimationSetupContract.sol";

import "./NemoFunds.sol";

contract MachineLearningModel {

 NemoTokenEstimationSetupContract public nemoTokenEstimationSetup;

 NemoFunds public nemoFunds;

 address public owner;

 uint256 public gpuRate;

 // Number of seconds per hour

 uint256 constant SECONDS_PER_HOUR = 360000000000;

 struct MachineLearningMetrics {

 string serviceId;

 string clusterId;

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 45 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

 string region;

 uint256 gpuUtil;

 uint256 allocatedTime;

 uint256 usageFraction;

 }

 event MachineLearningComputeTokens(

 string serviceId,

 string clusterId,

 string region,

 uint256 gpuUtil,

 uint256 tokens

);

 constructor(

 address _nemoTokenEstimationSetupContractAddress,

 address _nemoFundsAddress

) {

 nemoTokenEstimationSetup = NemoTokenEstimationSetupContract(

 _nemoTokenEstimationSetupContractAddress

);

 nemoFunds = NemoFunds(_nemoFundsAddress);

 }

 modifier checkRegionData(string memory region) {

 require(

 nemoTokenEstimationSetup.isRegionSet(region),

 "Data for region must be set before calling this function."

);

 _;

 }

 function computeCredits(MachineLearningMetrics memory _metrics) public {

 (uint256 _regionalGpuCosts) = nemoTokenEstimationSetup.getRegionGpuInfo(

 _metrics.region

);

 string memory _serviceId = _metrics.serviceId;

 string memory _clusterId = _metrics.clusterId;

 uint256 _tokens = 0;

 _tokens =

 ((_metrics.allocatedTime * _metrics.usageFraction) /

 SECONDS_PER_HOUR) +

 _regionalGpuCosts;

 nemoFunds.makeTransaction(_serviceId, _clusterId, _tokens);

 emit MachineLearningComputeTokens(

 _metrics.serviceId,

 _metrics.clusterId,

 _metrics.region,

 _metrics.gpuUtil,

 _tokens

);

 }

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 46 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

}

Listing 2. The MachineLearningModel smart contract details

4.3.4.3 Data Monetization

One of the rapidly increasing aspects of the AI/ML domain is dataset sharing. In this context, MOCA

provides a monetization mechanism of data for NEMO users. MOCA’s Event Server allows the upload

of datasets for 3rd party users to utilize them on their own applications. In return, the dataset provider is

rewarded with 10 tokens. The datasets are stored in an internal S3 bucket that is accessible through

MOCA’s API. In Figure 21 the endpoint related to the dataset’s uploading is presented along with the

payload fields required, while on Listing 3 the details of the related smart contract are shown.

Figure 21. Example of deploying dataset

DataModel.sol

pragma solidity ^0.8.0;

contract DataModel {
 struct DataInfo {
 string dataId;
 string dataType;
 string description;
 string metadata;
 string endpoint;
 }

 event DataComputeTokens(string dataId, uint256 tokens);

 function computeCredits(DataInfo memory _info) public {
 uint256 _tokens = 0;

 _tokens = 1000000000;

 emit DataComputeTokens(_info.dataId, _tokens);
 }
}

Listing 3. The DataModel smart contract details

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 47 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

4.3.4.4 Green Energy rewards

In this version of MOCA, we have also incorporated a rewarding mechanism for the workloads that run

on “green” clusters. A workload that runs on a green cluster will receive a reduction to their resource

usage costs, depending on the percentage of green energy supported by the infrastructure. This method

aims to give incentive to the workload owners to prefer green deployment clusters, so that:

1. They reduce their workload costs and

2. Indirectly, they help with making the NEMO continuum more energy efficient.

The ServiceProviderModel smart contract was modified appropriately to consider the green energy

percentage of the deployment platform. Annex 3 – ServiceProviderModel provides the details of the

contract.

4.3.4.5 Smart Contracts Deployment Tool

Another major addition to the MOCA component is the Smart Contracts Deployment Tool. This sub-

component allows the users to upload their own smart contracts in the private Quorum blockchain used

for the contract deployment. In this way, the users can interact easily with the blockchain, customize

and test MOCA with their own smart contracts, implementing different approaches in the accounting

logic. Figure 22 demonstrates a simple example of the body of the request to upload the contract. The

user only needs to provide their smart contract.

Figure 22. Example of contract deployment

4.3.5 MOCA Business Models

The MOCA component, as mentioned earlier in this document, is not a business model by itself but

rather a foundational enabler for a variety of business models within the NEMO ecosystem. It establishes

a transparent, automated, and fair marketplace for resources and services across the AIoT-Edge-Cloud

continuum. The core of MOCA's design facilitates a "credits" or "tokens" based economy, where

contributions are rewarded and consumption is billed, all managed via smart contracts on a distributed

ledger.

The primary business models MOCA enables can be viewed from the perspective of different

stakeholders:

4.3.5.1 Resource-as-a-Service (RaaS) for Providers:

• Computing Resource Monetization: Infrastructure owners (as per

InfrastructureOwnerModel) can offer their computing resources (CPU, RAM) and get rewarded

based on usage by service providers (as per ServiceProviderModel). MOCA's smart contracts

ensure accurate accounting and reward distribution.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 48 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

• Network Resource Monetization: Providers offering network access can monetize this,

especially for workloads requiring external exposure (as per NetworkUsageModel). The model

incentivizes initial free usage, then charges per GB, creating a clear value proposition.

• Specialized Hardware Monetization (e.g., GPUs for MLaaS): Owners of specialized

hardware like GPUs can offer these for Machine Learning (ML) workloads (as per

MachineLearningModel). MOCA allows for nuanced billing based on GPU utilization,

allocated time, and even regional cost differences, enabling a viable ML-as-a-Service (MLaaS)

model.

• Data Monetization: Entities possessing valuable datasets can make them available on the

NEMO platform (as per DataModel). They are rewarded with tokens when their data is accessed

or utilized, creating a marketplace for data itself.

• Incentivizing Green Energy: Resource providers utilizing green energy sources can offer their

infrastructure at potentially premium rates or benefit from NEMO's reward mechanisms (as seen

in the ServiceProviderModel modifications for green energy rewards), encouraging sustainable

practices and creating a niche market.

4.3.5.2 Pay-As-You-Go (PAYG) & On-Demand Services for Consumers:

• Flexible Resource Consumption: Service developers and end-users can consume various

resources (compute, network, ML processing, data) on-demand without significant upfront

investment. They are billed transparently through MOCA based on their actual usage.

• Access to Specialized Services: Consumers can readily access and pay for specialized services

like MLaaS or specific datasets, fostering innovation and reducing barriers to entry for

developing complex applications.

• Cost Optimization: Incentives for using green clusters, along with tiered pricing models (e.g.,

free initial network usage), enable consumers to reduce and optimize their operational costs.

4.3.5.3 Custom Business Logic via Smart Contract Deployment:

• Extensible Monetization Schemes: The Smart Contract Deployment Tool (Section 4.3.4.5) is

a crucial enabler for novel business models. It allows NEMO users (providers or even third-

party integrators) to deploy their own smart contracts with custom accounting and monetization

logic. This opens the door for:

o Subscription-based models.

o Revenue-sharing agreements.

o Usage-tier based pricing is not natively covered by default MOCA contracts.

o Loyalty programs or bundled service offerings.

• Fostering a Broader Ecosystem: This flexibility allows the NEMO marketplace to adapt and

evolve, accommodating new types of resources or service delivery models as they emerge,

driven by the community or specific enterprise needs.

In essence, MOCA aims to create a vibrant, self-sustaining economic ecosystem. It empowers resource

providers to generate value from their assets and service consumers to access these assets efficiently and

transparently. The extensibility offered by custom smart contract deployment ensures that the business

models operating within NEMO can evolve and diversify over time. The distributed ledger technology

underpinnings provide the trust and auditability necessary for such an ecosystem to thrive.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 49 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

4.4 Intent-based SDK/API

4.4.1 Overview

Intent-based SDK/API (IBA) is the interface of NEMO to third party interactions, with the finetuning

of this component being continuous to incorporate new features as the project progresses. To this end,

several activities towards the finalization of the Intent-based SDK/API were carried out since the

delivery of deliverable D4.2. These activities can be divided into two categories, a) the integration

related activities, and b) core optimization activities that enhance the existing functionalities of the tool.

4.4.2 Architecture

The Intent Based API was developed in a microservices oriented architecture aiming to a high-

availability and highly scalable system. The current architecture, Figure 23, demonstrates the IBA

subcomponents as well as their interaction with other NEMO components. This allows a fast and easy

integration of new components without major modifications in the entire IBA system, just only in the

specific subcomponent that interacts with the newly introduced NEMO component. An example of this

architecture will be presented in the subsequent subsections with the integration of mNCC to IBA.

Figure 23. Final Architecture diagram of Intent-Based API

4.4.3 Interaction with other NEMO components

The activities related to the Intent-based SDK/API in the 2nd integration phase of the project are mainly

focused on the integration between IBA and other NEMO components. As described in the Sub-section

4.4.2, Intent-based SDK/API is located at the front-frontier of the NEMO framework, meaning that it is

the main input of the information used by the NEMO components. In this context, IBA is participating

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 50 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

in many integration pipelines which are described in Section 5. The related work carried out involved

the integration with Meta-Orchestrator’s components, such as the IBMC and the

deployment/undeployment components. In this integration pipeline, new message exchanging queues

were created, while the existing ones were updated to house the needs of the new features presented by

the Meta-Orchestrator as well as to provide the maximum optimization for the deployment of workloads.

In addition, several integration actions were performed to incorporate IBA with NEMO Access Control

component. This was of paramount importance as it allows the use of IBA from external parties that are

located outside of the NEMO ecosystem, e.g., a service in an external cluster. In terms of workload

management, several modifications were made regarding the IBA-CMDT interactions. More

specifically, the work carried out was focused on the integration of Linkerd13 into the features of IBA to

be able to handle all the states of a workload, such as creation, deployment, running status and

termination by adding the necessary annotations to the generated manifest file, Listing 4. Finally, is the

integration of IBA with the networking components (mNCC & L2S-M) of NEMO. For this integration

pipeline, severe modifications were required at the IBA. A new endpoint was created to handle the new

Intent request along with the related Intent, Annex 1, and its validator. As for the communication

pipelines for inter component communication, several RabbitMQ channels were created to allow the

communication and state management of the network slices from the IBA, Listing 5.

def set_linkerd_injection(manifests: List[Dict[str, Any]]):

 for manifest in manifests:

 if manifest['kind'] in ['Deployment', 'StatefulSet', 'DaemonSet']:

 annotations = manifest.get('spec', {}).get('template', {}).get('metadata', {}).get('annotations', {})

 annotations['linkerd.io/inject'] = 'enabled'

 elif manifest['kind'] in ['Pod']:

 if 'metadata' not in manifest.keys():

 manifest['metadata'] = {}

 if 'annotations' not in manifest['metadata'].keys():

 manifest['metadata']['annotations'] = {}

 manifest['metadata']['annotations']['linkerd.io/inject'] = 'enabled'

 return manifests

Listing 4. Function used for annotating Manifests

nemo.rabbitmq INFO 2025-03-27 14:53:59,245 rabbitmq [x] Sent to mncc, routing_key=mncc.ibs, message:

{"workload": "61edb162-1d52-4e4d-8b55-275187a780ba", "pod": {"labels": {"l2sm": true, "l2sm/app": "[parameter]"},
"annotations": {"l2sm/networks": "spain-network"}, "env": {"DNS_NAME": "[parameter].spain-network.inter.l2sm"}}}

Listing 5. RabbitMQ communication channel with mNCC and sample payload

On the other hand, apart from the integration related development of IBA, several developments for

enhancing both the User and the intra-service interfaces were done. Firstly, a lifecycle event monitoring

subcomponent was created to better handle the state of the workloads, Annex 2. This was a crucial

feature as it allows the end-user to have knowledge of each state of a workload that is passed through

the Graphic User Interface. Then, the user can understand if his workload has been initiated, running or

terminated. In case an error occurs, the user can retrieve the information related to that failure in a user-

friendly way. Another enhancement that took place in the 2nd integration phase was related to the MOCA

component. As the service’s needs changed some of the MOCA’s endpoints got deprecated and later

13https://linkerd.io/

https://linkerd.io/

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 51 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

removed from the IBA-MOCA integration pipeline as this was reported in deliverable D4.2. In addition,

as the project progresses and based on the iterative Quality Assurance process employed in NEMO as

well as the integration process a minor number of bugs along with service improvements were identified.

