Next Generation Meta Operatj ‘gystem

D4.3 Advanced NE fform &
laboratory testing kesufs. Final version

Document Identification

Status 30/05/2025

Version ' Submission Date 17/06/2025

Related WP Document Reference D4.3

RG] , . Dissemination Level (*) PU
Deliverable(s)

Lead Participant Lead Author Dimitrios Skias

Contributors Reviewers Enric Pages-Montanera
AEGIS, SPACE, (ATOS)
ATOS, MAG, ENG,
ESOFT, SU, COMS

Jonathan Klimt (RWTH)

Integration, validation, API, SDK, Lifecycle Management, Migration Controller, automation

Disclaimer for Deliverables with dissemination level PUBLIC

This document is issued within the frame and for the purpose of the NEMO project. This project has received funding from the European
Union’s Horizon Europe Framework Programme under Grant Agreement No. 101070118. The opinions expressed and arguments employed
herein do not necessarily reflect the official views of the European Commission.

The dissemination of this document reflects only the author’s view, and the European Commission is not responsible for any use that may be
made of the information it contains. This deliverable is subject to final acceptance by the European Commission.

This document and its content are the property of the NEMO Consortium. The content of all or parts of this document can be used and
distributed provided that the NEMO project and the document are properly referenced.

Each NEMO Partner may use this document in conformity with the NEMO Consortium Grant Agreement provisions.

(*) Dissemination level: (PU) Public, fully open, e.g., web (Deliverables flagged as public will be automatically published in CORDIS project’s
page). (SEN) Sensitive, limited under the conditions of the Grant Agreement. (Classified EU-R) EU RESTRICTED under the Commission
Decision No02015/444. (Classified EU-C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified EU-S) EU
SECRET under the Commission Decision No2015/444.

Document Information

&l NEMO

List of Contributors

Name Partner

Rubén Ramiro ATOS

Enric Pages-Montanera ATOS

Antonis Gonos ESOFT

Dimitrios Skias INTRA . ¢
Kostas Vrioni MAG \
Astik Samal MAG N
Nikos Drosos SPACE ﬂ
Emmanouil Bakiris SPACE

Theodore Zahariadis SYN

Ilias Seitanidis SYN

Victor Gabillon TSG

Spyros Vantolas AEGI .

Hassane Rahich SU

Matija Cankar _KOMS ‘,

Document History
Version Date

Change editors

0.1 19/02/2025 | Dimitrios Skia®INTRA) ToC 1% version
0.2 20/04/2025 | DimitriosSkias (] TRA) Final ToC
0.3 13/05/2025 | INT ATOS, UC3M, Initial contributions
TIgT IS, SU, MAG,
(]
0.4 20/05R02 MDYt ios Skias (INTRA) First round of contributions
0.5 23/5/ , MAG, TID, SYN Second round of contributions
0.6 3 TRA, ATOS, UC3M, SYN, Final round of Contributions
COMS
0.7 {’2(25 |RWTH, ATOS Peer-Review ready version
0. 6/2025 |INTRA, MAG, TID, SYN, ATOS |Reviewers’ comments consolidation
. 13/6/2025 |INTRA, SYN Document finalization
1.0 17/06/2025 | ATOS Quality Control & Submission
Quality Control
Role Who (Partner short name) ‘ Approval Date
Deliverable leader Dimitrios Skias (INTRA) 17/06/2025
Quality manager R. Valle Soriano (ATOS) 17/06/2025
Project Coordinator E. Pages (ATOS) 17/06/2025
Document name: Eicﬁ C:r\;ggced NEMO platform & laboratory testing results. Page: 26f 111
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Table of Contents

Document INFOrMAtIONoo.eeiiriieieiii ettt ettt ettt et e b sae e eesaeeneenees 2
TaADIE OF COMEENLSeetiiiieiieeeee ettt ettt ettt sh e et e s bt et e bt e bt e sbeesatesabeeateenbeebeesbeesneesaeeeane 3
LSt OF TADIES ...ttt ettt a et s b et e et ebt et e bt e st et e eae et e bt et e naeeneenen 6
LIST OF FIGUIES ..ottt ettt ettt ettt e bt e s it e et e et e e e e e enees

LISt OF ACTOMYIMISeeuvietieiiesiieetieteeteesteesteeseressteesseesseesseesseesssessseassessseesseesssesssesssensseesseessessseesseess§

Executive Summary

1 INETOAUCTION weeeieiiieeeeeee et e e ettt e e e e e e s et aeeeeeesessenasaaeeeessnnnny g : c 12

1.1 Purpose of the dOCUMENL..........cccviiriiiiieieerierieeie e see e ere e TR e evaeseeseeesenenenas 12
1.2 Relation to other project Work..........ccooceeviieiiiiiiiniineeeee s Q 12
1.3 Relation between D4.3 and D4.2coooeieiiiieeieeeeeeeeens & 12
1.4 Structure of the document............ccoecveriieiieneeniienieereeeeere e LR S, 14
2 NEMO Integration, Validation & Verification approach and to@ls.... Q... W cveevveriiiciieiiiieieen, 15
2.1 NEMO CI/CD Environment & Tools
2.1.1 Open-Source repositoryccvvevveervervennnens

2.1.2 NEMO Automated Deployment

2.4 Integration & V&V Methodology SRRIANccoveeiriiiiieiiiiiieieeie ettt ereereereeeeeseaesenas 26
2.4.1 NEMO V&V docum@ntationZ...........c.cceovieiiuiiiiiieeiieeeieecreeeeieeeereeeenreesreeeseneesveeenns 26

3 NEMO Integrated Platform (Fi (5372 (o) 1) FO USSP 28
3.1 Meta-OS functiogalityﬁ(3 O U TP 28
3.1.1 NEMEQ If§gast 1€ MANAZEIMENTc.uviiiiiiiiiiieiiie ettt 28

3.2 NEMO Open ation ACHTVITIES uveevveeureetiesteesereeereeereesreesbeesseesteesssessseesseesseessaesssenssenssennns 31
32,1 ABRGEEE..........c.ooeiie ettt ettt et seeneennas 32
322 1814 @ 1 TSRS PUTRSP 32
@ros4NRG ... 33

4 (o3 1T} £ TSP 33

3.2% MARINEMO ...ttt sttt sttt st 34
3.2.6 IMELAFOX ...ttt ettt ettt et et e et e et e et ae e re e teteeneenes 34

4 NEMO Service Management Layer UPAatescocvrviirriierienienieeieeieeieeniee e see e eseeeseeesenesnneenns 36
4.1 Intent-based Migration CONIOIIET........ccueviiiiiiiieiieieettesee ettt ereesreesteestbesereeebeeereesbeeseeseeas 36
4.1.1 OVEIVIEW ..ttt ettt ettt ettt b ettt et et s bt et e eb e e st et e e bt e e e s bt e tesbeeseenbesaeenes 36
4.1.2 F N (LT 1 (< USSP 36
4.1.3 Interaction with other NEMO COMPONENLS........ccvervieeiierierieniieniiesieeeeeereesreesieeseneens 38

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 3of 111

4.1.4 COMCIUSION .ttt et e e et e e e e e e e e et e e eeeeesseeaaaeeeeessessassssreeeesssanas 39

4.2 Plugin & Applications Lifecycle Managerccceceerierieniiiieiiieieesieesee st 39
4.2.1 ATCRITECTUTE ...ttt ettt ettt s st e s 40
4.2.2 CONCIUSION ..ttt ettt ettt st b e et e st e e st et e sb e et e s beeseebesaeenes 41

4.3 Monetization and Consensus-based Accountabilityccoeceeriieriiiiiiniienienie e, 41
43.1 OVETVIBW ...oniiiiieitete ettt ettt e

432 ATCRITECIUTIE ...ttt ettt sbte st eee e e 8
433 Interaction with other NEMO components.............ccveeverveevenrencreereenneennes
434 RESULILS ...t P
435 MOCA Business Models
4.4 Intent-based SDK/APIccooiiiiiiiiiieeeeee ettt

441 OVEIVIEW ..ttt ettt ettt ettt s eeeeesaeseeeneens
442 ATChItECHUIE ...t
443 Interaction with other NEMO components
444 CONCIUSION ...ttt e 8

5 NEMO scenario-driven verification & results..................

5.1 NEMO Cluster registration — resource provigioning

5.1.1 Verification scenario

5.1.2 Resultsoooevenieieee AL
5.2 NEMO workload registration &

5.2.1 Verification scenario..........

522 Results

5.3.1 Verific®i
532 Resu

5.4 NEMO workld

5.4.1 e
54.2 ‘\@ TES ettt 82
cure Execution ENVITONMENtcccoiiiiiiiiieieieeesce e 92
VerifiCation SCENATIO.......eeueerteeeieterteeieteettete st eetet et ete et eneetesseeneesteeneeneesseeneenseeneenes 93
5.5¢ RESUILS ettt sttt st st b 93
0 COMCIUSIONSeentieieiiete ettt ettt e e bt et e et e st et e sbeea e e seestenseeseentenseeneensesseemsenseeseenseaseeneenseeneensenneensenses 97
T RETETEIICES ...ttt ettt b et b ettt bt et e e bt e et et e bt et s bt et e bt ebt et she et 98
ANNEX T-NEtWOTK INEENL.eeiiiiiiieeiee ettt et ettt e ae e e e e saeeneeees 101
ANNEX 2-LCM SUDCOMPONENLvieuvieiieiieeiieeiieieeieesttesteeseteeseesseesseesseesssessseasseesseesseesseessesssesssessseens 103
Annex 3 — ServiceProviderMOdeloouiiiiiieeee e e 105

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 40f 111

Annex 4-Intent for network connectivity request

0

Document name: D4.3 Advgnced NEMO platform & laboratory testing results. Page: 50f 111
Final version
Reference: D4.3 |Disseminction: IPU |Version: |1 .0 Status: Final

&8s NEMO

List of Tables

Table 1. Differences between D4.3 and D4.2 13
Table 2. Integration testing - scenario template 27
Table 3. NEMO integration testing - Checkpoints template 27
Table 4. NEMO dev cluster (K8S) 28
Table 5. Staging 1 cluster (K8S) 29
Table 6. Staging 2 Cluster (K3S) 30
Table 7. Production Cluster (k8S) 31
Table 8. Cluster Metrics 57
Table 9. Intent for network connectivity request. L2S-M network request attributes. il Y 61

4

O
&

o

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 60f 111

List of Figures

Figure 1. NEMO code repository in Eclipse Research labs

Figure 2. NEMO CI/CD organization

Figure 3. NEMO Login page

Figure 4. NEMO main management page

Figure 5. Registered Workloads View

Figure 6. Create Workload View

Figure 7. Create Workload Instance View

Figure 8. Workload Instances main View

Figure 9. Intent Management View [

Figure 10. Create Intent View

Figure 12. Cluster Registration Form

A
Figure 11. Resource Provisioning View N

Figure 13. Intent-Based API endpoints

Figure 14. Sample of the expected parameters' body of the workload POST endpoi

Figure 15: NEMO project phases and main meta-OS version releases

Figure 16. IBMC Architecture

Figure 17. Migration Sequence Diagram

Figure 18. LCM high-level architecture

Figure 19. MOCA architecture

Figure 20. MOCA integration diagram

Figure 21. Example of deploying dataset

Figure 22. Example of contract deployment A
Figure 23. Final Architecture diagram of Intent-Basgd API
Figure 24. Cluster registration sequence diagram)
Figure 25. LCM home page P

Figure 26. Clusters overview page)R
Figure 27. Cluster registration form .)

Figure 28. Cluster pending status

Figure 29. MOCA cluster registration

Figure 30. Meta-Orchestrator respon

Figure 31. Register cluster to blo

Figure 32. Updated clusteg sta

Figure 33. Workload pgovisj

Figure 34. NEMO worke

Figure 35. Network wo aci loyment workflow
Figure 36. Arrival gf i id first filter.

Figure 37. gr execution

Figure 38. unolations to be used by the workload.
Figure 39. esource created in S1 cluster

Fig k resource created in S2 cluster

. Pod deployed in S1 with L2S-M annotations

Pod deployed in S2 with L2S-M annotations

. Ping between pods in SI1 and S2 clusters

Figure 44. Ping between pods in S1 and S2 clusters

Figure 45. Intent-Based Migration Sequence Diagram

Figure 46. CFDRL Migration Sequence Diagram

Figure 47. Horizontal Scaling Sequence Diagram

Figure 48. LCM Workload Initial Visualization

Figure 49. Availability Intent Creation

Figure 50. Ibmc-controller processing the intent

Figure 51. Dev Cluster Ibmc-agent logs

16
17
18
18
19
20
20
21
22
22
23
23
24
25
26
37
38
40
42
43
46
47
49
52
53
54
54
55
55
55
56
56
58
59
60
65
65
65
66
66
67
67
67
68
68
69
69
72
72
73
73

D4.3 Advanced NEMO platform & laboratory testing results.

Document name: . .
Final version

Page: 7of 111

Reference: D4.3 |Disseminction: |PU |Version: |1.0 Status: Final

Figure 52. Staging Cluster Ibmc-agent logs 73
Figure 53. LCM workload final visualization 74
Figure 54. LCM complete workflow view 74
Figure 55. Inputs/outputs from CFDRL point of view 78
Figure 56. JSON Schema for MO-CFDRL RabbitMQ communication 78
Figure 57. Messages used for Scaling 79
Figure 58. Log of the action taken by CFDRL and sent to the Cluster Ibmc 80
Figure 59. Message published by ibmc 80
Figure 60. Log of the Migration action being implemented by the cluster IBMC 80
Figure 61. CFDRL decides a scaling action and sends it through Rabbit MQ to MO 81
Figure 62. Meta orchestrator receives the scaling action and triggers the scaling 81
Figure 63. The number of replicas is checked and it is set to 3 as requested 81
Figure 64. Workload Lifecycle Sequence Diagram P 81
Figure 65. LCM User access \ 83
Figure 66. Example of intent conditions N 83
Figure 67. Intent Evaluator logs q 84
Figure 68. Intent API receives the Intent Evaluation report 84
Figure 69. Cluster metrics from PPEF 85
Figure 70. Cluster metrics RabbitMQ payload 85
Figure 71. The CMDT component includes a SwaggerUI endpoint with up-to, cumentation and examples.
85
Figure 72. Detailed information about the NEMO workload pod showi status, traffic, and
response times. 86
Figure 73. Detailed information about the pod’s traffic. Additim%p W its internal traffic, as well as
inbound and outbound traffic with foreign pods. 87
Figure 74. Tree-like representation of all deployments, licasets,ytd pods, excluding non-NEMO workload
components 87
Figure 75. Manage workloads] 88
Figure 76. Manage workload instances 88
Figure 77. Workload Instance lifecycle timplgge)N 89
Figure 78. LCM workload deployment tree) 89
Figure 79. Workload intents management 90
Figure 80. Resource provisioning 90
Figure 81. Cluster performance 91
Figure 82. Intent Fulfilled 91
Figure 83. Intent Violatio@ 92
Figure 84. Unikernel e ce diagram 92
Figure 85. publishToSe¢ 95
Figure 86. SEE succes Ty 96
Figure 87. Schem ommunication channels used by the MO API and the SEE 96

<

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 8of 111

List of Acronyms

&8s NEMO

Abbreviation / ‘ Description

acronym

AAA Authentication, Authorization, and Accounting
Al Artificial Intelligence

API Application Programming Interface

CD Continuous Delivery

CFDRL Cybersecure Federated Deep Reinforcement Learning
CIDR Classless Inter-Domain Routing

CLI Command Line Interface

CMDT Cybersecure Microservices’ Digital Twin
CI Continuous Integration

CLI Command-line Interface

CNCF Cloud Native Computing Foundation
CPU Central Processing Unit

CRD Custom Resource Definition

DApps Distributed Applications

DLT Distributed Ledger Technology

DNS Domain Name System

Dx.y Deliverable number y belonging to WP x
E2E End-to-End

EC European Commissi v

EV Electric Vehicles)

FL Federated Learning

GDPR General Data Drdggction Regulation

GPU Qusifigynit

gRPC kgedure Call

GUI T Interface

IBA

IBMC ased Migration Controller

IdM

IDS lo. 2\ ntrusion Detection System

1P Interplanetary File System

Io Internet-of-Things

IT Information Technology

KS8s Kubernetes

LAN Local Area Network

LCM Life-Cycle Manager

LL Living Lab

meta-OS Meta-Operating System

ML Machine Learning

Document name: Eicﬁ Cgr\;%gced NEMO platform & laboratory testing results. Page: 90f 111
Reference: D4.3 |Dissemination: [PU [Version: [1.0 Status: Final

&l NEMO

Abbreviation / Description

acronym

MLaaS ML-as-a-Service

mNCC Meta Network Cluster Controller

MO Meta-Orchestrator

MOCA Monetization and Consensus-based Accountability

MQTT Message Queuing Telemetry Transport

NAC NEMO Access Control

(0N Operating System

0SS One-stop-shop)
PAYG Pay-As-You-Go ’\
PV Photovoltaic N
PPEF PRESS & Policy Enforcement Framework ﬁ
RaaS Resource-as-a-Service

REST Representational State Transfer

SDN Software Defined Network

SEE Secure Execution Environment

SME Small-Medium Enterprise .