To tackle these newly identified needs, IBA enhanced its existing toolset by presenting new endpoints

for housing the needs of a modern microservice. Moreover, the need for specific information in Intents

needed for the evaluation and deployment of a workload, lead to the creation of use case specific Intents,

such as the Machine Learning Intent, Listing 6, that forces the workload to be deployed in a GPU

compatible cluster node.

Intent:

 Id: 'Intent_6'

 userLabel: 'MachineLearning'

 intentExpectations:

 - expectationId: '4'

 expectationVerb: 'DELIVER'

 expectationObject:

 objectInstance: '781052a5-4270-4113-847a-8730cdf55ba7'

 objectType: 'NEMO_WORKLOAD'

 expectationTargets:

 # How much VRAM is needed for the workload to run (in GB) -> will be evaluated by checking the available free VRAM
for the GPU

 - targetName: 'vram'

 targetCondition: 'IS_GREATER_THAN'

 targetValueRange: '10'

 intentPriority: 1

 observationPeriod: 60

 intentAdminState: 'ACTIVATED'

Listing 6. MachineLearning Intent sample

4.4.4 Conclusion

The Intent Based API was designed to be the interface between the Graphical User Interface or the 3rd

party User and the NEMO components. As mentioned in the previous subsections, IBA plays a pivotal

role within the NEMO architecture as it orchestrates the communication channels and is the initial point

for many crucial NEMO workload pipelines. Since the delivery of D4.2, IBA was enhanced with

functionalities introduced by other components as well as internal optimizations that guarantee the

efficient operation of NEMO. The workflow pipelines where the IBA participated in are described in

Section 5 of this document.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 52 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

5 NEMO scenario-driven verification & results

In this section the activities and tests performed towards a complete and integrated NEMO infrastructure

are presented. Apart from the WP4 tools’ integration activities, as presented in D4.2, for completeness

in this document also the integration pipelines related to WP2 and WP3 tools are presented. This section

aims to provide in a complete and coherent way the information regarding the tools’ interactions within

NEMO. As the NEMO framework consists of many tools one of the first critical issues was the testing

procedure. To solve this issue, a categorization of the tools took place based on sub-system

functionalities was selected. Through this system breakdown dedicated pipelines created focusing on

small and dedicated functions of the System.

Each scenario, as outlined in the subsequent subsections, focuses on a distinct operational aspect of the

NEMO meta-OS. The results presented herein provide empirical evidence of the platform's capabilities

and its readiness to support the diverse use cases envisioned within the NEMO project, highlighting

both successful integrations and areas for further refinement. The scenarios cover critical functionalities

including cluster registration, workload registration and provisioning, workload scheduling and

orchestration, workload lifecycle management, and integration activities stemming from WP3, such as

the Secure Execution Environment.

These dedicated integration pipelines provided several benefits in the integration procedure as the

integration, testing and optimization of the components based on specific functionalities made the entire

process easier and more robust, as well as aligning with the best practices of Software development

principles.

5.1 NEMO Cluster registration – resource provisioning

This section details the NEMO cluster registration scenario related activities undertaken. The integration

results as reflected in the cluster registration sequence diagram described in Figure 24 are presented

below.

Figure 24. Cluster registration sequence diagram

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 53 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

5.1.1 Verification scenario

Test 1: NEMO Cluster registration

Objective To verify the cluster registration process in NEMO that facilitates the resource provisioning

triggered by the NEMO partner (resource owner)

Components • LCM

• Intent-based API

• MO

• MOCA

• RabbitMQ

Features to be

tested

The feature that this scenario aims to test are the cluster registration process which is initiated by

the NEMO partner (cluster provider) through the LCM UI & Intent-based API. Then, the newly

registered cluster is added into the NEMO meta-OS ecosystem by the MO. The results (status) of

this process are then visualized to the user.

Test setup All the participating components were deployed in the NEMO meta-OS cloud/edge infrastructure

at OneLab (dev cluster 1).

Steps 1. Cluster registration through the LCM UI

2. Cluster registration message communication to MO

3. Cluster addition process by MO

4. Cluster status provisioning to RabbitMQ

5. Cluster status update visualization in LCM UI

5.1.2 Results

This section documents the process that is described in the scenario above step by step.

5.1.2.1 Cluster registration through the LCM UI

To register a cluster through the LCM UI, first, we go through the LCM UI home page to the “Resource

Provisioning” tab, Figure 25.

Figure 25. LCM home page

In the “Resource Provisioning” page, we have an overview of some basic details for the clusters, like

their ID, name, resources (CPU, RAM, disk, GPU), their deployment status and the endpoint they are

available at, as it is shown in Figure 26.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 54 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 26. Clusters overview page

When a user registers a cluster, they are prompted to fill in the form shown in Figure 27. The form

requires of the user to upload the configuration file of their cluster and fill in information like the name

of the cluster, its endpoint, the resources of the cluster, the availability percentage, its green energy

percentage and possible costs they want to apply to the workload that will be deployed on their premises.

Figure 27. Cluster registration form

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 55 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

5.1.2.2 Cluster registration message communication to MO

Once the submission form is completed correctly, LCM sends to NEMO the registration request (the

request is proxied through the Intent API). MOCA receives the request informs the Meta Orchestrator

of request, in order to join the cluster with the NEMO continuum. Until the join process is completed,

the cluster is saved with state “Pending”, Figure 28.

Figure 28. Cluster pending status

5.1.2.3 Cluster addition process by MO

Figure 29 shows the message from MOCA the Meta Orchestrator received. The message includes all

the information the user filled in in the registration form.

Figure 29. MOCA cluster registration message through RabbitMQ

5.1.2.4 Cluster status provisioning to RabbitMQ

Once the Meta Orchestrator has joined the cluster, it sends through RabbitMQ a message with the status

of the action. Since the process was completed successfully, the status returned is “ok”, Figure 30.

Figure 30. Meta-Orchestrator response

After receiving this message, MOCA continues to store the provided cluster configuration file and

register the cluster to the blockchain. Figure 30 provides some logs that show that both actions were

completed successfully. The file was stored in IPFS and can be retrieved, if necessary, with the produced

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 56 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

CID, a unique identifier of that file. IPFS here is used as an extra storage layer which guarantees that

any tampering attempts to the cluster configuration file will be easily detectable, as any changes to the

content will produce a new CID. Since the configuration file holds sensitive information, it is important

to ensure the integrity of the data. After this is completed successfully, the cluster is registered in the

blockchain. Figure 31 shows the details of the transaction.

Figure 31. Register cluster to blockchain

5.1.2.5 Cluster status update visualization in LCM UI

At the end of the process, MOCA updates the status of the cluster to “OK”. This is visible through the

LCM UI, as shown in Figure 32.

Figure 32. Updated cluster status

5.1.2.6 Results from meta-Orchestrator

In step 3, “Cluster addition process by MO,” MO receives the cluster joining request from the RabbitMQ

queue. After several communications between MO’s subcomponents, MO API registers the cluster if

the request is well formed and there is no error. Listing 7 presents an example of a joining request

payload that the MO is expecting to receive. If there is no error, the MO will send an ok message, Listing

8. Otherwise, if an issue has occurred, either syntactic error or connectivity related, with the request, the

MO returns an error, Listing 9. The error presented in Listing 9, error 409 is related to a joining request

for an existing cluster.

{

 "availability": "99.9%",

 "cluster_name": "test",

 "cost": "low_cost",

 "cpu_base_rate": 10,

 "cpus": 10,

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 57 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

 "green_energy": "20%",

 "id": "28aa341f-246d-4890-886b-79529d8e8b7e",

 "managed_api": "https://api.s2.nemo.onelab.eu:6443",

 "memory": 200,

 "memory_base_rate": 10,

 "storage": 300,

 "timestamp": "2025-02-04T10:37:55.640728Z",

 "vram": 1024

}

Listing 7. Joining cluster request payload

{

 "action": "join",

 "cluster_name": "test-cluster",

 "managed_api": "https://testing:6443",

 "operation_id": "4981421-test-join",

 "status": "ok",

 "timestamp": "2025-05-26T08:12:02+02:00"

}

Listing 8. Successfully joining request

{

 "action": "join",

 "cluster_name": "test_cluster",

 "error": "request failed: http request failed with status 409",

 "id": "4981421-test-join",

 "status": "error"

}

Listing 9. Error joining request

Finally, after the joining request succeeds, each cluster's metrics persist in the MO database. The metrics

used for the Workload Placement were described in deliverable D3.3 [20], Table 8.

Table 8. Cluster Metrics

Field Type Title Description

cluster_name string Cluster name The name of the Cluster that will be

deployed.

cpus number CPUs The number of CPUs of the Cluster.

memory number Memory The RAM of the Cluster in MB.

storage number Storage The disk storage of the Cluster in MB.

availability string Availability The percentage of time that the cluster is up

(99.9%, 99%, 90%).

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 58 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Field Type Title Description

green_energy string Green energy The percentage of RES powering the cluster

(0%, 20%, 40%, 60%, 80%, 100%).

cost string Cost The cost type of a cluster (low cost, high

performance). Enum

cpu_base_rate number CPU base rate The CPU cost of the cluster by the CPU

capacity of the cluster (in milliseconds).

memory_base_rate number Memory base rate The memory cost of the cluster by the

memory capacity of the cluster (in MBs).

vram number Video Random Access

Memory

The cluster VRAM available in MB

5.2 NEMO workload registration & provisioning

Once the cluster registration has been performed within the NEMO infrastructure, a NEMO user can

proceed to register, deploy and provision the corresponding workflows in the infrastructure. Figure 33,

Figure 34 and Figure 35 depict the whole process necessary for the proper deployment of a workload

within NEMO.

Since both the workload provisioning, Figure 33, and deployment, Figure 34, were already described in

deliverable D4.2. This section of this document focuses on the interactions that occur during the

deployment process of a NEMO workload, especially detailing how NEMO workloads take advantage

of the mNCC flexibility to support isolated communication between its functionalities. Supplementary

to the workload provisioning, the workload deployment process showed in the Figure 34 is also a key

part for the completion of this experiment.