SMP Slice Manager Plugin

SOM System-on-Module P y

Ul User Interface .

UPS Uninterruptible Power)S)‘lp& /

UX User Experience ,‘ R

YAML yet another markup language

&
S

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 100of 111

Executive Summary

The present deliverable, D4.3, entitled “Advanced NEMO platform & laboratory testing results-Final
version” aims to provide a complete and detailed overview of the integration process carried out within
the framework of the Next Generation Meta Operating System project towards its realization. Moreover,
this document sheds light on the final technical specifications of the components that were developed in
the context of the Work Package 4, namely the Intent-based API, MOCA, LCM and the IBMC.

Within the scope of this document several other aspects that enhance the understanding of the inf@gration

and validation process followed in NEMO are discussed. To this end, the infrastructure rel as

such as the hardware specifications of OneLab facilities that host the NEMO meta-OS fr@¥nfeWark are
ﬁd S

presented. The ZeroOps configuration and deployment procedure followed, as describgd, an'®€ utilized
as a paradigm for future deployments of the NEMO meta-OS in 3™ party infrastruc In addition,
comprehensive documentation tailored for 3™ parties that aim to utilize NEM -OS is included,
presenting the steps that are necessary to access, register and deploy worklo EMO meta-OS.

the NEMO meta-OS
(Qblished and adopted. The
efe conducted in laboratory

The present document intents to provide insights on the final integrated vg
which is the result of a Validation and Verification methodology that
associated work concerns also the scenario-driven integration tes t
setting including the supporting CI/CD environment and tools.

Finally, the document is foreseen to be used as the best p
of integration and validation procedures. NEMO sinc
architectural patterns that made the process of, integra
interconnecting components and debugging issy€s in the En

ha ok for other projects in terms
egifining provided state-of-the-art
and validation easier, in terms of
-to-End system workflows.

&
S

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 11 of 111

1 Introduction

1.1 Purpose of the document

Deliverable D4.3 “Advanced NEMO platform & laboratory testing results-Final version” is the second
and final version of the NEMO platform-laboratory results reporting. This document provides the
updates and optimizations made since the delivery of deliverable D4.2 “Advanced NEMO platform &
laboratory testing results-Initial version” [1] that aimed to provide the main guidelines for Ae testing
and integrating steps to be followed towards NEMOQ’s validation. Moreover, the updated w ows
used for these components’ interactions are reported in the following sections. As D4.3 ig/8ansideted
the final version of the integration deliverables of NEMO, an overview of the workfl y the
components of other WPs are presented towards an End-to-End workflow presentati‘&

1.2 Relation to other project work

Deliverable D4.3 is tightly connected to D4.2, as it is the second version of d reports the updates of
the work initially described in D4.2. In addition, D4.3 reports the issue eX¥omponent owners met
during the finalization of their components. D4.3 is also strongly c th D4.1 [2] on which the
integration methodology to be followed by the project comp
preliminary integration activities and testing results that ong the more mature NEMO
components. In D4.3, the final version of the NEMO meta- ed over as well as the updated

implemented by each task. Furthermore, taskf T4.4, responsible for the integration of the NEMO
components vastly committed to the design Qf't

requirements defined within WP1 [34@nd reported on the related deliverables are validated in the current
deliverable and any change of the ﬁ gported. The benchmarking definition provided by task T1.3 is

demonstrated through the i t1d '
contributed to WP2 and®V P34 terprs #providing the best practices related to the integration procedure,
the integration steps/A anie's of these two WPs are being reported in this deliverable.

In D4.2, the inf

were presefitgd, in¥4.3 the final updates and optimizations carried out by the components’ owners are
de . dition, the final workflows of the WP4 and other WPs are presented to provide a
co picture of the End-to-End workflow of NEMO. While the two deliverables share some

comm apters, they have several differences, for the ease of the reader these changes are described
in Table’1. The structure of D4.3 has been changed compared to D4.2 to provide a better understanding
of the NEMO integration process and the updates of the WP4 tools to the reader. New subsections were
added to incorporate the integration activities carried out by the Open Call projects as well as some of
the subsections of D4.2 were converted to standalone sections in D4.3 to provide more details about the
progress of the Project and the integration pipelines.

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 12 0f 111

Table 1. Differences between D4.3 and D4.2

m
[

ol 7 NEMO

Section in D4.3

Section in D4.2

Differences

1. Introduction

1. Introduction

Several updates in this section

1.1 Purpose of the document

1.1 Purpose of the document

Minor update

1.2 Relation to other project work

1.2 Relation to other project work

The section has been updated

1.3 Relation between D4.3 and D4.2

New section in D4.3

1.4 Structure of the document

1.4 Structure of the document

The section has been updated

2. NEMO Integration, Validation &
Verification approach and tools

2. Methodology

Several updates in this section

2.1 NEMO CI/CD Environment & Tools

2.1 NEMO CI/CD Environment & Tools

Several updates in this Section.

2.2 3rd Party documentation of NEMO meta-
oS

New Section in D4.3

2.3 Cloud/Edge/loT Integration and
Validation Infrastructure

2.2 Cloud/Edge/loT and

Validation Infrastructure

Integration

The section has been updated

2.4 Integration & V&V Methodology & Plan

2.3 Integration & V&V Methodology & Plan

Minor Updates

3 NEMO Integrated Platform (Final Version)

2.5 NEMO Integrated Platform

New Section in D4.3, Updated

3.1 Meta-0S functionality in NEMO v2

2.5.1 Meta-0S functionality in NEMO v1

The section has been updated

3.2 NEMO Open Call integration activities

New Section in D4.3

4. NEMO Service Management Layer

3. NEMO Service Management Layer

Major Updates

4.1 Intent-based Migration Controller 3.1 Intent-based Migration Controller Updated
4.2 Plugin & Applications Lifecycle Manager | 3.2 Plugin & Applications Lifecycle Manager | Updated
4.3 Monetization and Consensus-based | 3.3 Monetization and Consensus-based Updated
Accountability Accountability

4.4 Intent-based SDK/API 3.4 Intent-based SDK/API Updated

5. NEMO scenario-driven verification &
results

4. NEMO scenario-driven verification &
results

Major Updates

5.1 NEMO Cluster registration — resource
provisioning

4.1 NEMO Cluster registration

Major Updates

5.2 NEMO workload registration &
provisioning

4.2 NEMO workload registration,
deployment & provisioning

Major Updates

5.3 NEMO workload scheduling &
orchestration

4.3 NEMO workload migration

Major Updates

5.4 NEMO workload lifecycle management

4.4 NEMO workload lifecycle management

Major Updates

5.5 NEMO WP3 Integration Activities

New section

6. Conclusions

5. Conclusions

The section has been updated

Document name: D4.3 Advgnced NEMO platform & laboratory testing results. Page: 130f 111
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

1.4 Structure of the document

The remainder of this report is organized as follows:

Section 2 contains information on the CI/CD environment of the NEMO meta-OS and on the
OneLab facilities that provide for the integration activities of the first integrated version of the
NEMO meta-OS. In addition, it presents the high-level architecture view of the first integrated
version of the NEMO meta-OS highlighting the key integration activities for each functional
layer and describes the components that are fully or partially integrated.

Section 3 presents the high-level NEMO Integrated Platform along with the 1 ation
activities of the Open Call Projects with NEMO.

Section 4 describes the overview, the architecture, the initial results and the in e% with
other components for the modules that are comprising the Service Managemerg Lgg€r of the
NEMO meta- OS platform, namely the intent-based Migration Controller , the Plugin
& Application Lifecycle Manager (LCM), the Monetization a onsensus based
Accountability (MOCA) and the Intent-based SDK/API. 0

Section 5 sheds light into the integration activities that are conducté@§and materialized the first
integrated version of the NEMO meta-OS, following the scenarj@~auv &V methodology.
Section 6 provides conclusions and insights of the final versj NEMO meta-OS.

Y.,

&
S

Document name:

D4.3 Advanced NEMO platform & laboratory testing results.

Final version Page: 14 0f 111

Reference: D4.3 |Disseminction: |PU |Version: |1.0 Status: Final

2 NEMO Integration, Validation & Verification
approach and tools

2.1 NEMO CI/CD Environment & Tools

2.1.1 Open-Source repository

NEMO is making use of a GitLab CI/CD framework [4] deployed at the Eclipse Research La house
and keep track of the code stack developed within the project. Moreover, within NEMO a dszr roRistry

repository is being used for storing and deploying the generated containers. The pipeli d by
NEMO is integrated with the GitLab repository and utilizes an automated build gﬁ ity that

generates the docker container images [5] based on the architectural tool chains of't ct. The final
step of the pipeline involves the automated deployment of the latest image geneydtC@go the appropriate
server. The use of a centralized versioning system such as GitLab provides efits:

Automates repetitive tasks like running tests and building code.
Integrates code frequently, allowing teams to catch issues soo
Run automated tests and static analysis tools with every co,
Automatically deploy to staging or production enviro

Allow for code review and discussion
Detect vulnerabilities in dependencies

e 6 o6 o o o o o o
—~
=
oo
)
~
=
o
72}
o+
oo
=+
o
o
)
o
=
=
o
w2
=+
@
72}
@
72}
o
=
o
o
Q
ke
=
o)
<
8
S
=
o
72}
|y

On the other hand, apart from the technica bege sing a version control repository, there are other
to provide an opensource meta-OS framework that
will enable local organizations to deploy
continuum For this reason, the NE 40’

and Validating NEM, \

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 150f 111

https://gitlab.eclipse.org/eclipse-research-labs/nemo-project
https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/opencall-1
https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/opencall-2

[in] Q) Searchor goto.. EclpseResearch Labs » @ NEMO Project
Group

| & KMo Project & MEMO Project &

coup ID: 3520
Ba Wanage

B Pl
an mata-Cperating System.
<5 Code
T secwe Subgroups and projects Shared projects Archived projects Q Searc Name + |1
b Analyze » 2 N MNEMO Cybersecurity and Unified_Federated Access Control & 3 0O
2 N NEMO Federated MLOps &2 a3 0o
g« N NEMOInfrastructure Management & 2 O

3 N NEMOKernel &

ge N MEMOPRESS and Policy Enforeement & 20 0o

3¢ N MEMO Service Management & 3 0

@ N MNemoDocs & *0

0 N MNemoHowTo & * 0 2 wieeks ago

Figure 1. NEMO code repository in Eclipse Researc

2.1.2 NEMO Automated Deployment and Configuration

In Software development one of the fundamental steps
development methodology. In this context, within NEMO a pipeline was set up to automate the
deployment and configuration of the NEMO compgnents ithyarious environments. In D4.2 the basic
functionality of the NEMO CI/CD was describgfl along with a short guide* for the developers.

The NEMO components are organized i ster-ofiented hierarchy within the Flux CD [6] [7]
! ach directory contains the configuration files of
. In the final version of the NEMO meta-OS, apart
from the component integration, the integra 3" party infrastructures took place. Figure 2 illustrates
both the OneLab clusters and the pilgt environments. The NEMO CI/CD [6] played a pivotal role as it
was possible to deploy all the N ore components in the Pilots’ clusters without the need for
extensive configuration and i omponents’ owners achieving a high impact with low effort
curve. [

li le of a system is the CI/CD

the components deployed at that parti

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 16 0of 111

MEMO aims to establish itself as the game changer of AlaT-Edga-Cloud Contnuum by introducing an opan source, flaxible, adaptable, cybersecure and muiti-technolagy

https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo/-/blob/main/CI-CD%20Integration.md?ref_type=heads

@ NEMO / FLUX CD / Repository

¥ main v flux-cd / clusters / | + ~ Find file Edit v

Name Last commit Last update
E3 onelab-dev-new nemometaos/mo-api:v2.0.10 15 hours ago
3 onelab-dev Edit ingress.yaml 1Tmonth ago
3 onelab-k3s Merge branch 'main’' into feature/deployment-controller-ibmc 2 weeks ago
3 onelab-production Remove MO API config from staging and producction clusters and... 1day ago
E3 onelab-staging Merge branch 'feature/deployment-controller-ibmc' into 'main’ 1day ago
E3 smart-farming-pilot Velero chart added to staging cluster 1day ago
E3 smart-media-pilot Merge branch 'service/smart-media' into 'main’ 16 hours ago

Figure 2. NEMO CI/CD or a ’

2.2 3" Party documentation of NE eta-O

Within the NEMO Meta-OS project, a fra
through Zero DevOps Tools was desig
practices of microservices [8] architectur

that y/ill enable the effortless deployment of services
iny ented. The derived framework based on the best
loyphent in a Kubernetes [9] [10] [11] cluster environment
provides to the 3™ party user two interface interact with. A user-friendly graphical user interface
based on the best practices of Ul nd a REST API for service-to-service interaction with NEMO,
allowing the 3™ party user to deve dered interactions with NEMO.

The User is initially lan.ded
based on the user catggor

I age of NEMO, Figure 3, to authenticate and be categorized
cribed 1n deliverable D1.3 [12]. The authentication mechanism used is
based on the Keycl ework which is a well-known and established identity management
system widely used rn critical systems. After the user is successfully authenticated, he is
redirected to the i O management page, Figure 4. In this view the main action categories for
using NEMO

omtormg
d Instances
ntent Management™®
o source Provisioning

More details about the functionalities of each category will be provided later in this section. Finally, the
option log out on the top right corner of the view concludes the list of actions for this view.