Following the initial stages of the workload deployment process illustrated in Figure 33 and Figure 34,

the workflow continues with the creation of the network elements necessary to establish isolated

communication channels between NEMO Workloads deployed over the project’s infrastructure. Figure

35 shows the creation process of a virtual network by the mNCC NEMO component.

Figure 33. Workload provisioning workflow in NEMO

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 59 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 34. NEMO workload deployment workflow

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 60 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 35. Network workload deployment workflow

The virtual networks created by the mNCC, enable isolated communications between two (or more)

pods located in one, or multiple, Kubernetes (K8s) clusters in NEMO. This step must be performed

before the deployment of the pods themselves within the clusters used for the deployments, since each

virtual network is defined (and created) as a K8s resources that each pod must consume at its

instantiation stage.

In this regard, when a new virtual network is created through the mNCC component, the pods that

consume this K8s resource (i.e., pods attach to this virtual network) will be able to communicate between

each other as if they were located in the same Local Area Network (LAN), regardless of their physical

location. More details about these virtual network resources can be seen in Deliverables D2.2 and D2.3.

It is important to address that, although the original workflow included the creation of multiple network

slices where various NEMO administrative domains could be split based on the needs of each platform

at network level, dynamically modifying the network topology needed for each use case, the workflow

presented in this integration document will feature a single network slice. The purpose of this decision

is two-fold: on the one hand, due to the relatively low complexity of the current NEMO infrastructure,

splitting the network into multiple slices will not provide significant improvements for the isolation of

NEMO deployments, since it will be done using the virtual networks created in the default slice. On the

other hand, it simplifies the NEMO workload deployment process, as the user will not need to decide in

which slide should the NEMO deployment be located. Nevertheless, this slice creation and modification

functionality is enabled within the mNCC to enhance the scalability of NEMO once more clusters are

aggregated to the NEMO project infrastructure.

In order to start the deployment of each virtual network in the default slice present in NEMO, the Intent-

based API component must create the associated network intents that represent the network

interconnecting the pods from a NEMO workload.

In Table 9 an overview of how to construct an intent to request a network connection between different

clusters is presented. Later in this section, each value will be explained. In Table 9, a complete example

of a L2S-M Intent is described.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 61 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Table 9. Intent for network connectivity request. L2S-M network request attributes.

Key Description Value

Intent.id Identifier for the intent <string>

Intent.userLabel
Label to identify the intent

among others posted by the

intentAPI

cloud_continuum

Intent.intentExpectations
List of expectations for the

network
<intentExpectations>

intentExpectation.expectationId Identifier for the expectation <string number>

intentExpectation.expectationVerb
Verb defining what type of

action to apply in the object.
DELIVER***, ENSURE

intentExpectation.expectationObject
Type of object to be delivered

by the network
<expectationObject>

expectationObject.objectType Defines type of network intent
K8S_L2_NETWORK*,

K8S_CLUSTER_CONFIG**

expectationObject.objectContexts
Set of attributes required to

define a specific object
<objectContexts>

objectContext.contextAttribute

objectContext.contextCondition

objectContext.contextValueRange

String defining the attribute.

The value or range is set on

contextValueRange. And the

condition restricting the value

or range in contextCondition

name***, providerName*,

domain*, pod_cidr*

bearer_token**

intentExpectation.expectationTarget
Objective to fulfil by the

expectation object
isolatedConnectivity*

intentExpectaion.expectationContext
Scope of the related

expectation.
namespace**

Intent.intentContext
Scope of the entire intent. In the

NEMO platform the main

context is the related workload

NEMO_WORKLOAD

The network intent is read from the exchange/queue “nemo.api.workload/network-intent” and processed

only by the IBS if the userLabel matches a network intent. The is classified and translated as described

with more detail in D2.2 and D2.3 deliverables. Additionally, is doing some simple network

management in order to fit L2S-M requirements and abstract simple networking behaviours from the

higher levels in the architecture.

Once the intent has been processed in the Intent Based System (IBS), this component will generate a

gRPC [21] [22] [23] service request towards L2S-M (particularly, the L2S-M MD component). This

request must include the following fields:

• Network Network Class-less Inter Domain Routing (CIRD), which will be used to automatically

assign IP addresses to pods using the virtual network.

• A Provider endpoint. This provider is a combination of a DNS Server and as SDN Controller

which will act as a central point which manages the network.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 62 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

• List of clusters where the network is going to be created. This list includes:

o Kubernetes endpoint, including the API Key and Bearer Token of a virtual network

user.

o Namespace to be used inside the cluster.

o The address pool, contained inside the CIDR for the virtual network. For instance, if

the chosen CIDR in a new virtual network is 10.1.0.0/16, each cluster would use a

subnet like 10.1.n.0/24. This subdivision is processed and calculated by the IBS.

Once this request is received in L2S-M, it will create a virtual network resource in each specified K8s

cluster. This resource will be created at the same namespace as the NEMO workload deployment, since

virtual networks are namespaced resources that must be present in the same namespace of the pods that

will use them. Furthermore, once this resource is created in each cluster, the inter-domain L2S-M

component will register this creation and enable the inter-domain connectivity between them, as well as

generating the DNS domain record that must be added in the pod deployments to enable their

connectivity within the virtual network (avoiding the need to manually configure the IP addressing of

each pod).

To enable pods to utilize the virtual network resource, L2S-M includes the required configuration fields

in the gRPC response sent to the IBS. Specifically, any NEMO deployment intending to use the newly

provisioned network must specify the following fields in their deployment descriptors:

• L2S-M annotation label, to clarify that the networking resource is managed by this component.

• L2S-M name of the application label (defined by the deployment owner), which will be used to

identify the application with DNS.

• The name of the L2S-M virtual network to which the pods will be attached

• DNS name for each pod (L2S-M provides the DNS domain; the deployment owner is

responsible for assigning the specific name to the application)

L2S-M populates these values in the gRPC response to the IBS, effectively providing all the necessary

information required for the deployment to leverage the virtual network within the Kubernetes cluster.

The Intent-based API has a RabbitMQ consumer listening to exchange=mncc,

(routing_key,queue)=(mncc.ibs, mncc.ibs) for the values mentioned above. A sample message payload

expected by the IBA is presented in Listing 10.

{

 "workload": "2b9c9ade-0296-4cf6-b0b9-6b83a069aef0",

 "pod": {

 "labels": {

 "l2sm": "true",

 "l2sm/app": "<workload-name>"

 },

 "annotations": {

 "l2sm/networks": "spain-network"

 },

 "env": {

 "DNS_NAME": "<workload-name>.spain-network.inter.l2sm"

 }

 }

}

Listing 10. Sample payload received by IBA from the RabbitMQ queue

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 63 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

The Intent-based API then updates the workload manifests with the above additions (pod labels,

annotations and environment) while also performing substitution on the <workload-name> matching

the name of the workload with the given NEMO Workload ID.

When the manifests are updated, the Intent-based API informs the MO by publishing a RabbitMQ

message on the exchange=nemo.api.workload, (routing_key, queue)=(run,run) with the message

payload containing “status” field set to “updating”, signaling to the MO to update the NEMO Workload

residing in the corresponding cluster.

5.2.1 Verification scenario

Test 2: NEMO workload registration and provisioning

Objective Verify the NEMO workload registration, deployment and provisioning process

Components • NEMO Workload Registration

o LCM

o Intent-based API

o RabbitMQ

• NEMO Workload deployment

o LCM

o Intent-based API

o CMDT

o RabbitMQ

o Meta-Orchestrator

o NEMO Access Control

• NEMO Workload provisioning

o Intent-based API

o Access Control

• NEMO Network Deployment

o Intent-based API

o meta-Orchestrator

o RabbitMQ

o IBS (mNCC)

o L2S-M (mNCC)

Features to be

tested

To verify the workload registration, deployment and provisioning process in NEMO, the

following features will be tested:

• Workload Registration

• Workload Deployment

• Workload Provisioning

• Network Deployment

The feature that this scenario aims to test are the workload registration process which is

initiated by the NEMO consumer (workload provider) through the LCM GUI & Intent-based

API. Then, the newly registered workload is requested to be deployed into the NEMO meta-

OS ecosystem by the MO. Following the workload provisioning process is triggered which

is facilitated by the Intent-based API and the Access Control components. The results

including the workload status are visualized to the user. The Intent-based API initiates a

network creation intent, which is propagated through RBMQ to mNCC and L2S-M,

triggering gRPC service setup. Once the network is ready, updated deployment fields are

returned through the same path to the Intent-based API.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 64 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Test 2: NEMO workload registration and provisioning

The updated workload is then published and deployed to the managed clusters with

appropriate network annotations by MO.

Test setup The associated components are deployed in OneLab facilities

Steps The steps identified in the associated sequence diagrams are listed below:

1. NEMO workload registration

a. Workload registration by the NEMO user through the LCM UI

b. Execution of workload validation process in Intent-based API

c. Notification of the LCM UI about the status of the workload registration

2. NEMO workload deployment

a. Workload deployment by the NEMO user through the LCM GUI

b. Execution of workload validation in Intent-based API

c. Communication of the deployment request to the LCM UI

d. Communication of the deployment request to the MO

e. Deployment operation process triggered by MO

f. Workload placement using cluster metrics by MO

g. Deployment operation process executed by MO

h. Communication and update of the deployment operation status to the

Intent-API

i. Expose the services using NEMO access control

j. Visualization of the updated status to the LCM UI

3. NEMO workload provisioning

a. NEMO workload provisioning is triggered by the Intent-based API

b. NEMO Access Control workload setup

c. NEMO Access Control Keycloak plugin functionality

d. Performance resilience of Kong14 Plugin

4. NEMO Network Deployment

a. Intent request for network creation by Intent-Base API

b. Intent request for Network received mNCC

c. gRPC service request from mNCC to L2SM

d. gRPC service created by L2SM

e. Network ready notification + deployment fields update from mNCC to

Intent-based API.

f. Publish updated workload into RabbitMQ

g. Receive updated workload bt MO

h. Updated workload by MO-

i. MO deploys pod with network annotations and updates workload into

Managed Clusters selected by the HUB

5.2.2 Results

 The rest of the subsections present the corresponding results step by step as indicated by the verification

scenario.

5.2.2.1 NEMO workload deployment

This section of the present document will be centred around the interactions between the NEMO

components and the mNCC component to create network intents that workloads will use in order to

communicate through the infrastructure.

14 [46] [27]

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 65 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

When a new intent arrives with the intent-notify key to the Rabbit-MQ is then read by the IBS. The first

step is to filter and detect the type of intent by the label as show in Figure 36. In case the label is not

referring to cloud continuum connectivity, the intent is discarded.

Figure 36. Arrival of intent and first filter.

Then, the intent is classified and processed in the IBS as explained in deliverable D2.3. Then, the intent

triggers the execution to a call of L2S-M grpc server. This is shown in the last lines of Figure 37, where

the grpc executioner is called and starts the exchange of the network request.

Figure 37. Grpc connector execution

Figure 38. L2S-M annotations to be used by the workload.

Once the intent has been received from the IBS component, L2S-M proceeds to create the virtual

network in the relevant clusters, as shown in Figure 39 and Figure 40 and each network has been properly

created in the K8s clusters as a custom resource. In consequence, its details can be obtained through the

command line interface of the cluster, showcasing how the combination of the IBS and the L2S-M

components enable the creation of virtual networks in the NEMO infrastructure (i.e., the mNCC NEMO

component).

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 66 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 39. Network resource created in S1 cluster

Figure 40. Network resource created in S2 cluster

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 67 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Since the L2S-M annotations reported by the mNCC were added to each pod during the deployment

process, each pod consequently deployed in each cluster attached to its corresponding network. These

details can be found both in the description of the virtual network (i.e., Figure 39 and Figure 40) as well

as the annotations present in each pod within the K8s cluster, as depicted in Figure 41 and Figure 42.

Figure 41. Pod deployed in S1 with L2S-M annotations

Figure 42. Pod deployed in S2 with L2S-M annotations

It is noteworthy that these details provide the DNS name that pods can use to communicate between

each other in the newly created virtual networks. Hence, each pod does not need to know the IP address

of the other component, but only its DNS entry, simplifying the connectivity setup between each other

with a fully compatible solution with the standard CoreDNS present in standard K8s clusters. With this

name, each pod can communicate with one another using its entry, as demonstrated in Figure 43 and

Figure 44, where a ping command is executed between the pod present in one of the clusters.

Figure 43. Ping between pods in S1 and S2 clusters

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 68 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 44. Ping between pods in S1 and S2 clusters

Since the execution of the ping was successful, these results showcase that NEMO workloads can

communicate with specialised networking tools thanks to the flexibility of the mNCC.

5.3 NEMO workload scheduling & orchestration

This integration scenario aims to illustrate the workload migration process and orchestration. This

process is represented by three different tasks:

• Intent-Based workload migration

• CFDRL workload migration

• Workload horizontal scaling

The first two tasks concern the migration of the workload migration from one cluster to another. The

main difference concerns the component that triggers the said migration. This process is depicted in

Figure 45.

Figure 45. Intent-Based Migration Sequence Diagram

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 69 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

For the Intent-Based migration, the Intent-Based API is responsible for triggering the migration process

by publishing an intent in RabbitMQ. This intent contains several requirements that the cluster where

the workload is currently deployed must comply with. If one of the requirements is not met, the IBMC

selects a new target cluster and performs the migration.

In the case of the CFDRL migration, machine learning algorithms are used to detect whether the cluster

where the workload is deployed is not suitable anymore, using the information from workload metrics

and trained models. A new target is then selected by the CFDRL and a migration message is sent to the

IBMC to trigger migration as shown in Figure 46.

Figure 46. CFDRL Migration Sequence Diagram

Finally, the workload horizontal scaling scenario also relies on the CFDRL component to detect the

need of upscaling or downscaling the number of replicas of a deployed workload. When this happens, a

message is sent to the MO, which performs the scaling action, Figure 47.

Figure 47. Horizontal Scaling Sequence Diagram

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 70 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

5.3.1 Verification scenario

Test 3: NEMO workload migration

Objective The objective of this task is to validate the NEMO workload migration process.

Components IBMC

Intent-Based API

MO

CFDRL

CMDT

PPEF

mNCC

Features to be

tested
• Workload migration:

1. By the creation of an intent, containing one or more requirements which the

deployment cluster must met. If any of these requirements is not fulfilled, the ibmc-

controller triggers a migration to a more suitable cluster.

2. By the CFDRL component once its inference states that it is preferable for the

workload’s optimal operation to be moved from cluster A to cluster B. Once the

request is communicated to the Meta-Orchestrator component then the workload

migration is executed.

• Horizontal scaling of a deployed workload

Test setup All the participating components were deployed in the NEMO meta-OS cloud/edge

infrastructure at OneLab (dev cluster 1 and staging cluster 1).

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 71 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Test 3: NEMO workload migration

Steps The steps identified in the associated sequence diagrams are listed below:

a. Intent-Based Migration

1. Intent-based API publishes an Intent with one or more requirements (Availability,

GreenEnergy, CPU, Memory etc).

2. Ibmc-controller retrieves workload status from the Intent-Based API.

3. Ibmc-controller retrieves the managed clusters information from the MO.

4. If the workload is already deployed and the intent requirements are not met, then a

migration action is triggered.

5. A new target cluster compliant with the intent requirements is selected from the

available managed clusters list.

6. Ibmc-controller sends a message to the source cluster ibmc-agent.

7. A backup of the workload is created and uploaded to Rook-Ceph S3 Bucket located

in the HUB cluster.

8. Upon backup completion, a message is sent to the target cluster ibmc-agent to

continue with the migration process.

9. The backup is restored in the target cluster.

10. A message is sent to the MO notifying the workload migration completion.

11. MO updates the corresponding Manifestwork to match the new workload

deployment status.

12. A message is sent to the Intent-Based API updating the workload status, specifying

the cluster where it has been deployed.

b. CFDRL Migration

1. CFDRL gathers workload information from CMDT, PPEF and mNCC.

2. CFDRL algorithm calculates the most suitable cluster for workload migration.

3. CFDRL sends a message to the source cluster ibmc-agent.

4. A backup of the workload is created and uploaded to Rook Ceph S3 Bucket located

in the HUB cluster.

5. Upon backup completion, a message is sent to the target cluster ibmc-agent to

continue with the migration process.

6. The backup is restored in the target cluster.

7. A message is sent to the MO notifying the workload migration completion.

8. MO updates the corresponding Manifestwork to match the new workload

deployment status.

9. A message is sent to the Intent-Based API updating the workload status, specifying

the cluster where it has been deployed.

c. Horizontal Scaling

1. CFDRL gathers workload information from CMDT, PPEF and mNCC.

2. CFDRL algorithm calculates the required scaling action.

3. CFDRL sends a horizontal scaling message to MO.

4. MO scales up/down the workload replicas.

5. MO sends completion a message back to CFDRL

5.3.2 Results

 The rest of the subsections present the corresponding results step by step as indicated by the verification

scenario.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 72 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

5.3.2.1 Intent-Based Migration

Step 1

The initial conditions for the migration scenario require a workload already deployed in the source

cluster from where it will be migrated, as shown in Figure 48. LCM Workload Initial Visualization. In

this figure, the LCM IU is used to see that the workload with ID “3b004d45-3f08-48b8-b1b3-

2abe06509d66” is currently deployed in the dev cluster.

Figure 48. LCM Workload Initial Visualization

To trigger the migration process, an availability intent is created as shown in Figure 49. Availability

Intent Creation, which requires that the workload is deployed in a cluster with an availability greater

than 95%.

Figure 49. Availability Intent Creation

Steps 2-6

After the intent is created, it is published by the Intent-Based API. In Figure 50, the ibmc-controller

deployed in the dev cluster (HUB cluster) receives the message and proceeds to check if the current

deployment cluster meets the availability requirement.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 73 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Since the dev cluster has an availability value of only 90%, the intent requirements are not fulfilled, so a

new target cluster is selected for the redeployment of the workload. The list of managed clusters shows

that the staging cluster has an availability of 99.9% thus it is selected as a target cluster for migration.

Finally, a message is sent to the ibmc-agent deployed in the dev-cluster to trigger the migration process.

Figure 50. Ibmc-controller processing the intent

Steps 7 & 8

Figure 51 shows the migration message arriving to the dev cluster ibmc-agent, where the backup of the

workload resources is performed. Once the backup is finished, a message is sent to the staging cluster

ibmc-agent to continue with the migration.

Figure 51. Dev Cluster Ibmc-agent logs

Steps 9-12

In Figure 52, the restore message is received by the staging cluster. There, the ibmc-agent waits for the

syncing of the backup uploaded to Rook-Ceph and proceeds to restore the workload resources. When

the restore is completed, a message is sent to both MO and Intent-Based API to notify them that the

migration has been successfully completed.

Figure 52. Staging Cluster Ibmc-agent logs

The workload status can be checked again in LCM, where the deployment cluster has been updated from

the dev cluster to the staging one, as shown in Figure 53.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 74 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 53. LCM workload final visualization

Figure 54 shows the visualization of the different steps and changes followed by the workload across

the complete workflow.

Figure 54. LCM complete workflow view

5.3.2.2 CFDRL Migration and Scaling tasks

Part of the CFDRL has been tailored towards managing and orchestrating workloads in a Kubernetes

environment, with a focus on leveraging reinforcement learning (RL) techniques to optimize resource

usage and performance of workloads. Below is an explanation of the project’s purpose and how it is

structured.

The primary goal of this project is to manage workloads efficiently in a cloud-native environment. It

uses reinforcement learning (referred to as CFDRL in the project) to make intelligent decisions about

workload orchestration. This involves optimizing resource allocation by scaling or migrating workloads

dynamically to improve the overall performance of the system.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 75 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Scaling and migrating tasks

In the context of workloads in a Kubernetes environment, scaling and migration are two fundamental

resource management tasks:

• Scaling refers to adjusting the number of replicas (pods) running for a given workload. This is

typically done to handle changes in demand: increasing replicas to improve performance or

availability when load increases and decreasing them to save resources when demand drops. In

Kubernetes, scaling is a common operation and can be performed automatically (e.g., with the

Horizontal Pod Autoscaler) or manually. In the CFDRL system, the scaling task involves

learning a policy that decides, based on observed metrics (like CPU, RAM, and latency), how

many replicas each workload should have at any given time to optimize resource usage and

performance.

• Migration involves moving a workload (or its replicas) from one cluster or node to another.

This can be necessary for load balancing, fault tolerance, cost optimization, or compliance

reasons. Migration is more complex than scaling because it requires coordination between

clusters or nodes, and may involve data transfer, downtime, or changes in network latency. In

the CFDRL system, the migration task is formulated as learning a policy that decides, based on

the current state of the system, to which cluster or node a workload should be moved to achieve

optimal performance or resilience.

For simplicity, the CFDRL program tackles them by training and maintaining two separate

reinforcement learning models: one specialized for scaling decisions and another for migration

decisions. Each model learns from its own set of state-action-reward experiences, allowing the system

to optimize both tasks independently and effectively in a dynamic Kubernetes environment. The

difference between the two models is minor, for this reason the scaling architecture and then report the

changes in the migration case are described.

Architectural Overview

The project is built around a modular architecture that integrates several key components:

Containerization with Docker: The project uses Docker to containerize its applications. Multiple

Dockerfiles are provided, each tailored for specific purposes. This containerized approach ensures

portability and consistency across different environments.

Kubernetes for Orchestration: Kubernetes is used as the orchestration platform, with YAML

configuration files defining the deployment and storage requirements. Persistent Volumes (PV) and

Persistent Volume Claims (PVC) are configured to manage data storage of the models learned by

CFDRL.

Reinforcement Learning Core: The core functionality of the project revolves around reinforcement

learning. The main script (main_cfdrl.py) implements the logic for managing workloads and interacting

with external APIs. It likely uses reinforcement learning algorithms to analyze workload states and make

decisions that optimize system performance. Metrics are logged and stored for further analysis, and old

data is periodically cleaned up to maintain efficiency.

Automation and Deployment: Shell scripts are provided to automate the process of building Docker

images, pushing them to a container registry, and restarting Kubernetes deployments. This streamlines

the deployment process and reduces the potential for human error.