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 17 of 111

https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-service-management/intent-based-sdk_api/intent-api/-/blob/main/intent-examples.yml?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-service-management/intent-based-sdk_api/intent-api/-/blob/main/intent-examples.yml?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-service-management/intent-based-sdk_api/intent-api/-/blob/main/network-intents.yaml?ref_type=heads
https://gitlab.eclipse.org/eclipse-research-labs/nemo-project/nemo-service-management/intent-based-sdk_api/intent-api/-/blob/main/network-intents.yaml?ref_type=heads

ya

&8s NEMO

(9IKEYCI

Sign in to your account

Username or email

Password

Figure 3. NEMO Logggpage

Nemo LCM | # Services Overview

» Hosts |

Workload Monitoring Workload Instances Intent Management Resource Provisioning

Manage Workloads Manage Instances Manage Intents

sub ads. Each workload record has its unique identification number sorted in a descending
load Name and Version attributes are the unique identifiers upon the creation of each
Work ecord, meaning that for a given workload name there cannot be two records with the same
version.In the example displayed in Figure 5, the ml-retrain workload task is displayed multiple times,
however the version differs each time. Then, there is the Status attribute, the values of this attribute are
Pending and Accepted. When a workload is created it gets in the pending status until it is evaluated and
validated by the NEMO framework. After this procedure is finished the workload gets in the accepted
status. Next there is the Ingress Support field that denotes if the workload supports or not network
communication with services outside of the NEMO environment. The User field displays the user that
created, and it is used for trackability of user actions within the NEMO framework. Finally, the Actions
column houses the functionalities related to the management of each workload. The first item is a file

A4 . .
Figure 4. NEMO main management page
The Regis@ loads View, Figure 5, provides a complete monitoring interface for the already
I
ork

(<

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Dissemincﬁon: |PU |Version: |1 .0 Status: Final

Document name: Page: 18 of 111

uploader, and it is used to upload the HELM [14] file of the workload. The file can be uploaded after
the creation of the workload and the workload cannot transit to the accepted status before this action is
performed. The second item is the instance creation button, it is used to create a workload instance based
on the workload’s configuration, both from the workload creation page and the uploaded HELM file.
The third item in the row is the deletion action in case the user wants to delete the workload. Finally,
the associated instances button is a shortcut for the Workload instances view for this specific workload.
In Figure 5 within the Actions column the HELM file uploader and the deletion buttons are faded, until
a workload gets to the accepted status, the user is able to upload a new HELM file and/or delete the
workload. After the workload is marked as accepted, the user cannot modify the existing woRload, any
change required on the existing workload requires the creation of a new workload.

NemoLCM | | 1 Services overview |

Search

Create Workload

Ingress:
ID & Workload Name Version ?

Suppert

2
z
&

user Balance Actions
33 miretrain 016 ACCEPTED []

32 mhretrain 015 ACCEPTED

31 mhretrain 0.1.4 ACCEPTED

30 mhretrain 01.3 ACCEPTED

29 miretrain 01.2 ACCEPTED

28 mhretrain 011 ACCEPTED

27 mil-retrain 0.1.0 ACCEPTED

26 echo-server 0.5.16 ACCEPTED

25 echo-server 0515 ACCEPTED

@ @ @ @@ @ @ @ 0
G ooOoGLGoOo0Loan

24 mk-pve 0.1.6 ACCEPTED

(O]

Memsperpage | 10w 1-100f28 >

es5. Registered Workloads View

In Figure 6 the workloasl cr
of the workload to b
need to be unique an
of the available inte

ories that the user can select for deploying the workload in a cluster based
e, e.g., availability, existence of dedicated GPU, energy, etc. The user can

creation thfough t€ Intent Management view. Finally, there is the Ingress Support attribute discussed
be Q SNt s assigned are True or False, with False being the default value for security purposes.

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 19 of 111

&8s NEMO

O Create Workload

Name * Version *

Type Workload Name Type Workload \

Workload Name is required

Supported Intents

Supported Intents*

Ingress Support

False

Figure 6. Create Workload Vie#

The last step in the pipeline defined for executing a service s the workload instance creation,
Figure 7. After a workload is created and gets on the acce o»l status, ‘an instance of it can be created.
The user has to fill the name of the instance (Rel Name)\gnd if applicable a proposed cluster to be
executed. The attributes: Values Override, Inclyle CRDs, Is Upgrade and NoHooks are out of scope of

that will enhance the execution of his service. In the
egfred execution environment for the service is a cluster
o. Moreover, the user is able to set a specific time range

the user is able to select one or more r
sample displayed in Figure 7 shows that t
able to provide an availability higherthan 9

that wants this migration t ke place, e.g., high intense processing periods, etc.
D Create Workload Instace
Type Release Name
nema-smart-farming
1] % False
False - False
Seectntent Trme . [8 nemane e |

Start Dt fime Erf Dt time

Chaose start datetime = Choose end datetime (o]

Target Narne Target Candiian Target Value

availability IS_GREATER THAN = 90 ﬂ

A4d Target

Figure 7. Create Workload Instance View

DA.3 Advgnced NEMO platform & laboratory testing results. Page: 20 0f 111
Final version

Reference: D4.3 |Dissemination: [PU [Version: [1.0 [Status: [Final

Document name:

Another high-level category in the NEMO platform is Workload Instance View, Figure 8. In this view
the user can see the status of the workload instances previously deployed and manage them. The Release
name refers to the name provided in the previous form while the Workload ID refers to the parent
workload created at the first step. The status denotes whether the instance is Rendered, Deployed or
deleted. The Cluster field shows the cluster that the current instance is deployed based on the Meta-
Orchestrator’s decision-making algorithm and the requirements (Intents) that the user set up. The
instance ID is the unique identifier of each instance. The combination of Release name and Instance 1D
is unique identifier of each deployed workload instance across all clusters connected to NEMO.
Moreover, a set of useful interactions in terms of status monitoring and management are pro
action column. First, a historic representation of the various statuses of the workload instan®g, e.g.,
created, deployed, suspended, deleted along with the timestamp of each status update. Theyfthgre
manifest viewer, which can be used for examining the configuration parameters in case:nccurs

and finally the deletion button can be used to permanently terminate the service instaggce.

Nemo LCM | I Services Overview

J Workload Instances

Search..

Workload .
. Release Name D Status Cluster Instance ID Actions

S

89 smart-xr-retrain-2 33 DELETED dev-onelab 218b064...

88 smart-xr-retrain-1 33 DEPLOYED dev-onelab 4b0d188...

87 smart-xr-retrain 33 DEPLOYED dev-onelab 7c3bfd6...

m

86 ml-retraind 29 DELETED dev-onelab 661bag0...

85 milretrain3 28 DELETED dev-onelab 9cc3430...

L]

84 mlretrain2 27 DELETED dev-onelab 54e69b4...

T Y Y oYy oYy
(]

83 ml-retrainl 28 DELETED dev-onelab 2aaaff1...
° 'Workload Instances main View

NEMO was designedtO e workloads based on specific requirements (Intents), for this reason the

migrations take plac on tailored and sticked requests. NEMO provides to the user the possibility

to modify on t thCSe requirements for any given running workload instance. In this context, the

Intents ma@ t Wiew was created to house this functionality, Figure 9. As with the previously
S

e status field denotes the current condition of a specific Intent type on a specific
i e. The status can be Fulfilled or not fulfilled, compliant, degraded or fulfilmentfailed.
In thgydhtent Type column, the specific requirement (Intent) is displayed while in the next column the
jforkload instance is given. It is worth noting that one workload instance can have multiple
intent types, even of different types. In the actions column there is the Intent Report option which
provides helpful insights for understanding why an Intent failed by displaying detailed information of
the error occurred. In addition, the user can modify the existing Intent by altering the desired target
value. Finally, a simple control panel offers to the user the possibility to start and suspend the execution
of an Intent with the related buttons as well as to delete it.

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 21 of 111

Nemo LCM

U Intents Management

Search.

D4 Status Intent Type Workload Instance ID Actions.

132 cloud_continuum spain-n... H » = §
kY cloud_continuum spain-n . H » = §
130 Fp— = H - = 8
120 cloud_continuum spainn... H » = &
128 DeliverComputingWorkload 0407bb... H » = &
127 MachineLearning 10407bb... H » = §
126 cloud_continuum spainn... H » = §
126 cloud_eontinuum spain-n H » » &
124 cloud_continuum spain-n... H » = §
123 cloud_continuum spain... H » n &

Mtems per page: | 10 = 1-100f132 >

Figure 9. Intent Management Vi

From the Intents Management main View, the user is able
new Intents, in Figure 10 the form of adding new Intents ¢ an®xisting workload is displayed. The
advantage of this view is that the user can add intghts after tRg creation of a workload instance as well
as for advanced users to create an intent using/ YAML files. The use of YAML files is used within
NEMO for the connection and orchestration ofscomplex components such as the mNCC for network
creation for pods across the clusters.

jsting Intents but also to create

O Create Intents

Use yaml file

Workload Instance ID * Start Date-time:

Type Workload Instance ID Choose start datetime

Intent Type * End Date-time

Select Intent Type Choose end datetime

Target Name Target Condition Target Value

Type Target Name Select C.. v Type Target Value

Add Field

Figure 10. Create Intent View

DA.3 Advgnced NEMO platform & laboratory testing results. Page: 22 6f 111
Final version

Reference: D4.3 |Dissemination: [PU [Version: [1.0 [Status: [Final

Document name:

&8s NEMO

The last menu provided by the NEMO Management User Interface is the Resource Provisioning View,
Figure 11. In this View the user can see the available clusters connected to the NEMO platform along
with some useful information such as their processing capabilities and real-time performance metrics.

O Clusters Table

Search...

Create Cluster

Dy Name Endpoint cPUs Storage Memory Actions
933189 dev-onelab gsi"’::’inmmmelahEu:ém 68 1620 172 L |
8d63ech... testeluster :gf:;gin.nemu.unelau.eu;ém e 200 20 How
67c21fc... pro-onelab ::f:;gd_nzmnmelabimﬁu 32 1350 62 n i
60azee?... k3s-onelab :;tl":?_”" emo.onelabeusada 10 1080 2 L.]
1795926... staging-onelab :g:’:l;/g ingT.nemoonelabey 22 1080 62 L |
tems perpage: | 10 - ‘ 1-sofs
Figure 11. Resource Provisioning ‘
Moreover, through this menu option, the users providing {Hegown ter infrastructure can register

them through this view, Figure 12. The infrastructure provigérs iced 1o fill the information related to
the processing, environmental and financial aspecgof their fnachines. The cluster registration process
is divided into two steps, a) provide the basigf/information”used by the NEMO components for the
decision-making process of pods’ deploymen@and b) the underlying inter-cluster connectivity. The
registration form presented is responsible £0r"taclghi e first part of the registration, while the second
part of the registration is achieved by. the kubeConfig file of the Kubernetes cluster to be
registered. The Graphical User Interface sly described is one of the ways to interact with the
NEMO platform. The GUI is indented to be U8ed from non-technical personnel that need to effortlessly
deploy a workload.

>N
O Register Cluster

Cluster Config File

@ upload config File
Guster Name Managed API

Type Cluster Name Type Cluster Name
CPUs # Memory (MB) Storage (GB) V-RAM (MB)

Type # of CPUs Type Memory Size Type Storage Size Type V-RAM Size
Availability % Geeen Energy % Cost

Select Availability - Select Green Energy % - Select Cost -
CPU Base Rate (in ms) Memory Base Rate (in MBs)

Type CPU Base Rate Type Memory Base Rate

m fleset

Figure 12. Cluster Registration Form

94.3 Advgnced NEMO platform & laboratory testing results. Page: 23 0f 111
Final version

Reference: D4.3 |Dissemination: [PU [Version: [1.0 [Status: [Final

Document name:

&8s NEMO

Another way of interacting with NEMO is through a REST API [15] , Figure 13. Intent-Based API
endpoints. Through this solution a power user can make a set of API calls in order to create tailored
pipelines in terms of deploying, configuring and monitoring applications (workloads). A documentation
page’ was created to enable 3™ party interactions by providing both a complete set of instructions and
the data types that are being used as well as a sandbox environment where the user can interact without
coding or an external GUI for REST calls.

intent ~
‘m Jintent/ List/Crestes Intents intent_list \~ i|
4
‘m Jintent/ List/Crestes Intents intent_create v ﬂ|
‘m Jintent/template/ intent_tesplate_create \/ i|
‘ﬂ Jintent/types/ intent_types_list \~ i|
PUT /intent/{id}/action/ intent_action_update s @
PUT /Jintent/{id}/target/ Updatesan intent targetwith a new value intent_target_update s @
workload ~
‘E Iwarkload/ workload_List \v 6|
‘m /workload/ workload_create \/ ﬂ|
‘E /workload/instance/ workload_instance list v &|
" | /workload/instance/{instance_id}/delete/ workload_instance_delete update \/ @
‘E /workload/instance/{instance_id}/manifests/ workload_instance manifests_list \/ i|
‘m fworkload/upload/ Upload a workioad document underlying helm chart workload_upload_create i|
‘ Jworkload/{id}/ Reirieve updsie and delete = workload document workload_read v~/ i|
PUT Jworkload/{id}/ Reirieve updsie and delete = workload document workload_update /' @
e fworkload/{id}/ Retrieve. update and delete a workioad document workload_partial_update v @
m /workload/{id}/ Retrieve. update and delete a workioad document workload_delete v ﬂEl
‘m Jworkload/{id}/template/ Renders kubemetes manifests for given workioad document. workload_template_create v ﬂ|

qm Intent-Based API endpoints
.
Figure 14, presents a %ﬁ he expected parameters' body of the workload POST endpoint.

7 https://intent-api.nemo.onelab.eu/api/vl/swagger/

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 IDisseminaiion: IPU |Version: |1 .0 Status: Final

Document name: Page: 24 of 111

https://intent-api.nemo.onelab.eu/api/v1/swagger/

ot Jworkload/ workload_create /\| a

List or Create a new workload document(s)

Name Description

data ~ reavired
object

(body)

Example Value | Model

Schema ~
description: The document schema
¥
type string
titte: Type
The workload document type
Enum:

> Array [1]
vI
List of supported intents

Intents v string
title: Intents

ingress_support

m
m
Inter
]

00!
3

itle: Ingress support
Whether the workload document can be exposed via NEMO

}

Figure 14. Sample of the expected parameters' bogg of the oad{)ST endpoint

2.3 Cloud/Edge/IoT Integration and ValidatioyInfrastructure

The complete integration of different systems inghe Cloud—E(gg—IoT continuum into a single framework
is a very complex task and requires a lot of ¢ffogg and prgcision. The individual systems in each layer of
the continuum Cloud, Edge and IoT are dgéigne ide max throughput, low latency and increased
processing capabilities to meet the requd ofa modern system. While these systems can flawlessly
work individually, several issues may aris they need to be interconnected. NEMO is a complex
framework that aims to provide sevgre autopfiations at a low level across the continuum in terms of

deployment and device manage In a typical Cloud-Edge-loT continuum, the cloud computing
layer provides a centralized eny here the main processing power and storage space exist. On
the contrary, Edge serveg, as 1 processing as they are located close to the [oT devices. These

tncoming data and taking decisions in real-time.

an operational management of the Cloud-Edge-IoT continuum takes
place. The infrastrud ere the NEMO meta-OS platform is being deployed varies based on the
equipment pre Pilots’ premises. To guarantee a complete and flawless integration of the
platform, a set iPfmum requirements was distributed among the partners. This guaranteed that the
underlyin olBgies, such as Kubernetes can work without issues. Typically, the main issue within
oT continuum interactions is the connectivity due to the communications taking place

In NEM) this was considered since the design phase where lightweight communication protocols and
messaging mechanisms, such as RabbitMQ [16] that are resilient to packet loses and require a small set
of resources. These channels within the proposed meta-OS are used to exchange real-time information
about the resource availability on the connected clusters which is crucial for the NEMO users as it can
be used for taking strategical decisions on where a workload should be deployed. In addition, the
channels are able to handle high volume data images for migrating the workloads along with the related
data volumes.