Reinforcement Learning Algorithm in the Project

The CFDRL implements a Deep Q-Network (DQN) algorithm for reinforcement learning (RL). DQN

is used to optimize workload orchestration in a Kubernetes-based environment by dynamically deciding

the number of replicas for workloads based on system metrics such as CPU usage, RAM usage, and

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 76 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

latency. Below is a detailed explanation of the RL algorithm and its implementation in the project, based

on the provided main_cfdrl.py and dqn.py files available in the git eclipse of the NEMO project.

 Purpose of the RL Algorithm

The RL algorithm aims to:

1. Dynamically adjust the number of replicas for workloads to optimize resource usage and

performance.

2. Minimize latency and resource over-provisioning while maintaining workload efficiency.

3. Learn an optimal policy for workload orchestration through interaction with the environment.

Key Components of the RL Algorithm

1. State Representation: The state is a vector that represents the current environment, including:

• Number of replicas for a workload.

• CPU usage and target.

• RAM usage and target.

• Latency.

The function build_state_for_workload(workload_id) in main_cfdrl.py constructs this state vector for

each workload by fetching metrics from shared data structures.

2. Action Space and frequency: The action space is discrete and represents possible decisions the RL

agent can make:

• Increase the number of replicas.

• Decrease the number of replicas.

• Maintain the current number of replicas.

The Discrete class in dqn.py defines this action space, ensuring that actions are valid integers within a

specified range.

The frequency at which the CFDRL agent takes actions is set to every 1 to 3 minutes, depending on the

specific task being performed. This timing is chosen because some of the critical information provided

by other system components, such as workload metrics and cluster states, is only updated once per

minute. Additionally, certain actions—especially migrating workloads between clusters—can take

several minutes to complete in practice. By spacing out decisions in this way, the system avoids

overloading the infrastructure with frequent changes and ensures that each action is based on the most

recent and reliable data available from the environment. This approach balances responsiveness with

system stability and operational efficiency.

3. Reward Function: The reward function incentivizes efficient resource usage and penalizes

inefficiencies. It is defined as:

𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠 − 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 +max
0
(𝑟𝑎𝑚𝑢𝑠𝑎𝑔𝑒 − 𝑟𝑎𝑚𝑡𝑎𝑟𝑔𝑒𝑡)

It is helpful to carefully balance all the metrics (e.g., CPU usage, RAM usage, number of replicas).

Negative rewards are assigned for higher latency and more replicas. Positive rewards are given for

achieving CPU and RAM targets.

4. Deep Q-Network (DQN)

The DQN is implemented in the DQN class in dqn.py. It consists of a Backbone Network: A multi-layer

perceptron (MLP) that processes the state and outputs Q-values for each action and a Target Network:

A copy of the backbone network used to stabilize training by providing fixed Q-value targets during

updates.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 77 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

The DQNTrainer class manages the training process, including computing the loss using the Bellman

equation and updating the target network periodically to improve stability.

5. Replay Buffer: The ReplayBuffer class in dqn.py stores transitions (state, action, reward, next state)

for experience replay. Random sampling from it allows the agent to learn from past experiences and

break the correlation between consecutive samples. Storage is available with permanent mounted

volumes in the Kubernetes manifest so that the replay buffer is available to any run of the RL algorithm.

6. Exploration Strategy: The project uses an epsilon-greedy strategy for exploration, implemented in

the EpsilonGreedy class. The agent selects random actions with a probability epsilon, which decays over

time to encourage exploitation of learned policies.

Neural Network Architecture: The DQN uses a multi-layer perceptron (MLP) as its backbone network.

The architecture is defined in the MLP class in dqn.py.

• Input: State vector (as defined above).

• Hidden Layers: Configurable number of layers and neurons, with ReLU activation.

• Output: Q-values for each action.

 Algorithm Workflow:

1. Initialization

• The agent initializes its neural network, replay buffer, and exploration strategy.

2. Main Loop

• For each workload:

• The agent observes the current state.

• It selects an action (e.g., adjust replicas).

• The action is executed, and the environment returns the next state and reward.

• The transition is stored in the replay buffer.

• Learning: The agent samples a batch of transitions and updates the Q-value function using

the Bellman equation and DQN criterion.

3. Periodic Updates

• The target network is updated periodically.

• Model weights are saved to disk at regular intervals.

Defining a reward function for latency: Defining a reward function for latency in this system is

inherently challenging due to the nature of the workload distribution and the way latency is measured.

Latency is Linked to Node-to-Node Communication. Latency is typically a measure of the delay in

communication between nodes in a distributed system. However, in this case, most replicas are deployed

on the same node. As a result, there is little to no measurable latency because intra-node communication

is significantly faster and often negligible compared to inter-node communication. When replicas are

collocated on the same node, the latency metric does not provide meaningful feedback about the

system’s performance. This makes it difficult to use latency as a reliable component of the reward

function.

Components CFDRL takes Information From

The CFDRL system interacts with multiple components to gather information and make decisions for

workload orchestration Figure 55 and Figure 56. These interactions are facilitated through RabbitMQ

(via the pika library) and HTTP API requests (via the requests library). Below is an explanation of the

components CFDRL communicates with and how these communications are implemented.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 78 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 55. Inputs/outputs from CFDRL point of view

Figure 56. JSON Schema for MO-CFDRL RabbitMQ communication

Meta-Orchestrator (MO): The Meta-Orchestrator is responsible for managing workload orchestration

decisions. It receives messages from CFDRL about the number of replicas for workloads and provides

feedback.Communication : RabbitMQ is used for communication. Messages are sent to

the cfdrl_mo_hs queue using RabbitMQ’s basic_publish method.

CMDT (Cluster Monitoring and Decision Tracking): CMDT provides information about the current

state of workloads, such as the number of replicas and the node where the workload is

running.Communication: RabbitMQ is used for communication. Messages are received from

the CMDT queue.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 79 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

NMCC (Network Metrics Cost Calculator): NMCC provides network-related metrics, such as latency

between nodes or clusters. Communication: RabbitMQ is used for communication. Messages are

received from the mncc.metrics.cfdrl queue.

PPEF through Intent API: The Intent API provides workload-specific metrics, such as CPU and RAM

usage targets, as well as achieved values. It also provides information about workload clusters.

Communication: HTTP GET requests are sent to the Intent API using the requests library. The API

response is parsed, and workload metrics are extracted and stored in shared data structures.

Shared Data Structures and Multi-threaded implementations

The program is designed to be multithreaded, enabling concurrent execution of tasks while sharing data

between threads. This approach is crucial for handling multiple sources of information (e.g., RabbitMQ

queues, APIs) and performing reinforcement learning computations simultaneously. Below is an

explanation of how multithreading is implemented and how shared data is managed.

The program uses Python’s threading module to create and manage multiple threads. Each thread is

responsible for a specific task, such as consuming messages from RabbitMQ queues, calling APIs, or

running the reinforcement learning loop. The threads start concurrently and run in parallel.

The information gathered from these components is stored in shared data structures, such as:

• SharedWorkloadData: Stores workload-specific metrics (e.g., replicas, latency, CPU/RAM

usage).

• SharedReplayBuffer: Stores transitions for reinforcement learning.

• SharedMNCCBuffer: Stores network metrics from NMCC.

These shared data structures are protected by locks (Lock) to ensure thread-safe access.

 Running the CFDRL for the Scaling task:

Figure 57. Messages used for Scaling

The CFDRL program was deployed and executed continuously on the OneLab cluster of the NEMO

platform, where it interacted in real time with other system components such as the Meta-Orchestrator,

CMDT, NMCC, and the Intent API. Over a period of 3 days, with the agent collecting one state-action-

reward tuple per minute, the system accumulated a total of 4,320 transitions (3 days × 24 hours × 60

minutes). After this training period, the reinforcement learning agent achieved an average reward of -

5.84, indicating improved performance compared to a random policy, which yielded an average reward

of -6.54. One way to interpret this is that compared to the random policy, CFDRL almost save on average

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 80 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

one replica to obtain the same cpu usage. This demonstrates that the RL-based approach was able to

learn and apply more effective scaling decisions than random actions in this dynamic environment.

Running the CFDRL for the Migration task:

First Note that the model used for migration was very similar to the one in scaling but adding also in the

state space information about the current location of all the workloads. The action space was then the

destination cluster chosen.

After learning a model specific to the migration task, we run the CFDRL with and without the migration

actions and measured over a period of one day an increase of our reward from -11.2 to -10.8 thanks to

the migration actions hinting at an improvement due to our model.

However, we also noticed that the variability of the reward over long period of time makes the

comparisons between methods complexes.

Viewing the CFDRL and MO and Cluster IBMC interactions:

Here we report screenshots that demonstrate how an action is decided by the CFDRL and then

implemented by either the Meta orchestrator or the Cluster IBMC.

1. Migration:

Figure 58. Log of the action taken by CFDRL and sent to the Cluster Ibmc

Figure 59. Message published by ibmc

Figure 60. Log of the Migration action being implemented by the cluster IBMC

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 81 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

2. Scaling:

Figure 61. CFDRL decides a scaling action and sends it through Rabbit MQ to MO

Figure 62. Meta orchestrator receives the scaling action and triggers the scaling

Figure 63. The number of replicas is checked and it is set to 3 as requested

5.4 NEMO workload lifecycle management

The workload lifecycle management scenario illustrates the monitoring of a workload during its

lifecycle in NEMO meta-OS collecting workload intents, resources consumption, performance metrics

and health status of the workload. Figure 64 shows the sequence diagram of this scenario.

Figure 64. Workload Lifecycle Sequence Diagram

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 82 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

5.4.1 Verification scenario

Test 4: NEMO workload lifecycle management

Objective To verify the workload lifecycle management process in NEMO covering all the steps identified.

Components • LCM

• Intent-API

• PPEF

• CMDT

• RabbitMQ

Features to be

tested

This integration scenario aims to validate the workload lifecycle management. The NEMO

workload intents and complementary measurements that concern the resources’ consumption and

the resulting performance and liveness of a workload are collected by the PPEF and the CMDT

components. From there they are communicated through the RabbitMQ to the LCM UI where there

are visualized to the NEMO user.

Test setup The associated components are deployed in OneLab facilities at NEMO dev cluster 1

The CFDRL component which is undergoes its final stages of development.

Steps 1. The NEMO user accesses the LCM UI

2. NEMO workload monitoring collects metrics that correspond to the NEMO workload

(PPEF)

3. The collected workload metrics are communicated to the Intent-API

4. The NEMO Cluster monitoring collects measurements that concern the NEMO meta-OS

operated clusters (PPEF)

5. The collected cluster metrics are communicated to the RabbitMQ

6. NEMO workload complementary monitoring (CMDT)

7. The collected metrics are communicated to the Rabbit MQ

8. The LCM aggregates the collected metrics and visualize them to the NEMO user

9. The PPEF report intent violations to the Intent-based API

5.4.2 Results

This section outlines the step-by-step process described in the scenario above.