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 250f 111

2.4 Integration & V&V Methodology & Plan

Since the NEMO conceptualization phase, a detailed plan for the integration and validation phases was
created. This plan was initially presented in deliverables D1.3 and D4.1 while an updated version
reporting the alignment with that plan as well as the updates of the tools was presented in deliverable
D4.2. The plan was aiming to create a universal cross component and pilot template for monitoring the
various phases of development to keep track of the updates and to identify any risks arose. The plan
adopted is based on the best modern practices of software development, NEMO followed an agile and
incremental approach of iteration cycles, grouped in 3 Phases, as depicted in Figure 15.

Phase 1: Baseline (M1-M18). Provides the initial NEMO Proof of Concept. Phase 1 starts with SQgtem,

specification of the meta-OS Architecture and decomposition (WP1), design analysis ing
(WP2-WP4), integration, testing and validation of all key meta-OS components (WP4j THggutcome
will be NEMO Ver. A and initial Living Labs validation and the selection of t consortium

members and new components from Open Call #1 to be implemented with Phas

Phase 2: Advance (M19-M30). All NEMO components are further deve P2-WP4), while
NEMO is expanded with new functionality added from the new consortium bers accepted via Open
8 roflized and validated in

Living Labs). The outcome will be NEMO Ver. B and Living Lab
applications and services from Open Call #2.

Phase 3: Mature (M30-M36). Focus on validation and optizatio d more realistic field conditions
fr@m 3™ parties selected via Open

that the project would proceed based on the plan conducted at the beginning of
deviation or risk appeared during the development phase would be immediately

2.4.1 EMO V&V documentation

The NEMO End-to-End integration pipeline is a complex procedure; in order to provide high-quality
tests, the End-to-End pipeline was divided in smaller and simpler test pipelines. Associated technical
details and stemming results are provided in Section 5 of this document. As mentioned earlier, a common
template applicable across the different functional scenarios present in NEMO was defined. This played
a pivotal role as it allowed to properly document all the possible steps and interaction took place in an
organized and well-written manner. At each iteration phase presented before, the following template
was evaluated, and new features were introduced in case a feature was missing or modified in case it

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 26 of 111

NEMO

was not adding value to the project. To better understand what needs to be done as well as to verify the
goals’ success, three main attributes were defined:

e Scenario
e QOutcome
e Checkpoints

In Table 2 the template for the integration tests explaining the scenarios and what needs to be tested
along with the functional and non-functional requirements for each scenario are documented. Moreover,
an overview of the test plan is present to assist the engineers to perform the tests. After the pletion
of a test procedure, the involved partners were filling in the integration scenario checkpoint late,

Table 3, which was later used in the retrospective analysis to provide information about the@ es.

Objective

Components

Requirements
alignment

Features to be
tested

Test setup
Steps

Table 2. Integration testing - scenario template

N@ =
,\

)

Yvy

! \./

3.

Table 3. ‘\@ mtegratlon testing - Checkpoints template

VN
Checklist for Test1
Yes | No Comments
1 ‘ Is a service cregied’ ¥ v
2 | Isthe dev’e@'sraﬁon completed successfully? v
{ : \
3 the sending its data successfully? v
4 N& data stored in Database / Registry? Vv
7
Document name: D4.3 Advgnced NEMO platform & laboratory testing results. Page: 27 of 111
Final version

Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

&3¢ NEMO

3 NEMO Integrated Platform (Final Version)

The final version of the NEMO meta-OS was established following a comprehensive integration and
validation procedure. The conducted integration tests concerned both the NEMO developed technical
solutions and the 3™ party ones introduced by the 2 Open Calls.

3.1 Meta-OS functionality in NEMO ver. 1.0

3.1.1 NEMO Infrastructure Management

The infrastructure management across the various Kubernetes clusters has been designed f%bllity,
flexibility, and high availability, utilizing a multi-cluster approach. Several clusters haye Beerf#€ployed,
each tailored for specific roles such as control planes, worker nodes, and specialized ha e, including
GPU-enabled nodes.

e Nemo main cluster: A control-plane node (nemo-dev-master) an
dev-workerl to nemo-dev-worker5) have been configured witd
running Kubernetes version 1.29.13. This setup provides a rob
and testing purposes. Table 4 provides a detailed view o
NEMO main cluster.

er nodes (nemo-
development cluster,
Wironment for development
imical specifications of the

Node name ’ Node Type Specifications

k8smaster.onelab.cu CPU: 8 CPU Cores
e RAM: 16GB
N e Storage: 140GB Ephemeral
e OS-Image: Ubuntu 22.04.4 LTS
e Kernel Version: 5.15.0-116-
generic
o Container Runtime:
containerd://1.6.28
k8sworkerl.o u Worker and|e CPU: 16 CPU Cores
1 Storage e RAM: 32GB
\ o Storage: 120GB Ephemeral +
150GB Ceph
e OS-Image: Ubuntu 22.04.4 LTS
e Kernel Version: 5.15.0-116-
Q generic
@ e CONTAINER-RUNTIME:

containerd://1.6.28

k8sworker2.onelab.eu Worker and|e CPU: 16 CPU Cores
Storage e RAM: 32GB
e Storage: 120GB Ephemeral +
150GB Ceph

e OS-Image: Ubuntu 22.04.4 LTS

o Kernel Version: 5.15.0-116-
generic

¢ CONTAINER-RUNTIME:
containerd://1.6.28

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 28 of 111

NEMO

Node name Node Type Specifications
k8sworker3.onelab.eu Worker and|e CPU: 16 CPU Cores
Storage e RAM: 32GB
e Storage: 120GB Ephemeral +
150GB Ceph
e OS-Image: Ubuntu 22.04.4 LTS
o Kernel Version: 5.15.0-116-
generic
e Container Runtime:
containerd://1.6.28
k8sworker4.onelab.eu Worker and|e CPU: 16 CPU Cores ‘
Storage e RAM: 32GB
e Storage: 120GB Ep +
150GB Ceph
k8sworker5.onelab.eu Worker and
Storage
150GB Ceph
e J0S-image: Ubuntu 22.04.4 LTS
o Kernel Version: 5.15.0-116-
ay generic
e Container Runtime:
) containerd://1.6.28

e Nemo Staging 1 Cluster: Fogused off§caling operations, this cluster comprises a control-plane
node (nemo-sl-master) a veral worker nodes (nemo-sl-workerl to nemo-sl-worker3),
running Kubernetes versi 7 and 1.31.3, thus ensuring reliability for both development
and production Jrorkldad presents the technical details of the NEMO Staging 1 cluster.

Table 5. Staging 1 cluster (K8S)

Master

nemo-s1-workerl Worker and
Storage

Specifications

CPU: 8 CPU Cores
RAM: 16GB
Storage: 120GB Ephemeral + 150GB Ceph
OS Image: Ubuntu 22.04.3 LTS

Kernel Version: 5.15.0-78-generic
Container Runtime: containerd://1.7.12

CPU: 16 CPU Cores

RAM: 16GB

Storage: 120GB Ephemeral + 150GB Ceph
OS Image: Ubuntu 22.04.3 LTS

Kernel Version: 5.15.0-78-generic
Container Runtime: containerd://1.7.12

nemo-sl-worker2 |Worker and CPU: 16 CPU Cores
Storage e RAM: 16GB

D4.3 Advanced NEMO platform & laboratory testing results.

Document name: . .
Final version

Page: 29 of 111

Reference: D4.3 |Dissemincﬁon: |PU |Version: |1.0 Status: Final

&3¢ NEMO

Node Name Node Type Specifications

Storage: 120GB Ephemeral + 150GB Ceph
OS Image: Ubuntu 22.04.3 LTS

Kernel Version: 5.15.0-78-generic
Container Runtime: containerd://1.7.12

CPU: 16 CPU Cores

RAM: 16GB

Storage: 120GB Ephemeral + 150GB Ceph
OS Image: Ubuntu 22.04.3 LTS

Kernel Version: 5.15.0-78-generic

Container Runtime: containerd://1.7.12 A
Nemo Staging 2 Cluster: The lightweight k3s-based cluster consists of a %—p ane node
(nemo-k3s-master) and three worker nodes (nemo-k3s-node-1 to nemo- o), operating
on version 1.30.6+k3s1. A specialized AMD-based worker node (nemo@de%) was added
to support the integration of the NEMO component, ensuring optimagper nce for resource-
intensive tasks. More details about the Staging 2 cluster are presgite Table 6.

Table 6. Staging 2 Cluster (K3S) ‘

Node name Specifications

nemo-sl-worker3 |Worker and
Storage

nemo-k3s-master | Master

/ C Runtime: containerd://1.7.22-k3s1

nemo-k3s-node-1 | Worker CPUW: 4 CPU Cores
and M: 8 GB

[]
Stora o torage: 1TB External SSD
o OS Image: Ubuntu 24.10
Kernel Version: 6.11.0-1004-raspi
Y e Container Runtime: containerd://1.7.22-k3s1

CPU: 4 CPU Cores

RAM: 8§ GB

Storage: 64 GB External SSD

OS Image: Ubuntu 24.10

Kernel Version: 6.11.0-1004-raspi
Container Runtime: containerd://1.7.22-k3s1

CPU: 16 CPU Cores

RAM: 16 GB

Storage: 120GB Ephemeral + 150GB Ceph
OS Image: Ubuntu 24.10

Kernel Version: 6.11.0-19-generic
Container Runtime: containerd://1.7.12

2 tker
nd
Storage

nemo-k3 d

-k3s-node-3

Nemo Production Cluster: Dedicated to production workloads, this cluster includes a GPU-
enabled worker node (nemo-prod-gpu-worker) and several worker nodes (nemo-prod-worker1
to nemo-prod-worker3), along with a control-plane node (nemo-prod-master), all operating on
Kubernetes version 1.30.7. This configuration ensures high-performance processing for tasks
such as machine learning. The NEMO Production cluster details are demonstrated on Table 7.

Document name:

D4.3 Advanced NEMO platform & laboratory testing results.

Final version Page: 300f 111

Reference: D4.3 |Disseminction: |PU |Version: |1.0 Status: Final

Table 7. Production Cluster (k8S)

Node Name | Node Type Specifications

nemo-prod-master | Master CPU: 4 CPU Cores

RAM: 8§ GB

Storage: 80 GB Ephemeral

OS Image: Ubuntu 22.04.3 LTS
Kernel Version: 5.15.0-78-generic

Container Runtime: containerd://1.7.12

CPU: 8 CPU Cores
RAM: 16 GB

Storage: 250GB Ephemeral + 150GB Ceph : "

nemo-prod-workerl | Worker and
Storage

OS Image: Ubuntu 22.04.3 LTS
Kernel Version: 5.15.0-78-generic
Container Runtime: containerd://1.J.

nemo-prod-worker2 | Workerand|e CPU: 8 CPU Cores

Storage e RAM:16GB
Storage: 120GB Epheme Ceph

[]
[]
e Kernel Version: 5.
e Container jme: nerd://1.7.12

nemo-prod-worker3 | Workerand|e CPU: 8§ CPU

Storage
iner Runtime: containerd://1.7.12
nemo-prod-gpu- | Worker and | e : 4 CPU Cores
worker Storag . M: 8 GB

Storage: 120GB Ephemeral + 150GB Ceph
OS Image: Ubuntu 22.04.4 LTS

Kernel Version: 5.15.0-78-generic
Container Runtime: containerd://1.7.12

>

7

To mitigate the i ower outages, dedicated UPS systems have been implemented for each host
running virtua s that support the cluster nodes. This solution ensures uninterrupted operation
, effectively reducing downtime. These infrastructure improvements, along with

during pow, 1

the adatioROf specialized hardware for NEMO integration, have significantly enhanced the resilience,
p ccyemd reliability of the entire system.

3.2

O Open Call integration activities

In order to provide homogenised, flexible orchestration of varied workloads across heterogeneous and
scattered devices, the concept of the meta-Operating System (meta-OS) refers to the efficient integration
of highly diversified hardware and software resources. Because of NEMO's expandable architecture,
additional features can be added as NEMO plugins. Since the NEMO Kernel serves as the core system,
plugins are designed to add capabilities to the core, such as flexibility, extensibility, and isolation of
bespoke meta-OS logic or applications. Horizontal or domain-independent services that seek to offer
some fundamental and standard features that expand the NEMO capabilities are referred to as plugins.

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 31 of 111

NEMO has already realized extensions through additions developed by the 1 Open Call projects. NEMO
1%t Open Call invited SMEs active as edge computing, edge and/or native cloud software development,
operating systems, [oT/5G networks and IoT manufacturing entities to join the NEMO ecosystem by
offering: a) NEMO meta-architecture extensions b) software components/plugins not covered by current
NEMO implementation plan c¢) new network or service/resources metering/automated control
components or d) porting NEMO on new, highly heterogeneous loT devices.

Six winning proposals have been identified, specifically MetaFOX, by Vodéna, Serbia working on
Machine Learning and Al technologies; CorMOS, by Business & IoT Integrated Solutions, Cyprus
focusing on cross-domain orchestration of Meta-OS edge resources; ARGO, by Intellia I reece,
investigating porting AR/XR technologies in the meta-OS; Eros4dNRG, by Martel Ingzva

Netherlands offering ZeroTrust [oT Analytics with focus on Smart Energy applications; G
SWHARD srl, Italy providing an edge gateway for the NEMO Meta-OS; and MARINENO,
Innovation, Romania working on an efficient resource utilization and maritime net licing plugin
for the NEMO Meta-OS.

In addition, NEMO introduced Open Call #2 in the framework of which the fi g NEMO integrated
framework will be further validated, as the NEMO Open Call #2 projects v&hze the NEMO meta-
OS functionality supporting the various use cases realized by the 3™ pay

The rest of the chapter provides a brief description of the NEMQafp

concept and describes the integration details of each technical so @
architecture extension.

* Zall #1 projects’ technical
cWped as a NEMO meta-OS

3.2.1 ARGO

The ARGO project, standing for "Augmented Rodlity next Gefieration Operational Systems in NEMO",
is a pioneering initiative designed to align sg@amlessly with the objectives and scope of the Next
Generation Meta Operating System (NEM@pr@aram. £ he motivation behind ARGO's proposition lies
cing the existing framework with innovative AR
solutions. At the core of ARGO is the inte3ggti NEMO's flexible meta-architecture with specialized
AR devices, such as the Vuzix M4000 and ix Shield, and the backend support system of the AR
_and binocular AR glasses are designed for prolonged industrial
paut compromising user comfort during full-shift operations.
ARGQO’s target is to enhance j trifl efficiency, safety, and training using advanced AR technology.
The ARGO system ha®b e@'y cployed on the NEMO provided development environment in
OneLab and prelimi % the system on the premises of the Foundation of the Hellenic World

(FHW) in the contex Media/ City & XR Living Lab were conducted.

constraints. The CorMOS Orchestration Engine further analyses the data in the JSON file and updates
the YAML file with the appropriate instructions (e.g., node selectors and/or affinity rules) to ensure that
the components of the application are deployed to the correct nodes of the cluster, thus achieving user
goals such as performance optimization and efficient resource utilization. Moreover, the CorMOS
developed Telemetry Data Management system focuses on a few parameters of particular interest that
directly affect the behavior of the CorMOS Orchestration Engine.