5.4.2.1 The NEMO user accesses the LCM UI

The NEMO user accesses the LCM interface by adding its credentials and gains access to the monitoring

dashboard through NEMO Keycloak identity manager. Depending on its role, the user has access to its

own workloads or workloads he manages.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 83 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 65. LCM User access

5.4.2.2 NEMO workload monitoring collects metrics that correspond to the NEMO workload (PPEF)

Within the NEMO framework there is a periodic task that evaluates the Intent target conditions for all

types of workload intents that are created though the LCM UI. For example, a

“DeliverComputingWorkload” Intent allows to the user to set conditions regarding the workload

resource usage (CPU, RAM, disk). Figure 66 shows an example of an intent requiring for the workload

to be executed in a cluster that can provide more than 2 milliseconds of CPU time.

Figure 66. Example of intent conditions

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 84 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 67 (a) and (b) show the logs of the intent evaluator periodic task. The evaluator checks though the

PPEF for the values corresponding to the intents’ targets and determines if the required conditions are

met. The report produced is sent through RabbitMQ for the Intent API to consume.

Figure 67. Intent Evaluator logs

5.4.2.3 The collected workload metrics are communicated to the Intent-API

Figure 68 demonstrates the logs of the Intent API task which is responsible for receiving the produced

intent evaluation reports. The Intent API receives this report and uses it to update its intents’ status

(“Fulfilled” or “Not Fullfiled”).

Figure 68. Intent API receives the Intent Evaluation report

5.4.2.4 The NEMO Cluster monitoring collects measurements that concern the NEMO meta-OS

operated clusters (PPEF)

In NEMO a monitoring mechanism has been established that periodically communicates with PPEF to

retrieve the CPU, RAM and disk usage metrics for a time window of 1 minute to keep track of the state

of the NEMO meta-OS operated clusters. Figure 69 shows the logs of the monitoring task. The message

includes the resource usage metrics for all NEMO clusters. This message is published to NEMO

RabbitMQ, for the LCM to consume the information and display the changes in the dashboard.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 85 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 69. Cluster metrics from PPEF

5.4.2.5 The collected cluster metrics are communicated to the RabbitMQ

Figure 70 gives a closer look at the details of the message that is pushed to the RabbitMQ.

Figure 70. Cluster metrics RabbitMQ payload

5.4.2.6 NEMO workload complementary monitoring (CMDT)

The CMDT component is thoroughly presented in NEMO D2.3 and relies on information gathered by

two distinct services:

• kube-state-metrics, collecting pod-related metadata,

• Linkerd and Linkerd-viz, collecting network-related traffic metrics.

Both services forward collected metrics to Prometheus/Thanos services. Finally, the CMDT components

internally utilize Prometheus Query Language (PromQL) to retrieve data and expose enriched data

directly through the API, as well as via RabbitMQ communication channels, Figure 71.

Figure 71. The CMDT component includes a SwaggerUI endpoint with up-to-date documentation and examples.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 86 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

The CMDT provides the following complementary information:

1. The `/api/v1/workloads` endpoint provides a list of workloads on the NEMO cluster. Each

NEMO workload has a UUID, and CMDT provides a list of pods from the corresponding

NEMO workload. Pod information includes the pod’s location (NEMO cluster, region, node,

tenant), namespace, service, job, pod’s name, and pod’s unique ID.

2. The ̀ /api/v1/pods/{pod_name_or_uid}` endpoint provides detailed information with all the data

provided previous point and adds pod’s current status (running, terminated, restarting, etc),

number status changes within last hour (if pod was restarting), number of replicas of the same

pod, and traffic summary. The traffic summary provides the incoming and outgoing bytes of

network traffic, the traffic rate (requests per second), response status codes and their rates, and

response times presented in percentiles (in milliseconds), Figure 72.

3. The `/api/v1/pods/{pod_name_or_uid}/traffic` endpoint provides a pod’s detailed traffic view,

where CMDT provides bytes of incoming or outgoing traffic and provides the name of external

pods communicating with the corresponding pod, Figure 73.

4. The `/api/v1/tree` endpoint provides a tree-like representation of the relationships between all

deployments, replicasets, and pods.

5. The `/api/v1/tree/workloads` endpoint provides a tree-like representation of all deployments,

replicasets, and pods, excluding non-NEMO workload components, Figure 74.

Figure 72. Detailed information about the NEMO workload pod showing its location, status, traffic, and

response times.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 87 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 73. Detailed information about the pod’s traffic. Additionally, it displays its internal traffic, as well as

inbound and outbound traffic with foreign pods.

Figure 74. Tree-like representation of all deployments, replicasets, and pods, excluding non-NEMO workload

components

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 88 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

5.4.2.7 The LCM aggregates the collected metrics and visualizes them to the NEMO user

The LCM gathers data from the previously mentioned sources and consolidates it into a unified user

interface, providing a comprehensive view of the workload lifecycle. This includes historical data, near

real-time performance insights, and management capabilities, Figure 75.

Figure 75. Manage workloads

Each workload is associated with its instances in NEMO meta-OS. The user can manage workload

instances, Figure 76, and get detailed information on its activity in a status timeline, Figure 77.

Figure 76. Manage workload instances

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 89 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 77. Workload Instance lifecycle timeline

The LCM collects information about the deployment of each workload instance, the ReplicaSets and the

number of pods as it is provided by CMDT. Based on this data LCM displays the deployment tree of

the workload visualizing the Deployment controller used to manage the ReplicaSets and pods in a tree-

like structure, Figure 78.

Figure 78. LCM workload deployment tree

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 90 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

While each workload instance is associated with one or more intents, the LCM dashboard provides

information about the attached intents and their status, Figure 79. This includes intent violations as

presented in the next section.

Figure 79. Workload intents management

Finally, the LCM interface shows resource provisioning monitoring and management, Figure 80,

providing useful insights in cluster performance (CPU usage, memory usage, disk usage) both in

historical and runtime, Figure 81.

Figure 80. Resource provisioning

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 91 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 81. Cluster performance

5.4.2.8 The PPEF report intent violations to the Intent-based API

The PPEF reports the intents status for each workload instance and the LCM displays the status of each

intent along with detailed information as presented in Figure 82 if the intent is fulfilled and Figure 83 if

the intent has been violated.

Figure 82. Intent Fulfilled

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 92 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 83. Intent Violation

5.5 NEMO Secure Execution Environment

The following scenario focuses on the deployment of unikernels through the Secure Execution

Environment (SEE) component, starting from the meta-Orchestrator (MO). The creation, modification,

and deletion of unikernels are essentially the same at this level.

Figure 84. Unikernel creation sequence diagram

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 93 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

5.5.1 Verification scenario

Test 5: Unikernels

Objective Deploy Unikernels inside NEMO premises

Components • Meta-Orchestrator (MO)

• RabbitMQ

• SEE

Features to be

tested

This scenario validates the deployment of unikernel into a specific node. The SEE interface is

already deployed in a cluster and communicates with the rest of the NEMO components through

RabbitMQ. In particular, MO triggers this scenario to deploy the hermit technology solution

(unikernel).

Test setup SEE, RabbitMQ and MO are deployed in OneLab.

Steps a. Meta-Orchestrator sends a create unikernel message to RabbitMQ.

b. SEE reads the creation request from RabbitMQ.

c. SEE performs the creation process internally.

d. SEE deploys the created unikernel to the Node.

e. If the deployment is successful, SEE sends an ok message to RabbitMQ.

f. If there is an error, SEE sends an error message to RabbitMQ.

5.5.2 Results

Triggering the POST endpoint /publishToSee, more details in Figure 85, MO send a message with the

following payload, as listed in Listing 11, to the RabbitMQ queue called nemo.see.create, and if

everything is correct the request would be similar to Listing 12. After that, the SEE interface consumes

and receives that message.

{

 "reply_to": "see-interface-response",

 "verb": "create",

 "body": {

 "apiVersion": "apps/v1",

 "kind": "Deployment",

 "metadata": {

 "name": "hermit-httpd-app"

 },

 "spec": {

 "replicas": 1,

 "selector": {

 "matchLabels": {

 "app": "hermit-httpd-app"

 }

 },

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 94 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

 "template": {

 "metadata": {

 "labels": {

 "app": "hermit-httpd-app"

 }

 },

 "spec": {

 "runtimeClassName": "runh",

 "containers": [

 {

 "name": "hermit-httpd",

 "image": "ghcr.io/hermit-os/httpd:latest",

 "imagePullPolicy": "Always",

 "ports": [

 {

 "containerPort": 9975

 }

]

 }

],

 "nodeSelector": {

 "runtime": "runh"

 }

 }

 }

 }

 }

}

Listing 11. Payload for endpoint

{

 "correlation_id": "4fa6082a-7479-4a5d-b137-475237d24972",

 "message": "Message published successfully",

 "status": "ok"

}

Listing 12. MO message after sending

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 95 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 85. publishToSee endpoint.

Depending on the result, the SEE generates and queues a message into RabbitMQ. If something is

wrong, the message appears as in Listing 13. Otherwise, the server is sending a message with a

correlation_id but without a payload Figure 86.

{

correlation_id: 4fa6082a-7479-4a5d-b137-475237d24972,

 "ErrStatus": {

 "apiVersion": "v1",

 "code": 404,

 "details": {

 "kind": "pods",

 "name": "nginx"

 },

 "kind": "Status",

 "message": "pods \"nginx\" not found",

 "metadata": {

 },

 "reason": "NotFound",

 "status": "Failure"

 }

}

Listing 13. SEE error response

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 96 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 86. SEE success message

In the end, depending on the action represented as the “verb” field in the payload endpoint (create, apply,

or delete), the message is published in different queues (nemo.see.create, nemo.see.apply, or

nemo.see.delete).

Figure 87. Schematic of the communication channels used by the MO API and the SEE

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 97 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

6 Conclusions

In this document the latest updates regarding the WP4 tools (LCM, IBMC, MOCA and IBA) were

presented. The major highlight of this document is the set of integration workflow pipelines presented

in section 5. In this document the integration pipelines across WP2, WP3 and WP4 were extended to

support the complete integration and validation tests of the final NEMO meta-OS. This provides the

reader with a complete and up-to-date vision of what has been developed within the NEMO framework

as well as how the components interact with each other. In addition, this document is intended to be

used as the handbook of NEMO for other existing and future projects, a detailed user guidelines of the

NEMO meta-OS was presented.

With the completion of the NEMO components’ development, a thorough testing and integration

procedure took place to guarantee that the initial objectives of the project as well as the various KPIs

defined have been successfully met. The work carried out within the framework of WP4 lead to a fully

functional and complete toolset that provides an easy-to-use ZeroDevOps platform for managing

services in the form of workload across the IoT-Edge-Cloud continuum.

Finally, the resulting final version of the NEMO meta-OS will be further validated and verified in the

framework of NEMO pilots. The corresponding information will be included in deliverable D5.4

“NEMO Living Labs use cases evaluation results. Final version”. Moreover, D5.4 is also forseen to

contain results stemming from the integration activities of the NEMO Open Call Projects in the context

of NEMO meta-OS pilots.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 98 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

7 References

[1] NEMO, "D4.2 - Advanced NEMO platform & laboratory testing results. Intermediate version,"

HORIZON - 101070118 - NEMO Deliverable Report, 2024.

[2] NEMO, "D4.1 - Advanced NEMO platform & laboratory testing results. Initial version,"

HORIZON - 101070118 - NEMO Deliverable Report, 2023.