The CorMOS orchestration engine will be integrated with the NEMO architecture and its logical
placement would be within or alongside the Meta-Orchestrator (MO). The Meta-Orchestrator plays a

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 32 0f 111

critical role in coordinating workload execution, deployment, and migration across the loT-Edge-Cloud
continuum. Given its pivotal function, the CorMOS Orchestration Engine could interact with key
NEMO components to ensure seamless integration and to leverage the platform’s existing capabilities
effectively. From an architectural standpoint, the CorMOS Orchestration Engine should be positioned
as a high-level component within the orchestration layer. This placement would allow it to either extend
the Meta-Orchestrator (MO) functionality while serving as the decision-making hub for workload
execution in context-specific infrastructures and environments. To achieve optimal orchestration, the
CorMOS Orchestration Engine should retrieve information from various monitoring, networking,
security, and policy enforcement components, ensuring that workload placement and exg@gtion are
conducted in an intelligent, secure, and resource-efficient manner. \

3.2.3 Eros4dNRG

Eros4NRG is a platform designed to monitor and analyse energy production and conﬁion, enabling
more efficient decision-making through predictive analytics. It acts as a one-stop- (OSY) for energy
stakeholders by integrating data from electric vehicles (EVs), EV charging stat@hotovoltaic (PV)
plants, and smart headquarters. The platform enhances trust and transpargdcy ergy data, while
addressing key challenges such as: (i) Unreliable data from IoT sourccgmin ing machine learning
operations; (ii) poor organization of static energy data leading to infory @ 0ss; and (iii) the need for
user-friendly AI/ML insights for non-technical stakeholders.

Eros4NRG’s final integration is guided by a set of clear functior i noh-functional requirements,
infrastructures (such as MinlO,
PostgreSQL, and Docker). Designed with a service-or arcHitecture, the platform enables
streamlined data collection, processing, visualizatign, and sggurity. The Eros4NRG project relies on
extracting raw data from EMOTION and ASM ferni systemS via API calls. This continuous stream of
data enables the platform to monitor and anal§ge energly consumption and production, as well as EV
battery performance in (near) real time. THe rts by sending API requests to the EMOTION
and ASM Terni systems. Building nal integration, Eros4NRG will undergo several
enhancements and additions to maximize 1¥potgfitial and improve user experience.

3.2.4 Genesys

GENESYS project aims to extend scope and technology by porting the meta-operating system

on a new loT Edge devjge, able and industry-ready, developed by SWHARD. Targeting
the Industry 5.0 and ms, aligned with the NEMO Smart Manufacturing & Industry 4.0
Use Cases & Living L3k ject's primary goal is to install NEMO on an industrial-grade System-
on-Module (SOM), aying a functional product while providing extensive documentation for

seamless install dge platforms.

s a micro-edge system. Conventionally, the purpose of this class of edges is to
d sensors, do some light pre-processing and transfer aggregated information to the
e low resources available (by definition), the expected average workload for the CPU
isu very low in a common edge-cloud design.

In NE s perspective the micro-edge is a cluster node which still serves the two purposes above.
Being part of the cluster, it will also provide processing power not only for the elaboration of its “own”
sensors, but for other tasks. The Meta-Orchestrator is responsible to decide, deploy and monitor the
tasks to be run in every node, including the micro-edges. This concept leads to a greater optimization of
all the available resources in the cluster.

Following the MVP implementation of the Genesys framework, the successful porting of the Software
components required to let the FLEX enter the NEMO META-OS ecosystem, is the keystone of
GENESYS. Although the work has not yet demonstrated with a real application, the FLEX nodes have

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 33 0of 111

been successfully joined the test cluster, ran a simple application and a set of benchmarks. A side activity
that has been done was the test of the integration of Coral NPU into the cluster.

3.2.5 MARINEMO

The MARINEMO Slice Manager Plugin (SMP) is designed as an add-on for 5G-enabled cellular
networks, its main purpose being to efficiently optimize the communication resources of the targeted
systems by applying AI/ML-powered intents for slicing and user profile reconfigurations.

The API Engine of the Slice Manager Plugin facilitates external interactions, providing, a crucial
interface for third-party systems to influence and monitor the network's behaviour. It offefS§PIs for
defining testbed-specific operational parameters, alerting mechanisms, and performance aE?ESI

component not only enhances the plugin’s adaptability to different environments but also &fgs that it
can serve a broad range of use cases from operational adjustments to detailed performa:Ee agglytics.

Regarding the Slice Manager Plugin integration points, the plugin needs to be conn to testbed-

specific agents for network API exposure and performance monitoring. Specifi e MARINEMO

Slice Manager Plugin will be integrated within META-OS ecosystem throug onica Private 5G

testbed and its Cumucore 5G Core Network APIs. Furthermore, the SMP v&instantiated on top of
Q 8§ cHister.

The MARINEMO SMP will be deployed on the META-OS Kub
by following the next steps.

pased virtualization platform

e Access to the Kubernetes cluster for testing the
interactions with the META-OS APIs the plugi r-based container will be directly
deployed on the NEMO Kubernetes clustem Access % the META-OS Docker Hub repository -
for testing and validating the deploymenf capabilities‘0f the NEMO META-OS platform, access
to the META-OS Docker Hub repositof will beJused for uploading the SMP docker image and
instantiating the container on t b cluster by running the META-OS Gitlab CD
scripts.

e Access to the Gitlab META-OS r itpfy for complete CI/CD - for testing and validating the
complete CI/CD capabilities of the MIETA-OS platform, access to the project-related Gitlab
repository will be used fo, oading all the SMP source code and running the CI scripts for
creating the plugin d and the CD scripts for instantiating the container on the
Kubernetes clugfer.

- ting and validating the SMP

3.2.6 MetaFOX

The MetaFOX proj¢ yan advanced automated machine learning (AutoML) component, which
significantly simy#ificm€ initial model creation within NEMO META-OS by automating the process
of model sel n, $eature engineering, and hyperparameter tuning. AutoML is a transformative
approach t imPrfies complex machine learning processes, enabling both experts and non-specialists
to a loy models efficiently. MetaFOX uses the power of automation in machine learning
line model development, enhance the quality of models, and democratize Al accessibility. It

signi y simplifies the initial model creation for federated learning (FL) and transfer learning (TL)
by autormiating the process of model selection, feature engineering, and hyperparameter tuning.

The MetaFOX solution, when deployed on Kubernetes, consists of a collection of components running
in separate Pods, each governed by Deployments that handle the creation and scaling of these Pods.
Services provide stable network endpoints for communication within the cluster, while Persistent
Volumes (PVs) and Persistent Volume Claims (PVCs) ensure the durability of data for stateful
components. In the context of the deployment, Minikube was used as the Kubernetes environment on a

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 34 0of 111

https://metafox.readthedocs.io/en/latest/

NEMO

dedicated Linux server, providing a local cluster suitable for both development and production-like
evaluations.

Preliminary integration tests were conducted achieving a successful deployment providing for early
validation of the component’s compatibility with OneLab’s infrastructure. The successful deployment
carried out has provided sufficient evidence of the MetaFOX component’s compatibility with the
OneLab environment. These results support the feasibility of full-scale integration, and they lay the
groundwork for further testing and optimization. Future work will focus on consolidating these findings

into a robust deployment procedure tailored for OneLab.

O
S

o

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 350f 111

4 NEMO Service Management Layer updates

This section reports the latest specifications and design options for the NEMO components of the
Service Management layer in the NEMO architecture. These components provide middleware between
core NEMO functionality and workloads but also end users. They support ZeroOps principles and
expose interfaces to external entities (services or users). Moreover, the supported services include
Lifecycle Management and DLT-based accountability of workload or infrastructure usage and
collectively contribute to NEMO openness and adoption by third parties, referring to ap tion or
infrastructure owners, as well as developing entities.

4.1 Intent-based Migration Controller A ‘b

N

4.1.1 Overview

The Intent-based Migration Controller (IBMC) is responsible for orchestrati l@mless transfer of
workloads across the IoT, Edge, and Cloud Continuum. Rather than relym manual configurations,
it uses intent-based networking to automatically interpret high-level o syand translate them into
concrete migration actlons This allows the system to adapt to changj ions, ensure efficient use
is essential in managing

the highly dynamic and distributed nature of the meta-OS gnviron

4.1.2 Architecture
The IBMC architecture is represented in Figure 1

ich follpws the hierarchical structure of the Open

architecture are described below:

e Ibmec-controller: This compo e entry point for initiating the workload migration
process. Upon receiving a new in the Intent-Based API, the ibmc-controller checks the
current workload status and determingWwhether it complies with the specified intent parameters.
If any of these parameters ot satisfied, the controller selects a suitable target cluster from

the list of available mana rs and sends a migration trigger message to the ibmc-agent

deployed in the sele us

o Ibmc-agent: T ; t functions as a black-box component responsible for executing the
actual migrdiiun N . Each cluster runs its own ibmc-agent, which listens to a dedicated
RabbitMQ o¥ iIncoming migration messages. When a message arrives at the source
cluster, prrefponding ibme-agent initiates a backup of the specified workload using

Velero successful completion of the backup, a message is sent to the target cluster,
cal ibmc-agent receives the message and proceeds to restore the workload

wheigy t

el€ro: Velero is a key technology in the workload migration process, as it is deployed across

all clusters and ensures that workloads can be efficiently backed up and restored, enabling

amless transitions between clusters. Its integration into the migration workflow allows for
consistent data protection and minimizes downtime during migrations.

e Rook Ceph: Rook Ceph!! is used as an S3-compatible object store for Velero, providing reliable

and scalable storage for backup data. By integrating with Velero, Rook Ceph ensures that

11

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 36 0of 111

https://open-cluster-management.io/docs/concepts/architecture/
https://velero.io/
https://rook.io/docs/rook/latest/Storage-Configuration/Object-Storage-RGW/object-storage/

NEMO

workload snapshots and metadata are securely stored and readily available for restoration during
migration processes.

Hub Cluster \

» ibmc-agent

backup/restore
|
Inconming Intent -— Backup I -
—————————— ---3» ibmc-controller Velero Controller

- O
etcd api '
! Backup
etcd K8s api ' creation/retrieve
N) > @ ceph

S3 Bucket
Backup/Restore Managed Clusters !
Mesiages % \ :

backup:’resiore
MaRabbitMQ [« = y
d bt = Backup B I PR A
Velero Controller

j
©-0

S

\@ 16. IBMC Architecture
[]

e%g diagram that concerns the NEMO workload migration process. The
and validation test are presented in section 5 of the document.

Figure 17, depicts thd
corresponding integr,

<

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 37 of 111

4.1.3 Interaction with other NEMO components

ibmc-controller

ibmc-agent ibmc-agent
(Source Cluster) (Target Cluster)

|
| Publish Intent
T

'
Retreive current workload info

|, Retreive managed clusters info
<

Compare current deployment cluster
with incoming intent values

|

|

|

|

|

|

|

|

[Workload Status = "deployed"] :
|

|

|

|

|

|

|

Select new target cluster |
|

k———— - - - — — —— — —— — — — —]

Send migration message

Create \/vorkluad backup
T

|
Backup created

w Restore backup in target cluster
<

A

Update workload status

Update Manifestwork

Muence Diagram

1. The Intent-API publishes in the
requirements (Availability,

2. The ibmc-controller retrie @

3. The ibmc-controller rgikieVes ﬁ the MO the information related to each of the managed
clusters. PY

d ighalre eployed in any cluster and the intent requirements are not met, then

1\tggered.

that complies with the intent requirements is selected from the available

Manage list.

i oller sends a message via RabbitMQ queue to the ibmc-agent containing the

and the selected target cluster.

is created with all of the workload associated resources and it is uploaded to the Rook

eph S3 Bucket located in the HUB cluster.
8. en the backup is completed, a message is sent to the target cluster’s ibmc-agent to continue
ith the migration process.

9. The backup is restored in the target cluster, creating all the workload resources.

10. A message is sent to the MO notifying about the workload migration completion.

11. The MO updates the corresponding Manifestwork so that it matches the new workload
deployment status.

12. A similar message is sent to the Intent-API updating the workload status, specifying the cluster

where it has been deployed.

Document name:

D4.3 Advanced NEMO platform & laboratory testing results.

Final version Page: 380f 111

Reference: D4.3 |Disseminction: |PU |Version: |1.0 Status: Final

4.1.3.1 Meta-Orchestrator (MO)

The IBMC integrates with the MO primarily to gather cluster-related data and coordinate migration
execution. The ibmec-controller queries the MO to retrieve up-to-date information about all managed
clusters, which it uses to evaluate compliance with intent requirements. After a migration is completed,
the ibmc-agent notifies the MO, which then updates the ManifestWork to reflect the workload’s new
deployment state.

4.1.3.2 Intent-Based API

The Intent-Based API maintains all information related to deployed workloads and is res ible for
creating and managing the intents that initiate workload migrations. When a migration is tri the
intent’s requirements are used to identify the new target cluster, which must meet all spec{ti iferia.
Upon completion of the migration, the ibmc-agent sends a notification to the Intent-AP{, ugddting the
workload’s status, including the new cluster where it has been deployed. This ens t the Intent-
API remains synchronized with the latest workload deployment state.

4.1.3.3 MNCC Q

The notify queue to which the ibmc-controller listens, is also used foystiyg -M network creation
process which also relies on Intents. The creation of these networ % workload migrations, is
triggered by specific intent requirements. For more details, refer to JONES.2.

4.1.3.4 CFDRL

The CFDRL uses machine learning and relies on trained o detect the sub-optimal workload
operation, leading to the triggering of the workloadumigratioR. When this occurs, the CFDRL sends the
required information to the IBMC, in order perfgrm the migration.

4.1.4 Conclusion
The IBMC, has completed its functio

lgmentation and has been successfully integrated with
the other components, including MO, Intef§Bagéd API, mNCC, and CFDRL. This integration enables
the IBMC to support seamless work]pad depfoyment and migration across the loT-to-Edge-to-Cloud
continuum, maintaining operation; iciency within the dynamic meta-OS environment.

The functionality of the Intengdgas ation Controller (IBMC) has been significantly extended to
support intelligent redeployignt s driven by dynamic, user-defined intents. This enhancement
enables the IBMC tgycouiinudWsty monitor the operational environment and autonomously evaluate
incoming intents, whielyen®@psulate high-level objectives such as performance optimization, energy

efficiency or latency yon requirements.

The addition ofghisgtent-driven redeployment logic marks a shift toward a more proactive and adaptive
control mechait thin the meta-OS framework, ensuring that service delivery remains aligned with
evolvi n and operational constraints.

1SUCp

u

loyed across the NEMO pilots’ infrastructures, where it will be validated through pilot-
speci@ use cases to demonstrate the IBMC’s potential to enhance service continuity and resource
in complex, distributed computing environments.

4.2 Plugin & Applications Lifecycle Manager

The Plugin & Applications Lifecycle Manager (LCM) is a flexible and unified solution for managing
plugins and applications across the NEMO ecosystem. Acting as the interface between NEMO users
and the system, the LCM enables on-demand deployment of workloads (services, applications, and
plugins) within the NEMO environment.