[3] NEMO, "D1.2 - NEMO meta-architecture, components and benchmarking. Initial version,"

HORIZON - 101070118 - NEMO Deliverable Report, 2023.

[4] GitLab, "The Role of AI in DevOps," 2023. [Online]. Available:

https://about.gitlab.com/topics/devops/the-role-of-ai-in-devops/.

[5] Docker. [Online]. Available: https://www.docker.com/. [Accessed 23 06 2023].

[6] Flux, "Flux - the GitOps family of projects," 2023. [Online]. Available: https://fluxcd.io.

[7] Flux, "Flux multi-tenancy," 2025. [Online]. Available:

https://fluxcd.io/flux/installation/configuration/multitenancy/.

[8] B. Ruecker , " The Microservices Workflow Automation Cheat Sheet: The Role of the Workflow

Engine," 2020. [Online]. Available: https://camunda.com/blog/2020/02/the-microservices-

workflow-automation-cheat-sheet-the-role-of-the-workflow-engine/.

[9] Kubernetes, "Good practices for Kubernetes Secrets," 2023. [Online]. Available:

https://kubernetes.io/docs/concepts/security/secrets-good-practices/.

[10] Kubernetes, "Controlling Access to the Kubernetes API," 2023. [Online]. Available:

https://kubernetes.io/docs/concepts/security/controlling-access/.

[11] "Kustomize - Kubernetes Native Configuration Management," [Online]. Available:

https://kustomize.io/. [Accessed 12 2023].

[12] NEMO, "D1.3 - NEMO meta-architecture, components and benchmarking. Final version,"

HORIZON - 101070118 - NEMO Deliverable Report, 2024.

[13] Keycloak, "https://www.keycloak.org," [Online]. Available: https://www.keycloak.org.

[14] "Helm," [Online]. Available: https://helm.sh/. [Accessed 12 2023].

[15] OPENAPI Initiative, "OpenAPI Specification," [Online]. Available: https://www.openapis.org.

[Accessed 2024].

[16] RabbitMQ, "RabbitMQ," [Online]. Available: https://www.rabbitmq.com.

[17] Argo CD, "Introduction to ApplicationSet controller," 2023. [Online]. Available: https://argo-

cd.readthedocs.io/en/stable/operator-manual/applicationset/.

[18] Argo, "Argo CD - Declarative GitOps CD for Kubernetes," 2023. [Online]. Available:

https://argo-cd.readthedocs.io/en/stable/.

[19] Argo, "Argo Workflows," 2025. [Online]. Available: https://argoproj.github.io/argo-workflows/.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 99 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

[20] NEMO, "D3.3 - NEMO Kernel. Final version," HORIZON - 101070118 - NEMO Deliverable

Report, 2025.

[21] gRPC, "gRPC - A high performance, open source universal RPC framework," 2023. [Online].

Available: https://grpc.io/.

[22] Google Cloud, "Cloud Endpoints for gRPC," 2023. [Online]. Available: Cloud Endpoints for

gRPC .

[23] R. Gancarz, "Why LinkedIn chose gRPC+Protobuf over REST+JSON: Q&A with Karthik

Ramgopal and Min Chen," 2023. [Online]. Available:

https://www.infoq.com/news/2023/12/linkedin-grpc-protobuf-rest-json/.

[24] Camunda, "Zeebe: Cloud Native Workflow and Decision Engine," 2023. [Online]. Available:

https://camunda.com/platform/zeebe/.

[25] D. Goel, "Elevate Kubernetes Security with Zero Trust," 2023. [Online]. Available:

https://d2iq.com/blog/elevate-kubernetes-security-zero-trust.

[26] A. Syed, "Zero Trust Security for Kubernetes with a Service Mesh," 2022. [Online]. Available:

https://www.hashicorp.com/blog/zero-trust-security-for-kubernetes-with-a-service-mesh.

[27] KongHQ, "Kong Mesh - Modernized service mesh for development and governance," 2023.

[Online]. Available: https://konghq.com/products/kong-mesh.

[28] M. Palladino, "Service Mesh vs. API Gateway: What’s The Difference?," 2020. [Online].

Available: https://konghq.com/blog/enterprise/the-difference-between-api-gateways-and-service-

mesh.

[29] I. Krutov, "Architecting Zero Trust Security for Kubernetes Apps with NGINX," 2022. [Online].

Available: https://www.nginx.com/blog/architecting-zero-trust-security-for-kubernetes-apps-

with-nginx/.

[30] Kata Containers, "About Kata Containers," [Online]. Available: https://katacontainers.io.

[31] Kepler Contributors, "Kubernetes Efficient Power Level Exporter (Kepler)," 2023. [Online].

Available: https://sustainable-computing.io/.

[32] Pixie, "Open source Kubernetes observability for developers," 2023. [Online]. Available:

https://px.dev/.

[33] The Linux Foundation, "Kubernetes," [Online]. Available: https://kubernetes.io/. [Accessed 6

2025].

[34] The Linux Foundation, "Cloud Native Computing Foundation," [Online]. Available:

https://www.cncf.io/. [Accessed 6 2025].

[35] The Linux Foundation, "Falco," [Online]. Available: https://falco.org/. [Accessed 6 2025].

[36] "trivy-operator," [Online]. Available: https://github.com/aquasecurity/trivy-operator. [Accessed 6

2025].

[37] Flower Labs GmbH, "Flower," open source, [Online]. Available: https://flower.dev. [Accessed 6

2025].

[38] AsynvAPI Initiative, "Building the future of Event-Driven Architectures (EDA)," [Online].

Available: https://www.asyncapi.com. [Accessed 6 2025].

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 100 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

[39] Swagger, "Open API Specification," [Online]. Available: https://swagger.io/resources/open-api/.

[Accessed 6 2025].

[40] Swagger, "Swagger Editor," [Online]. Available: https://swagger.io/tools/swagger-

editor/download/. [Accessed 6 2025].

[41] Robot Framework Foundation, "Robot Framework," [Online]. Available:

https://robotframework.org. [Accessed 6 2025].

[42] BlazeMeter, "Taurus," [Online]. Available: https://gettaurus.org. [Accessed 6 2025].

[43] Selenium, "Selenium," 2025. [Online]. Available: https://www.selenium.dev/.

[44] Istio, "The Istio service mesh," 2025. [Online]. Available: https://istio.io/latest/about/service-

mesh/.

[45] Envoy, "Envoy Gateway," 2025. [Online]. Available: https://gateway.envoyproxy.io.

[46] KongHQ, "Kong Gateway," 2025. [Online]. Available: https://konghq.com/products/kong-

gateway.

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 101 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Annex 1-Network Intent

Intent:
id: '\''mncc_l2sm_1'\''

userLabel: '\''cloud_continuum'\''

intentExpectations: -

expectationId: '\''1'\''

expectationVerb: '\''DELIVER'\''

expectationObject:

objectType: '\''K8S_L2_NETWORK'\''

objectInstance: '\''spain-network-8'\''

objectContexts: -

contextAttribute: '\''name'\''

contextCondition: '\''IS_EQUAL_TO'\''

 contextValueRange: '\''spain-network-8'\''

contextAttribute: '\''providerName'\''

contextCondition: '\''IS_EQUAL_TO'\''

contextValueRange: '\''default-slice'\''

contextAttribute: '\''domain'\''

contextCondition: '\''IS_EQUAL_TO'\''

contextValueRange: '\''api.main.nemo.onelab.eu'\''

contextAttribute: '\''pod_cidr'\''

contextCondition: '\''IS_EQUAL_TO'\''

contextValueRange: '\''10.1.0.0/16'\''

expectationTargets:

targetName: '\''isolatedConnectivity'\''

targetCondition: '\''IS_EQUAL_TO'\''

targetValueRange: '\''true'\''

expectationId: '\''2'\''

 expectationVerb: '\''DELIVER'\''

expectationObject:

objectType: '\''K8S_CLUSTER_CONFIG'\''

 objectInstance: '\''spain-network-8'\''

 objectContexts:

contextAttribute: '\''name'\''

contextCondition: '\''IS_EQUAL_TO'\''

contextValueRange: '\''staging-2'\''

contextAttribute: '\''bearer_token'\''

contextCondition: '\''IS_EQUAL_TO'\''

contextValueRange:

'\''eyJhbGciOiJSUzI1NiIsImtpZCI6IjZGbm42VVhCWVp4dVhRVEYwSGZTdnJsZEdXX1VsX0lSSGlGZzlFUGpua0kifQ

.eyJhdWQiOlsiaHR0cHM6Ly9rdWJlcm5ldGVzLmRlZmF1bHQuc3ZjLmNsdXN0ZXIubG9jYWwiLCJrM3MiXSwiZXhwIjoxN

zc3NzIyODUyLCJpYXQiOjE3NDE3MjI4NTIsImlzcyI6Imh0dHBzOi8va3ViZXJuZXRlcy5kZWZhdWx0LnN2Yy5jbHVzdGV

yLmxvY2FsIiwianRpIjoiZWI2OTRiMjYtZDg2ZS00NDIyLWJmZTktZWVkYzgwOTg3OGI3Iiwia3ViZXJuZXRlcy5pbyI6e

yJuYW1lc3BhY2UiOiJuZW1vLW5ldCIsInNlcnZpY2VhY2NvdW50Ijp7Im5hbWUiOiJsMnNtLWNvbnRyb2xsZXItbWFuYWd

lciIsInVpZCI6IjdiYzIyMTRkLWZmOGEtNDlmYi04YzYxLTczNjE5YmM0MDhiYyJ9fSwibmJmIjoxNzQxNzIyODUyLCJzd

WIiOiJzeXN0ZW06c2VydmljZWFjY291bnQ6bmVtby1uZXQ6bDJzbS1jb250cm9sbGVyLW1hbmFnZXIifQ.aWq9F6wrwslk

nWryEWfkd7lONizjc47WWl-hyn-

WshkyjXKAqUJF86WFD5arbNIyGOglsNop92yN_fSA_FnHCv5F5S7oYXEx0BLlB3NDn3MCICAtklfWFpZ_hHlc2PW1Al8Ua

2jvogQyDhx4LFx8jR7xBJatY6JkxXKrhhLBIZCx7VVhIIEz2B0Niy9OCpU2rvsN8YCB9CfTnDwimVFtQjZ5eG6TXZr8N6n

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 102 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

xE1Uo68pqfoO7z34GJVWWWWJdwLlqzS5UAdLmlccx0XZutr9-9R1dFfj6hvMnxKP-LXOYLkKVidtzeqr-

X8IrkAHDuM4IqOY1_c4fdC89Un6L-y0hOg'\''

 contextAttribute: '\''api_key'\''

contextCondition: '\''IS_EQUAL_TO'\''

contextValueRange: '\''https://api.s2.nemo.onelab.eu:6443'\''

expectationTargets:

 targetName: '\''isolatedConnectivity'\''

targetCondition: '\''IS_EQUAL_TO'\''

targetValueRange: '\''true'\''

expectationContexts:

 contextAttribute: '\''k8s_l2_network'\''

contextCondition: '\''IS_EQUAL_TO'\''

contextValueRange: '\''spain-network-8'\''

contextAttribute: '\''namespace'\''

contextCondition: '\''IS_EQUAL_TO'\''

contextValueRange: '\''0937609e-a6c4-43d3-b0dd-2d7c3641ee0c'\''

intentContexts:

 contextAttribute: '\''NEMO_WORKLOAD'\''

contextCondition: '\''IS_EQUAL_TO'\''

contextValueRange: '\''0937609e-a6c4-43d3-b0dd-2d7c3641ee0c'\''

 intentPriority: 1

 observationPeriod: 60

intentAdminState: '\''ACTIVATED'\'''

https://api.s2.nemo.onelab.eu:6443/

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 103 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Annex 2-LCM subcomponent

class WorkloadLifecycleManager:

 """MO integration

 """

 def parse_lifecycle_message(self, message):

 message_type = message['type']

 instance_id = message['workloadID']

 timestamp = message['timestamp']

 try:

 workload_document_instance =

WorkloadDocumentInstance.objects.get(instance_id=instance_id)

 except WorkloadDocumentInstance.DoesNotExist:

 LOG.error('Invalid workload document instance id={}'.format(instance_id))

 return

 match message_type:

 case 'deployment':

 WorkloadDocumentLifecycleEvent.objects.create(

 workload_document_instance=workload_document_instance,

type=WorkloadDocumentLifecycleEvent.WorkloadDocumentLifecycleType.DEPLOYMENT,

 deployment_cluster=message['targetCluster'],

 timestamp=timestamp,

)

 workload_document_instance.cluster_name = message['targetCluster']

 workload_document_instance.status =

WorkloadDocumentInstance.WorkloadDocumentInstanceStatus.DEPLOYED

 workload_document_instance.save()

 case 'migration':

 WorkloadDocumentLifecycleEvent.objects.create(

 workload_document_instance=workload_document_instance,

type=WorkloadDocumentLifecycleEvent.WorkloadDocumentLifecycleType.MIGRATION,

 migration_from_cluster=message['sourceCluster'],

 migration_to_cluster=message['targetCluster'],

 timestamp=timestamp,

)

 workload_document_instance.cluster_name = message['targetCluster']

 workload_document_instance.save()

 case 'undeployment':

 WorkloadDocumentLifecycleEvent.objects.create(

 workload_document_instance=workload_document_instance,

type=WorkloadDocumentLifecycleEvent.WorkloadDocumentLifecycleType.DELETION,

 deployment_cluster=message['targetCluster'],

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 104 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

 timestamp=timestamp,

)

 workload_document_instance.cluster_name = message['targetCluster']

 workload_document_instance.status =

WorkloadDocumentInstance.WorkloadDocumentInstanceStatus.DELETED

 workload_document_instance.save()

 case _:

 LOG.warning('Got message_type: %s', message_type)

 return

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 105 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Annex 3 – ServiceProviderModel

pragma solidity ^0.8.0;

import "./NemoTokenEstimationSetupContract.sol";

import "./NemoFunds.sol";

import "./InfrastructureOwnerModel.sol";

contract ServiceProviderModel {

 NemoTokenEstimationSetupContract public nemoTokenEstimationSetup;

 NemoFunds public nemoFunds;

 InfrastructureOwnerModel public infrastructure;

 address public owner;

 struct ServiceMetrics {

 string serviceId;

 string clusterId;

 string region;

 uint256 cpuUsage;

 uint256 memoryUsage;

 uint256 clusterCpuUsage;

 uint256 clusterMemoryUsage;

 }

 event ServiceComputeTokens(

 string serviceId,

 string clusterId,

 uint256 cpu,

 uint256 ram,

 uint256 tokens

);

 mapping(string => string[]) public ServiceProviderWorkflows;

 mapping(string => uint256) public greenEnergyRewards;

 constructor(

 address _nemoTokenEstimationSetupContractAddress,

 address _nemoFundsAddress,

 address _infrastructure

) {

 nemoTokenEstimationSetup = NemoTokenEstimationSetupContract(

 _nemoTokenEstimationSetupContractAddress

);

 nemoFunds = NemoFunds(_nemoFundsAddress);

 infrastructure = InfrastructureOwnerModel(_infrastructure);

 // Initiate greenEnergyRewards mapping

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 106 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

 greenEnergyRewards["0%"] = 0;

 greenEnergyRewards["20%"] = 20000000;

 greenEnergyRewards["40%"] = 40000000;

 greenEnergyRewards["80%"] = 80000000;

 greenEnergyRewards["100%"] = 100000000;

 }

 modifier checkRegistration(string memory serviceId) {

 require(

 !nemoFunds.isCustomerRegistered(serviceId),

 "The customer is already registered!"

);

 _;

 }

 modifier checkRegionData(string memory region) {

 require(

 nemoTokenEstimationSetup.isRegionSet(region),

 "Data for region must be set before calling this function."

);

 _;

 }

 function register(

 string memory serviceId

) public checkRegistration(serviceId) {

 string memory _identifier = "ServiceProvider";

 nemoFunds.registerCustomer(serviceId, _identifier);

 }

 function removeServiceProviderInfo(string memory serviceId) public {

 require(

 nemoFunds.isCustomerRegistered(serviceId),

 "The customer is not registered!"

);

 nemoFunds.removeCustomer(serviceId);

 }

 function enabledIngress(string memory serviceId) public {

 require(

 nemoFunds.isCustomerRegistered(serviceId),

 "The customer is not registered!"

);

 nemoFunds.enabledIngress(serviceId);

 }

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 107 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

 function computeCpuCredits(

 ServiceMetrics memory _metrics,

 uint256 _regionalCpuCosts,

 uint256 _cpuBaseRate

) public pure returns (uint256) {

 // CPU

 uint256 _cpuTokens = 0;

 uint256 _cpuUsage = _metrics.cpuUsage * 10 ** 3;

 if (_cpuUsage > _regionalCpuCosts) {

 _cpuTokens =

 ((_cpuUsage) / _metrics.clusterCpuUsage) *

 10 ** 8 +

 (_cpuBaseRate * 10 ** 5);

 }

 return _cpuTokens;

 }

 function computeMemoryCredits(

 ServiceMetrics memory _metrics,

 uint256 _regionalMemoryCosts,

 uint256 _memoryBaseRate

) public pure returns (uint256) {

 // RAM

 uint256 _ramTokens = 0;

 uint256 _ramUsage = _metrics.memoryUsage * 10 ** 3;

 if (_ramUsage > _regionalMemoryCosts) {

 _ramTokens =

 (_ramUsage / _metrics.clusterMemoryUsage) *

 10 ** 8 +

 (_memoryBaseRate * 10 ** 5);

 }

 return _ramTokens;

 }

 function computeCredits(

 ServiceMetrics memory _metrics

) public checkRegionData(_metrics.region) {

 require(

 nemoFunds.isCustomerRegistered(_metrics.clusterId),

 "The cluster is not registered!"

);

 require(

 nemoFunds.isCustomerRegistered(_metrics.serviceId),

 "The service is not registered!"

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 108 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

);

 (

 bool _highDemand,

 uint256 _highDemandCost,

 uint256 _regionalCpuCosts,

 uint256 _regionalMemoryCosts

) = nemoTokenEstimationSetup.getRegionInfo(_metrics.region);

 (

 uint256 _cpuBaseRate,

 uint256 _memoryBaseRate,

 string memory _greenEnergy

) = infrastructure.getInfrastructureCostsAndGreenEnergy(

 _metrics.clusterId

);

 uint256 _tokens = 0;

 uint256 _greenEnergyReward = 0;

 // CPU

 uint256 _cpuUsage = _metrics.cpuUsage * 10 ** 3;

 //RAM

 uint256 _ramUsage = _metrics.memoryUsage * 10 ** 3;

 _tokens =

 computeCpuCredits(_metrics, _regionalCpuCosts, _cpuBaseRate) +

 computeMemoryCredits(

 _metrics,

 _regionalMemoryCosts,

 _memoryBaseRate

);

 if (_highDemand) {

 _tokens += _highDemandCost;

 }

 // Check infrastructure green energy percentage and charge less

 _greenEnergyReward = greenEnergyRewards[_greenEnergy];

 if (_tokens >= _greenEnergyReward) {

 _tokens -= _greenEnergyReward;

 }

 _tokens = _tokens / 1000;

 nemoFunds.makeTransaction(

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 109 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

 _metrics.serviceId,

 _metrics.clusterId,

 _tokens

);

 emit ServiceComputeTokens(

 _metrics.serviceId,

 _metrics.clusterId,

 _cpuUsage,

 _ramUsage,

 _tokens

);

 }

}

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 110 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Annex 4-Intent for network connectivity request

Intent for network connectivity request. L2S-M network request example.

Intent:

 id: 'mncc_l2sm_1'

 userLabel: 'cloud_continuum'

 intentExpectations:

 - expectationId: '1'

 expectationVerb: 'DELIVER'

 expectationObject:

 objectType: 'K8S_L2_NETWORK'

 objectInstance: 'spain-network'

 objectContexts:

 - contextAttribute: 'name'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'spain-network'

 - contextAttribute: 'providerName'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'default-slice'

 - contextAttribute: 'domain'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'api.main.nemo.onelab.eu'

 - contextAttribute: 'pod_cidr'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: '10.1.0.0/16'

 expectationTarget:

 - targetAttribute: 'isolatedConnectivity'

 targetCondition: 'IS_EQUAL_TO'

 targetValueRange: 'true'

 - expectationId: '2'

 expectationVerb: 'DELIVER'

 expectationObject:

 objectType: 'K8S_CLUSTER_CONFIG'

 objectInstance: 'spain-network'

 objectContexts:

 - contextAttribute: 'name'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'staging-1'

 - contextAttribute: 'bearer_token'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'eyJhbGciO…

 - contextAttribute: 'api_key'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'https://api.staging1.nemo.onelab.eu:6443'

 expectationTarget:

Document name:
D4.3 Advanced NEMO platform & laboratory testing results.

Final version
Page: 111 of 111

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

 - targetAttribute: 'isolatedConnectivity'

 targetCondition: 'IS_EQUAL_TO'

 targetValueRange: 'true'

 expectationContexts:

 - contextAttribute: 'k8s_l2_network'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'spain-network'

 - contextAttribute: 'namespace'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'cbcb208a-d535-434b-bb35-217a64bd516b'

 - expectationId: '3'

 expectationVerb: 'DELIVER'

 expectationObject:

 objectType: 'K8S_CLUSTER_CONFIG'

 objectInstance: 'spain-network'

 objectContexts:

 - contextAttribute: 'name'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'staging-2'

 - contextAttribute: 'bearer_token'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'eyJhbGc…`

 - contextAttribute: 'api_key'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'https://api.s2.nemo.onelab.eu:6443'

 expectationTarget:

 - targetAttribute: 'isolatedConnectivity'

 targetCondition: 'IS_EQUAL_TO'

 targetValueRange: 'true'

 expectationContexts:

 - contextAttribute: 'k8s_l2_network'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'spain-network'

 - contextAttribute: 'namespace'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'nemo-workload'

 intentContexts:

 - contextAttribute: 'NEMO_WORKLOAD'

 contextCondition: 'IS_EQUAL_TO'

 contextValueRange: 'cbcb208a-d535-434b-bb35-217a64bd516b'

 intentPriority: 1

 observationPeriod: 60

 intentAdminState: 'ACTIVATED'