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 39 of 111

While workloads operate on the NEMO meta-OS, an event-driven system continuously monitors key
performance metrics. Simultaneously, a dedicated security controller tracks security-related events,
alerts users to anomalies, and takes proactive steps to mitigate potential cyber threats.

The LCM’s user interface is designed to integrate seamlessly with other core NEMO components - such
as the Intent-based API, PPEF, MOCA, and CMDT - delivering unified and intuitive user experience.
It provides access to features including user profile management, workload deployment and monitoring,
security oversight, and historical data analysis, all tailored to specific user roles of NEMO ecosystem.

4.2.1 Architecture

The LCM comprises of a set of subcomponents namely the LCM CD, LCM Controll ity
Controller, Event-based Response, LCM Repository and LCM Dashboard. %

The final LCM high-level architecture of NEMO meta-OS is depicted in the development\vieW’diagram
in Figure 18. In brief, the software components that make up the LCM module are the Wwing.

LCM CD is based on ARGO CD framework [17] [18] [19] to manage NEMO K¥pads provided by
NEMO partners or NEMO Open Call participants and deploys workloads i DWeleCt container.

LCM Controller is a control mechanism that facilitates communication CM submodules and

the NEMO ecosystem, offering endpoints for sending and receiving i

Security Controller handles runtime security monitoring of N
and relevant NEMO components of detected events.

ds, notifying both users

Event-based Response module is designed to impleme tegactions in response to events
initiated by user input or detected by other NEMO componejts.

LCM Repository is used to store data related tg/workload lifecycle, security incidents, detected events
and other workload related information to prov e histotfical analysis and runtime statuses.

LCM Dashboard serves as the gatew d-users and the NEMO meta-OS ecosystem,

granting privileged users access to ma 1 \)orkloads and monitor both performance and security.
O O O
Meta-OS Provider Meta-OS Consumer Meta-OS Partner
Lifecycle Manager Dashboard N Orchestrator
o Lifecycle Manager Security Controller
<
2 PPEF
w
© LCM CD — O
g =
s =
% I Event based Response %
- x MOCA
LCM Controller
i CMDT
LCM Repository

Figure 18. LCM high-level architecture

D4.3 Advqnced NEMO platform & laboratory testing results. Page: 40 0f 111
Final version

Reference: D4.3 |Disseminqtion: |PU |Version: |1.0 Status: Final

Document name:

4.2.1.1 LCM Repository

LCM Repository uses Elasticsearch®? for storing, searching, and analysing data provided by various
NEMO components like Intent-based API, PPEF, MOCA and CMDT. Elasticsearch provides fast search
responses and comes with extensive REST APIs for storing and searching the data. Stored data include
the status and lifecycle of the workloads, security events detected, workload performance and resource
usage.

4.2.1.2 LCM Visualization

LCM Visualization serves as the primary interface of the NEMO ecosystem, offering tailor ols for
each user role to manage workloads and resources within the NEMO meta-OS and monitor actiities.
Its goal is to deliver an intuitive and seamless experience across the NEMO ecosystem, cat€riig tp’both
advanced users and those with less technical expertise. The interface presents relevant inferm@tign about
the workload lifecycle, usage, and security of workloads and resources in a clear, cofagisd format, with
multiple levels of detail (e.g., workload, resource, user, and system views). Detadegyexplahation of the
LCM views were provided in section 2.2, as part of the 3 party documentati e also described
extensively in the context of section 5.

4.2.2 Conclusion
The LCM component has been successfully integrated into the N cogystem, deployed in OneLab

environment, providing features that include:

e Workload lifecycle management and monitoring
¢ Resources provisioning and usage monitoring
e Security/vulnerability scanning and mogfitoring

e Visual interface for experienced and ndf\-experignced users

The final result offers seamless worklo and monitoring through an intuitive interface.

4.3 Monetization and Consensus¥gfed Accountability

4.3.1 Overview

The Monetization and.Co n
NEMO’s pre-comm ma& stém, providing a secure, transparent, and equitable framework that

enables both resource Wgov offering compute, storage, network, or data) and service consumers to
seamlessly earn andfspcRg, “credits” across the AloT-Edge—Cloud continuum. As the backbone of
NEMO’s Resoupgg-dgaghecrvice (RaaS) marketplace, MOCA guarantees timely, accurate reward

settlement for fgov1 and precise billing for consumers, all underpinned by a tamper-proof audit trail

maintained ibuted ledger.
Si pRud@lis deliverable, D4.2, significant progress has been made to expand MOCA's capabilities
a e its functionalities. Key advancements include:

o art Contract Deployment Tool: Implementation of a dedicated tool to streamline the
deployment and management of smart contracts utilized by MOCA.

e ML-as-a-Service (MLaaS) Smart Contract: Development and deployment of a specific smart
contract tailored for the accounting and monetization of Machine Learning services offered and
consumed via the NEMO platform.

e Enhanced Reward Mechanisms: Introduction of more sophisticated smart contract
functionalities to accurately reward service providers based on various contribution factors.

12 https://www.elastic.co/elasticsearch

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 41 of 111

e Network Resource and Data Monetization: Extension of the MOCA framework to encompass
the accounting and potential monetization of network resources and data assets within the
NEMO ecosystem.

These enhancements aim to increase MOCA's flexibility, broaden the scope of monetizable resources
and services, and support more complex business models emerging within the NEMO continuum,
further solidifying its role in facilitating a trustworthy Resource-as-a-Service (RaaS) marketplace.

4.3.2 Architecture

MOCA'’s architecture has been described in detail in D4.2. In the current document, there is
addition to the component’s architecture, namely the Smart Contract Deployment Tool. I
the updated architecture diagram for MOCA is depicted. The Smart Contract Deplo
responsible for allowing the users to upload their own contracts to the Smart Contracts ent and
allow them to enhance the tool with new accounting logic.

Regarding the workflow presented in the deliverable D4.2, it remains the sa 'thout any major
changes. The component can be accessed through the Event Server’s RES ¢/ comply with the
original component architecture, where the Event Server acts as the main unication interface with
the rest of the MOCA sub-components.

oo ~

Smart Contract Deployment

Tool

NEMO Smart
Contracts

ot
N)

Figure 19. MOCA architecture

4 ‘gon with other NEMO components

The i@tactions of the MOCA component with other NEMO components have remained the same as
presentell in deliverable D4.2. However, for consistency, in Figure 20 an updated version of the
integration diagram is provided including the Smart Contract Deployment Tool subcomponent.

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 42 of 111

@C:\ \
Smart Contract
Deployment Tool

NEMO
Components

NEMO Kernel

LcMm
Event Server

RabbitMQ

Policy
Enforcement
CMDT

Intent based API

Figure 20. MOCA integration diagram

434 Results

In deliverable D4.2 the initial set of MOCA'’s features and capabilities were d
the vastly expanded accounting capabilities of the component are presented, y
set of smart contracts to perform the necessary calculations of the re costs in the NEMO
continuum, namely (a) NemoTokenEstimation, (b) NemoFunds, (¢) I tureOwnerModel and (d)
ServiceProviderModel. In addition to these smart contracts, MOC sgriched with supplementary
calculation methods that enhanced its versatility, such as:

Calculate the costs of network usage of a

Calculate the costs of the Machine Learninggvorkloads

Allow the users to upload a data d rewabd them

Apply cost deductions for worlfloads that run on energy efficient clusters

contract, the NetworkUsageModel, Listing 1, has
tions for a workload. It is worth noting that only the
ith the usage of the ingress attribute, are subject to this
workloads with the ingress attribute enabled are registered,
MOCA rewards them with 5 gfoldens, apart from the initial 5 tokens for the registration. Every
workload which is depl@®yed/Ag.an §etcwfil service is given SGBs of free network usage before they start
getting charged. Abglye tiig thi®shold, the workload is charged per GB consumed. The network usage
of a workload is calc d iodically by MOCA and it is defined as the sum of the transmitted and
received data of the

cost deduction. As an incentive,

NetworkUsﬂ(Sol

pragma solidity *0.8.0;
import "./NemoFunds.sol";
contract NetworkUsageModel {
NemoFunds public nemoFunds;
uint256 constant MAX_FREE_NETWORK_USAGE = 500000000;

uint256 constant CHARGE_PER_GB = 10000000;
struct NetworkMetrics {

string serviceld;

string clusterld;

uint256 networkUsage; // in GB

event NetworkComputeTokens(
string serviceld,
string clusterld,
uint256 networkUsage,

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 43 of 111

uint256 tokens

constructor(address _nemoFundsAddress) {
nemoFunds = NemoFunds(_nemoFundsAddress);
}
function computeCredits(NetworkMetrics memory _metrics) public {
require(
nemoFunds.isCustomerRegistered(_metrics.serviceld),
"The service is not registered!"

uint256 _networkUsage = _metrics.networkUsage;
uint256 _tokens = 0;
if (_networkUsage > MAX_FREE_NETWORK_USAGE) {
_tokens =
((_networkUsage - MAX_FREE_NETWORK_USAGE) * CHARGE_PER_GB)/
10 ** 8;
}
nemoFunds.makeTransaction(
_metrics.serviceld,
_metrics.clusterld,
_tokens

emit NetworkComputeTokens(
_metrics.serviceld,
_metrics.clusterld,
_networkUsage,
_tokens

)

A\ W4) 4 4

Listing 1. The NetworkUsa odel 51&& contract details

4.3.4.2 ML-As-A-Service (MLaaS)

NEMO supports the deployment of
perform efficiently processing intensive pro
it was vital to offer a smart contrac
NEMO continuum offers GPUs wi
in parallel simultaneously. T
workload, it was imporfnt @gon
had reserved that paigic regptrce. Another crucial aspect that was used for the MLaaS was the
deployment cost of sycMgnfratructure based on socioeconomic factors.

MachineLearningMod

wc Leprning models, which usually require GPU power to
s such as the training of a large model. In this context,
to the use of GPU resources, MLModel, Listing 2. The

ungis’sol";
earningModel {

address public owner;
uint256 public gpuRate;
/I Number of seconds per hour
uint256 constant SECONDS_PER_HOUR = 360000000000;
struct MachineLearningMetrics {
string serviceld;
string clusterld;

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 44 of 111

string region;
uint256 gpuUtil;
uint256 allocatedTime;
uint256 usageFraction;
}
event MachineLearningComputeTokens(
string serviceld,
string clusterld,
string region,
uint256 gpuUtil,
uint256 tokens
);
constructor(
address _nemoTokenEstimationSetupContractAddress,
address _nemoFundsAddress

)

O

nemoTokenEstimationSetup = NemoTokenEstimationSetupContract(
_nemoTokenEstimationSetupContractAddress

);

nemoFunds = NemoFunds(_nemoFundsAddress);

}
modifier checkRegionData(string memory region) {
require(

nemoTokenEstimationSetup.isRegionSet(region),

"Data for region must be set before calling thj

(uint256 _regionalGpuCosts) = nem
_metrics.region
);

string memory _s metits.serviceld;

string memory _clus
uint256 _toke
_tokens =
(Cm edTime * _metrics.usageFraction) /
SRCONBS_PER_HOUR) +
egionalGpuCosts;
oFunds.makeTransaction(_serviceld, _clusterld, _tokens);
emif MachineLearningComputeTokens(
_metrics.serviceld,
_metrics.clusterld,
_metrics.region,
_metrics.gpuUtil,
_tokens

}
Document name: D4.3 Advgnced NEMO platform & laboratory testing results. Page: 450f 111
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

ya

&8s NEMO

E

Listing 2. The MachineLearningModel smart contract details

4.3.4.3 Data Monetization

One of the rapidly increasing aspects of the AI/ML domain is dataset sharing. In this context, MOCA
provides a monetization mechanism of data for NEMO users. MOCA’s Event Server allows the upload
of datasets for 3" party users to utilize them on their own applications. In return, the dataset provider is
rewarded with 10 tokens. The datasets are stored in an internal S3 bucket that is accessible through
MOCA’s API. In Figure 21 the endpoint related to the dataset’s uploading is presented alo ith the
payload fields required, while on Listing 3 the details of the related smart contract are shovK

dataset

N

/dataset/upload

dataset_upload_create A~ W&

Parameters

Name Description

type The type of the dataset
string
(forndata)
maxLength: 46
minLength: 1

poisoned-tomatoes-dataset

description A description for the dataset
string
(formbata)
maxLength: 80
minLength: 1

Images fo poisoned and healthy tomato

metadata The metadata of the dataset
string

(formbata)
maxLength:

natoes, poisoned, classification, images

255
minLength: 1

dataset The uploaded dataset
file . —
(formpata) | Browse... | poisoned-tom...dataset.tgz

Fi 21. Example of deploying dataset

Cancel

DataModel.sol

pragma solidity 20.8.0;

contract DataModel {
struct Datalnfo {
string datald;
string dataType;
string description;
string metadata;
string endpoint;

}

event DataComputeTokens(string datald, uint256 tokens);

function computeCredits(Datalnfo memory _info) public {
uint256 _tokens = 0;

_tokens = 1000000000;

emit DataComputeTokens(_info.datald, _tokens);

}
}

Listing 3. The DataModel smart contract details

D4.3 Advanced NEMO platform & laboratory testing results.

Document name: . .
Final version

Page:

46 of 111

Reference: D4.3 |Disseminction: IPU |Version: |1.0 Status:

Final

NEMO

4.3.4.4 Green Energy rewards

In this version of MOCA, we have also incorporated a rewarding mechanism for the workloads that run
on “green” clusters. A workload that runs on a green cluster will receive a reduction to their resource
usage costs, depending on the percentage of green energy supported by the infrastructure. This method
aims to give incentive to the workload owners to prefer green deployment clusters, so that:

1. They reduce their workload costs and
2. Indirectly, they help with making the NEMO continuum more energy efficient.

The ServiceProviderModel smart contract was modified appropriately to consider the grgn energy
percentage of the deployment platform. Annex 3 — ServiceProviderModel provides the detail§yof the

contract. (b
4.3.4.5 Smart Contracts Deployment Tool

Another major addition to the MOCA component is the Smart Contracts Deploymen 1. This sub-
component allows the users to upload their own smart contracts in the private Q blockchain used
for the contract deployment. In this way, the users can interact easily with Bleckchain, customize

: ches in the accounting
logic. Figure 22 demonstrates a simple example of the body of the reg i load the contract. The
user only needs to provide their smart contract.

(&

s /contract/upload/ This will call the deployer class and deploy the contract just uploaded. post_contract_upload_

It will return the deployed contract address

‘ Paramaters
No parameters
‘ Request body multipart/form-data ~]

file

string($binary) [Browse.... | Handler.sol

Send empty value

Execute

- . =
\'gure 22. Example of contract deployment

435 MOCA BuggeWlodels

The MOCA copfipSaent, as mentioned earlier in this document, is not a business model by itself but
rather a foungdati®mal €nabler for a variety of business models within the NEMO ecosystem. It establishes
e@ ated, and fair marketplace for resources and services across the AloT-Edge-Cloud

. core of MOCA's design facilitates a "credits" or "tokens" based economy, where

con tions are rewarded and consumption is billed, all managed via smart contracts on a distributed

The primary business models MOCA enables can be viewed from the perspective of different
stakeholders:

4.3.5.1 Resource-as-a-Service (RaaS) for Providers:

e Computing Resource Monetization: Infrastructure owners (as per
InfrastructureOwnerModel) can offer their computing resources (CPU, RAM) and get rewarded
based on usage by service providers (as per ServiceProviderModel). MOCA's smart contracts
ensure accurate accounting and reward distribution.

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 47 of 111

4352

4353

Ines

provide

Network Resource Monetization: Providers offering network access can monetize this,
especially for workloads requiring external exposure (as per NetworkUsageModel). The model
incentivizes initial free usage, then charges per GB, creating a clear value proposition.
Specialized Hardware Monetization (e.g., GPUs for MLaaS): Owners of specialized
hardware like GPUs can offer these for Machine Learning (ML) workloads (as per
MachineLearningModel). MOCA allows for nuanced billing based on GPU utilization,
allocated time, and even regional cost differences, enabling a viable ML-as-a-Service (MLaaS)
model.

Data Monetization: Entities possessing valuable datasets can make them avail on the
NEMO platform (as per DataModel). They are rewarded with tokens when their data is a8yessed
or utilized, creating a marketplace for data itself.

Incentivizing Green Energy: Resource providers utilizing green energy sourcedca cr their
infrastructure at potentially premium rates or benefit from NEMO's reward isms (as seen
in the ServiceProviderModel modifications for green energy rewards), e aging sustainable
practices and creating a niche market. 0

Pay-As-You-Go (PAYG) & On-Demand Services for Consum
Flexible Resource Consumption: Service developers and

IS can consume various

investment. They are billed transparently through MOCA
Access to Specialized Services: Consumers can rog and pay for specialized services
like MLaaS or specific datasets, fostering innowg#fon¥and ’reducing barriers to entry for
developing complex applications.

Cost Optimization: Incentives for usi
free initial network usage), enable con

green clustérs, along with tiered pricing models (e.g.,
ers toJreduce and optimize their operational costs.

Custom Business Logic via S tract Deployment:

Extensible Monetization Scheme
a crucial enabler for novel business

Smart Contract Deployment Tool (Section 4.3.4.5) is
odels. It allows NEMO users (providers or even third-

party integrators) to deplo ir own smart contracts with custom accounting and monetization
logic. This opens the dgor

o Subscrijptioy S

o Revgoue g Agreements

o Usagclicr Based pricing is not natively covered by default MOCA contracts.
o Loyd % gerams or bundled service offerings.
Fosteri Bhesfder Ecosystem: This flexibility allows the NEMO marketplace to adapt and

evolvelgcc odating new types of resources or service delivery models as they emerge,

dr@ € community or specific enterprise needs.

ce, MOCA aims to create a vibrant, self-sustaining economic ecosystem. It empowers resource
o generate value from their assets and service consumers to access these assets efficiently and

transparently. The extensibility offered by custom smart contract deployment ensures that the business
models operating within NEMO can evolve and diversify over time. The distributed ledger technology
underpinnings provide the trust and auditability necessary for such an ecosystem to thrive.

Document name:

D4.3 Advanced NEMO platform & laboratory testing results.

Final version Page: 48 of 111

Reference: D4.3 |Disseminqtion: |PU |Version: |1.0 Status: Final

4.4 Intent-based SDK/API

4.4.1 Overview

Intent-based SDK/API (IBA) is the interface of NEMO to third party interactions, with the finetuning
of this component being continuous to incorporate new features as the project progresses. To this end,
several activities towards the finalization of the Intent-based SDK/API were carried out since the
delivery of deliverable D4.2. These activities can be divided into two categories, a) the integration
related activities, and b) core optimization activities that enhance the existing functionalities gf the tool.

availability and highly scalable system. The current architecture, Figure 23, demgnsiyatc®the IBA
subcomponents as well as their interaction with other NEMO components. This allo ast and easy
integration of new components without major modifications in the entire IBA , just only in the
specific subcomponent that interacts with the newly introduced NEMO com example of this
architecture will be presented in the subsequent subsections with the inte?r&f mNCC to IBA.

4.4.2 Architecture
The Intent Based API was developed in a microservices oriented architecture ﬁ.gh igh-

—]— T j— Application /
Service / LCM Ul
- _n C uService

NEMO NEMO NEMO

provider consumer partner

v v

Intent-based AP| Server

f | f

I
create, update, get,

I
|
|
|
|
I . register, deploy, ; AAA
[delete intent notify user quge,-y workloag Metify user | identity]
I
| l' ‘) | Management
| SR TRRTE|
: NEMO Intent Manager register, get intents NEMO Workload Manager | ! Access
Control
: 'L - ; | RBAC access |————
validate ; fegisier, ge validate to workloads
: ¥ intent report NEMO Registry [«— yoridoads |
|
' NEMO Intent v NEMO Workload |
: Validator oo 3 Validator [
|
|
I NEMO Intent deploy/migrate/ :
I Collector terminate workload |
1
~ intentfuffilmentdata | } __________ '
P I
Meta-
S mNCC Orchestrator

Figure 23. Final Architecture diagram of Intent-Based API

4.4.3 Interaction with other NEMO components

The activities related to the Intent-based SDK/API in the 2" integration phase of the project are mainly
focused on the integration between IBA and other NEMO components. As described in the Sub-section
4.4.2, Intent-based SDK/API is located at the front-frontier of the NEMO framework, meaning that it is
the main input of the information used by the NEMO components. In this context, IBA is participating

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 49 of 111

in many integration pipelines which are described in Section 5. The related work carried out involved
the integration with Meta-Orchestrator’s components, such as the IBMC and the
deployment/undeployment components. In this integration pipeline, new message exchanging queues
were created, while the existing ones were updated to house the needs of the new features presented by
the Meta-Orchestrator as well as to provide the maximum optimization for the deployment of workloads.
In addition, several integration actions were performed to incorporate IBA with NEMO Access Control
component. This was of paramount importance as it allows the use of IBA from external parties that are
located outside of the NEMO ecosystem, e.g., a service in an external cluster. In terms of workload
management, several modifications were made regarding the IBA-CMDT interactidys. More
specifically, the work carried out was focused on the integration of Linkerd™® into the features of§BA to
be able to handle all the states of a workload, such as creation, deployment, runni tuspand
termination by adding the necessary annotations to the generated manifest file, Listing W is the
integration of IBA with the networking components (mNCC & L2S-M) of NEMO. @ itegration
pipeline, severe modifications were required at the IBA. A new endpoint was cre to Itandle the new
Intent request along with the related Intent, Annex 1, and its validator. As communication
pipelines for inter component communication, several RabbitMQ channelspfve ated to allow the
communication and state management of the network slices from the 1B i

def set_linkerd_injection(manifests: List[Dict[str, Any]]):
for manifest in manifests:

if manifest['kind'] in ['Deployment’, 'StatefulSet', 'DaemonSet’:
annotations = manifest.get('spec’, {}).get('template’, {}).get('metadq#é’, {})Qet('annotations’, {})
annotations['linkerd.io/inject’] = 'enabled’

elif manifest['kind'] in ['Pod']:
if 'metadata’ not in manifest.keys():

manifest['metadata’l = {}

if 'annotations’ not in manifest['metadata’].
manifest['metadata’]['annotations’] = {}

manifest['metadata’]['annotations']|['ligkerd.io/injéct’] = 'enabled’

return manifests

4. Function used for annotating Manifests

nemo.rabbitmq INFQ 2088-03-2Y 14:53:59,245 rabbitmq [x] Sent to mncc, routing_key=mncc.ibs, message:

{"workload": 1052-4e4d-8b55-275187a780ba", "pod": {"labels": {"I2sm": true, "I2sm/app™: "[parameter]"},
"annotations": {" netWorks": "spain-network"}, "env": {"DNS_NAME": "[parameter].spain-network.inter.I2sm"}}}

ther hand, apart from the integration related development of IBA, several developments for
both the User and the intra-service interfaces were done. Firstly, a lifecycle event monitoring
subcomponent was created to better handle the state of the workloads, Annex 2. This was a crucial
feature as it allows the end-user to have knowledge of each state of a workload that is passed through
the Graphic User Interface. Then, the user can understand if his workload has been initiated, running or
terminated. In case an error occurs, the user can retrieve the information related to that failure in a user-
friendly way. Another enhancement that took place in the 2™ integration phase was related to the MOCA
component. As the service’s needs changed some of the MOCA’s endpoints got deprecated and later

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 50 of 111

https://linkerd.io/

removed from the IBA-MOCA integration pipeline as this was reported in deliverable D4.2. In addition,
as the project progresses and based on the iterative Quality Assurance process employed in NEMO as
well as the integration process a minor number of bugs along with service improvements were identified.
To tackle these newly identified needs, IBA enhanced its existing toolset by presenting new endpoints
for housing the needs of a modern microservice. Moreover, the need for specific information in Intents
needed for the evaluation and deployment of a workload, lead to the creation of use case specific Intents,
such as the Machine Learning Intent, Listing 6, that forces the workload to be deployed in a GPU
compatible cluster node.

Intent:
Id: 'Intent_6' (b
userlLabel: 'MachineLearning'
intentExpectations:
- expectationld: '4'
expectationVerb: 'DELIVER'
expectationObject:
objectinstance: '781052a5-4270-4113-847a-8730cdf55ba7"
objectType: 'NEMO_WORKLOAD'
expectationTargets:

How much VRAM is needed for the workload to run (in GB) -> will be eval by checking the available free VRAM
for the GPU

- targetName: 'vram'
targetCondition: '|IS_GREATER_THAN'
targetValueRange: '"10'
intentPriority: 1
observationPeriod: 60
intentAdminState: 'ACTIVATED')

Listing 6. MaglineLearning Intent sample

4.4.4 Conclusion

The Intent Based API vgas dgs
party User and the NEMQhco

the interface between the Graphical User Interface or the 3™
ents. As mentioned in the previous subsections, IBA plays a pivotal

role within the NE ht re as it orchestrates the communication channels and is the initial point
for many crucial N rkload pipelines. Since the delivery of D4.2, IBA was enhanced with
functionalities i by other components as well as internal optimizations that guarantee the

efficient oper oPXEMO. The workflow pipelines where the IBA participated in are described in

Section 5 c@ ment.

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 51 of 111

NEMO

5 NEMO scenario-driven verification & results

In this section the activities and tests performed towards a complete and integrated NEMO infrastructure
are presented. Apart from the WP4 tools’ integration activities, as presented in D4.2, for completeness
in this document also the integration pipelines related to WP2 and WP3 tools are presented. This section
aims to provide in a complete and coherent way the information regarding the tools’ interactions within
NEMO. As the NEMO framework consists of many tools one of the first critical issues was the testing
procedure. To solve this issue, a categorization of the tools took place based on -system
functionalities was selected. Through this system breakdown dedicated pipelines created focu on
small and dedicated functions of the System.

Each scenario, as outlined in the subsequent subsections, focuses on a distinct operatipna] aspgCt of the
NEMO meta-OS. The results presented herein provide empirical evidence of the pl capabilities
and its readiness to support the diverse use cases envisioned within the NEM@ PRyject, highlighting
both successful integrations and areas for further refinement. The scenarios al functionalities

including cluster registration, workload registration and provisioning, rkload scheduling and
orchestration, workload lifecycle management, and integration activiti g from WP3, such as

the Secure Execution Environment.

These dedicated integration pipelines provided several benefit 1Mggration procedure as the
integration, testing and optimization of the components basgd on sp functionalities made the entire
process easier and more robust, as well as aligning with ppraPtices of Software development
principles.

This section details the NEMO cluster rega i rio related activities undertaken. The integration
results as reflected in the cluster regis{ig uence diagram described in Figure 24 are presented
below.
I S N R
NEMO Parner ; v" i i
(cluster provider) :

alt

feluster/registar—

I—Add dluster (Ul)

|
Dispatch
add cluster ———————»
request
-

#-Initialize cluster request—

!
clusteriregister——————————————» track request

Add cluster

————— Provide cluster siatus updates+

I Visualize

Figure 24. Cluster registration sequence diagram

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 52 of 111

ya

&8s NEMO

5.1.1 Verification scenario

Test 1: NEMO Cluster registration

Objective To verify the cluster registration process in NEMO that facilitates the resource provisioning
triggered by the NEMO partner (resource owner)

Components e LCM
e Intent-based API

e MO
e MOCA (b
e RabbitMQ 4
Features to be | The feature that this scenario aims to test are the cluster registrat @ cess which is initiated by
tested the NEMO partner (cluster provider) through the LCM Ul tSRgghdsed API. Then, the newly
registered cluster is added into the NEMO meta-OS ecos the MO. The results (status) of
this process are then visualized to the user.
y __N
Test setup All the participating components were deployed e EWmeta-OS cloud/edge infrastructure
at OneLab (dev cluster 1).
Steps 1. Cluster registration through the LA Ul 7
2. Cluster registration megshge commuijgication to MO
3. Cluster addition procgss by MO
4. Cluster status provisi@ning to RabbitMQ
5. Cluster status Wte izftion in LCM Ul
5.1.2 Results
This section documents the proce t is described in the scenario above step by step.
5.1.2.1 Cluster registratio CM UI
To register a cluster through t UL, first, we go through the LCM UI home page to the “Resource
Provisioning” tab, F1 2
Workload Monitoring Workload Instances Intent R Provisioning
e | o

Figure 25. LCM home page

In the “Resource Provisioning” page, we have an overview of some basic details for the clusters, like
their ID, name, resources (CPU, RAM, disk, GPU), their deployment status and the endpoint they are
available at, as it is shown in Figure 26.

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 53 of 111

&3¢ NEMO

Services Overview

D Clusters Table

‘ Search...

Dy Name Status Endpoint CPUs Storage Memory Viam Actions
933189%. dev-onelab https://api.main.nemo.onelab.eu:6443 68 1620 172 0 L |
8d63ccD... testcluster https:/api.main.nemo.onelab.eu:6443 10 300 120 0 L
67c21fc.. pro-onelab https://api.prod.nemo.onelab.eu:6443 32 1350 62 14 L
60a2ee?... k3s-onelab https:/api.s2.nemo onelab.eu:6443 16 1080 32 0 n 8§
Te58cae... nemo-smart-farming hitps://83.235.169.221:35443 6 1000 8 0 L |
179592b... staging-onelab https://api.staging1.nemo.onelab.eu:6443 32 1080 62 0 n§
142334, energy https://comsensus.eu:13387 5 5 5 0 L |

Items per page: | 10~ ‘ 1-70f7
Figure 26. Clusters overview pa
When a user registers a cluster, they are prompted to fillyg the shown in Figure 27. The form

requires of the user to upload the configuration file of their | in information like the name
of the cluster, its endpoint, the resources of the cluster, thg availability percentage, its green energy
percentage and possible costs they want to apply worklo#d that will be deployed on their premises.

.)

O Register Cluster

Cluster Config File

) kube-config

Cluster Name Managed APl
test-cluster-2 https://api.main.nemo.onelab.eu:6442
CPUs # Memory (GB) Storage (GB) V-RAM (GB)
12 200 30 0
Availability % Green Energy % Cost
99% - 60% - low_cost -
CPU Base Rate (in millitokens) Memory Base Rate (in millitokens)
12 10

Figure 27. Cluster registration form

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 54 of 111

NEMO

5.1.2.2 Cluster registration message communication to MO

Once the submission form is completed correctly, LCM sends to NEMO the registration request (the
request is proxied through the Intent API). MOCA receives the request informs the Meta Orchestrator
of request, in order to join the cluster with the NEMO continuum. Until the join process is completed,
the cluster is saved with state “Pending”, Figure 28.

Services Overview

O Clusters Table

Search...

Dy Name Status Endpoint CPUs Storage Memory Vram Actions
933189€. dev-onelab https://api.main.nemo.onelab.eu:6443 68 1620 172 0 -]
8d63cc0... test-cluster https://api.main.nemo.onelab.eu:6443 10 300 120 0 L |
8909fd2... test-cluster2 https://api.main.nemo.onelab.eu:6442 12 30 200 0 L |
67c21c... pro-onelab https://api.prod.nemo.onelab.eu:6443 32 1350 62 14 L |
60azee7... k3s-onelab https://api.s2.nemo.onelab.eu:6443 16 1080 32 0 L |
1e58cae... nemo-smart-farming https://83.235.169.221:35443 6 1000 8 0 L]
179592b... staging-onelab https://api.staging1.nemo.onelab.eu:6443 2 1080 62 0 L |
142¢334. energy https://comsensus.eu:13387 5 5 5 0 L |

Items perpage: | 10 ¥ 1-8of8

Figure 28. @uster perjding status

5.1.2.3 Cluster addition process by
Figure 29 shows the message from MO eta Orchestrator received. The message includes all

yon. Since the process was completed successfully, the status returned is “ok”, Figure 30.

bbddfbda7-kxf

Figure 30. Meta-Orchestrator response

After receiving this message, MOCA continues to store the provided cluster configuration file and
register the cluster to the blockchain. Figure 30 provides some logs that show that both actions were
completed successfully. The file was stored in IPFS and can be retrieved, if necessary, with the produced

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Dissemincﬁon: |PU |Version: |1 .0 Status: Final

Document name: Page: 550f 111

NEMO

CID, a unique identifier of that file. IPFS here is used as an extra storage layer which guarantees that
any tampering attempts to the cluster configuration file will be easily detectable, as any changes to the
content will produce a new CID. Since the configuration file holds sensitive information, it is important
to ensure the integrity of the data. After this is completed successfully, the cluster is registered in the
blockchain. Figure 31 shows the details of the transaction.

Figure 31. Register cluster to blockchain

5.1.2.5 Cluster status update visualization in LCM UI

At the end of the process, MOCA updates the status of the cluster to “OK”. This is visiljle ugh the
LCM UI, as shown in Figure 32.

‘ # Services Overview ‘

2 Clusters Table

Search...

D& Name Status Endpoint CPUs Storage Memory Vram Actions
0933189%. dev-onelab https://api. main.nemo.onelab.eu:6443 68 1620 172 0 L.
8d63ccD... test-cluster https://api.main.nemo.onelab.eu:6443 10 300 120 0 LHE |
67c21fc... pro-onelab https://api.prod.nemo.onelab. eu:6443 32 1350 62 14 | . |
60a2ee7... k3s-onelab https:/api.s2.nemo.onelab.eu:6443 16 1080 32 0 [H [}
2603d35... test-cluster-2 https:/api.main.nemo.onelab.eu:6443 12 200 30 0 [H [}
TeS8cae... nemo-smart-farming https://83.235.169.221:35443 6 1000 8 0 LH []
179592b... staging-onelab hitps://api.staging].nemo. onelab. eu:6443 32 1080 62 0 n 8§
142¢334... energy htps://comsensus.eu:13387 5 5 5 0 n 8§

ltemsperpage: | 10+ 1-8of8

v Figure 32. Updated cluster status

5.1.2.6 Results fro -Orchestrator
In step 3, “Clushgr ad@ition process by MO,” MO receives the cluster joining request from the RabbitMQ
%

queue. Aft communications between MO’s subcomponents, MO API registers the cluster if
the sids well formed and there is no error. Listing 7 presents an example of a joining request
p at the MO is expecting to receive. If there is no error, the MO will send an ok message, Listing
8. Ot ise, if an issue has occurred, either syntactic error or connectivity related, with the request, the
MO retyfns an error, Listing 9. The error presented in Listing 9, error 409 is related to a joining request
for an existing cluster.
{

"availability": "99.9%",

"cluster_name": "test",

"cost": "low_cost",
"cpu_base_rate™: 10,
"cpus": 10,

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 56 of 111

ya

&3¢ NEMO

"green_energy": "20%",

"id": "28aa341f-246d-4890-886b-79529d8e8b7e",
"managed_api": "https://api.s2.nemo.onelab.eu:6443",
"memory": 200,

"memory_base_rate": 10,

"storage": 300,

"timestamp": "2025-02-04T10:37:55.6407282",

"vram": 1024
Listing 7. Joining cluster request payload %
C N

"action”: "join",

"cluster_name": "test-cluster"”,
"managed_api": "https://testing:6443",
"operation_id": "4981421-test-join",
"status": "ok",

"timestamp": "2025-05-26T08:12:02+02:00" ; ,
| : : ,

Listing 8. Succesgu]ly joinin quest

"action": "join",

"cluster_name": "test_cluster",

"error": "request failed: http request failed with statu
"id": "4981421-test-join",

"status": "error"
!
Listing 9. Error joining request
Finally, after the join succeeds, each cluster's metrics persist in the MO database. The metrics
used for the Wor} ement were described in deliverable D3.3 [20], Table 8.

Table 8. Cluster Metrics
Description

The name of the Cluster that will be
deployed.

string Cluster name

cpus number CPUs The number of CPUs of the Cluster.
memory number Memory The RAM of the Cluster in MB.

storage number Storage The disk storage of the Cluster in MB.
availability string Availability The percentage of time that the cluster is up

(99.9%, 99%, 90%).

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 57 of 111

&8s NEMO

Field Type ‘ Title Description

green_energy string Green energy The percentage of RES powering the cluster
(0%, 20%, 40%, 60%, 80%, 100%).

cost string Cost The cost type of a cluster (low cost, high
performance). Enum
cpu_base_rate number CPU base rate The CPU cost of the cluster by the CPU

capacity of the cluster (in milliseconds).

memory_base_rate | number Memory base rate The memory cost of the clu by the
memory capacity of the cluster (in

vram number Video Random Access | The cluster VRAM available i

Memory '\

N

Once the cluster registration has been performed within the NEMO infrasfgcture, a NEMO user can
proceed to register, deploy and provision the corresponding workflows yflae Wfrastructure. Figure 33,
Figure 34 and Figure 35 depict the whole process necessary for the p Qm eployment of a workload

, were already described in

within NEMO.
Since both the workload provisioning, Figure 33, and depl
Wpactions that occur during the
MO workloads take advantage

deliverable D4.2. This section of this document focuse
een its functionalities. Supplementary

deployment process of a NEMO workload, especially detai
of the mNCC flexibility to support isolated com ication
to the workload provisioning, the workload degloyment process showed in the Figure 34 is also a key
part for the completion of this experiment.

5.2 NEMO workload registration & provisioning

nt process illustrated in Figure 33 and Figure 34,
the workflow continues with the creati network elements necessary to establish isolated
communication channels between NEMO oads deployed over the project’s infrastructure. Figure
35 shows the creation process of a al network by the mNCC NEMO component.

,:”‘_\
(] ; '

Following the initial stages of the work]gad

MEMO Consumer
(workload p;cwider}

Register Workload (U1 woridoad:
orkloads/uploadH

Validate

add in
Registry

otify about workload-
lotify about workload-»

H
| Initiate
i oT
H
Visualize !
i | i
1 H ' H
| | | |
' H ' H

Figure 33. Workload provisioning workflow in NEMO

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 58 of 111

X

NEMO Consumer Intent-based APl

(workload provider)

NEMO Workload Deployment

RabbitMQ m Meta-Orchestrator

&8s NEMO

NEMO Access Control

|
| | l | | |
atJ | [l | | |
| | | | |
! Deploy Workioag(u ! | | |
i "l I |
» Iworkload/{id}/template | 1]
b T 1 | |
...... peessesasssssssssnssnssadadecccncasnsnanannsnesnsnnanannfrssnnnnsnnrnsnnndesnnnns | |
| | | |
| | | |
Iworkload/fid}itemplate | | | | |
o | | | |
+ + t | |
| | | | |
| Vulnerability Scanning | | I |
| | | | |
| | | | |
: Validate : : : :
| 1 | | |
| | | |
: Dispatch run workload request | | : :
| T | | |
| | | |
| | | |
| | | |
| | Visualize | |
| al aln |
| |
| |
I T > I
: Mworkload/{id)/ : :
| ¢ (GET) | |
I [I I
| descriptor bucket url | |
N Y ettt 2 i F=====--- > I
1
: |, provide workload status updates :
I N I I
: : Select best cluster based on metrics (logic) :
| | |
| | |
| » | |
| [~ | |
| | |
| | Deploy |
| | |
| | nE |
| , provide workload status updates | |
| il T 1 |
| | | |
| < | |
| | |
| | |
| | |
| | |
| Visualize | |
| | |
| | |
: Update workload status : :
| | |
| T | |
: Provisioning: set up ingress : : : :
| | | | |
| | | | |
| I Exposes APls 1 -]
| I | | d
: : : : Protect APls
| | | |
| | | |
| | | inf |
| L - fm-mmmm-- fommemmmae- fmmmmmmmmmmmmmmmmmmmm
| | | | | |
| | | | | |
' ' ' ' 1 '
Figure 34. NEMO workload deployment workflow
D4.3 Advanced NEMO platform & laboratory testing results.
Document name: . . P Y 9 Page: 59 of 111
Final version
Reference: D4.3 | Dissemination: IPU |Version: | 1.0 Status: Final

worker cluster
APl

worker cluster 2

‘ IB API ‘ ‘ MO ‘ ‘ RBMQ ‘ ‘ BS ‘ ‘ LH&-M. ‘ APl

Intant request for network creation

Intent request for Network:

grpe service request

grep service created

Network ready notification + | 4
deployment fields update

Network ready nofification +
deployment fields update

Configure deployment

Pod deployment
with annotations

Pod deployment
with annotations

4

Figure 35. Network workload deployment wo \4
The virtual networks created by the mNCC, enable isolated co at between two (or more)
pods located in one, or multiple, Kubernetes (K8s) clustggs in N . This step must be performed
before the deployment of the pods themselves within the ¢ r the deployments, since each

virtual network is defined (and created) as a K8s resouCes that each pod must consume at its
instantiation stage.

In this regard, when a new virtual network is reated hrough the mNCC component, the pods that
consume this K8s resource (i.e., pods attac
each other as if they were located in th
location. More details about these virtual

It is important to address that, althou, inal workflow included the creation of multiple network
slices where various NEMO admi tive domains could be split based on the needs of each platform
at network level, dynamically mo e network topology needed for each use case, the workflow
i feature a single network slice. The purpose of this decision
the relatively low complexity of the current NEMO infrastructure,

yt'will be done using the virtual networks created in the default slice. On the
NEMO workload deployment process, as the user will not need to decide in
NEMO deployment be located. Nevertheless, this slice creation and modification

NEMO project infrastructure.

Ino to start the deployment of each virtual network in the default slice present in NEMO, the Intent-
component must create the associated network intents that represent the network
ecting the pods from a NEMO workload.

In Table 9 an overview of how to construct an intent to request a network connection between different
clusters is presented. Later in this section, each value will be explained. In Table 9, a complete example
of 'a L2S-M Intent is described.

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 60 of 111

Table 9. Intent for network connectivity request. L2S-M network request attributes.

Key Description Value

Intent.id Identifier for the intent <string>

Label to identify the intent

Intent.userLabel among others posted by the cloud continuum
intentAPI
Intent.intentExpectations List of expectations for the <intentExpectatigns
network &
§ .
intentExpectation.expectationld Identifier for the expectation <strin, nﬁ&be@

Verb defining what type of

intentE tation. tationVerb ok
intentExpectation.expectationVer action to apply in the object. D% , ENSURE
Type of object to be delivered -
intentExpectation.expectationObject yp) ectationObject>
by the network A\
/ 3 *
expectationObject.objectType Defines type of network intir\ gi%fs_%\g{wgg% G+

define a specific

expectationObject.objectContexts Set of atfributes rﬁ\y <objectContexts>

objectContext.contextAttribute)

bjectContext.contextConditi g the atjfbute
objectt-ontext.confexttondition The vfllue or ragge is set on name***, providerName*,
objectContext.contextValueRange CORtex alueR ge. And the domain*, pod_cidr*

#Cting the value bearer token**
)n contextCondition

OWjective to fulfil by the

. . isolatedC tivity*
expectation object isofatect-onnectivity

intentExpectation.expectationTar?‘

Scope of the related

intentExpectaion.ex ectatlo . *K
P P expectation. namespace
) Scope of the entire intent. In the
Intent.inten ex NEMO platform the main NEMO_WORKLOAD

context is the related workload

onl f'the userLabel matches a network intent. The is classified and translated as described

The netwo@ ys read from the exchange/queue “nemo.api.workload/network-intent” and processed
S

WA re ail in D2.2 and D2.3 deliverables. Additionally, is doing some simple network
manad@nent in order to fit L2S-M requirements and abstract simple networking behaviours from the
higher 1&¥els in the architecture.

Once the intent has been processed in the Intent Based System (IBS), this component will generate a
gRPC [21] [22] [23] service request towards L2S-M (particularly, the L2S-M MD component). This
request must include the following fields:

e Network Network Class-less Inter Domain Routing (CIRD), which will be used to automatically
assign [P addresses to pods using the virtual network.

e A Provider endpoint. This provider is a combination of a DNS Server and as SDN Controller
which will act as a central point which manages the network.

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 61 0of 111

e List of clusters where the network is going to be created. This list includes:
o Kubernetes endpoint, including the API Key and Bearer Token of a virtual network
user.
o Namespace to be used inside the cluster.
o The address pool, contained inside the CIDR for the virtual network. For instance, if
the chosen CIDR in a new virtual network is 10.1.0.0/16, each cluster would use a
subnet like 10.1.n.0/24. This subdivision is processed and calculated by the IBS.

Once this request is received in L2S-M, it will create a virtual network resource in each spegified K8s
cluster. This resource will be created at the same namespace as the NEMO workload deploy
virtual networks are namespaced resources that must be present in the same namespace of tg p

will use them. Furthermore, once this resource is created in each cluster, the inter-do

component will register this creation and enable the inter-domain connectivity between e well as
generating the DNS domain record that must be added in the pod deployme enable their
connectivity within the virtual network (avoiding the need to manually configu IP addressing of

each pod).

To enable pods to utilize the virtual network resource, L2S-M includes the % configuration fields

in the gRPC response sent to the IBS. Specifically, any NEMO deploy t#hding to use the newly
gscriptors:

S Priaged by this component.

e L2S-M name of the application label (defined by t £nt owner), which will be used to
identify the application with DNS.

e The name of the L2S-M virtual network to,which th§ pods will be attached

e DNS name for each pod (L2S-M pgévides the S domain; the deployment owner is

responsible for assigning the specific n| application)
L2S-M populates these values in the gRPZ resp the IBS, effectively providing all the necessary
information required for the deployme rdge the virtual network within the Kubernetes cluster.

The Intent-based API has a consumer listening to exchange=mncc,
(routing key,queue)=(mncc.ibs, m] the values mentioned above. A sample message payload
expected by the IBA is presented i i
{
"workload": "2b9c9ade-0288-4c
"pod": {
"labels": {

"I2sm": "true",

"I2sm/app": "faork name>"
h
" g€ {

et S

i

": "spain-network"

"DNS_NAME": "<workload-name>.spain-network.inter.l2sm"

Listing 10. Sample payload received by IBA from the RabbitMQ queue

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 62 of 111

The Intent-based API then updates the workload manifests with the above additions (pod labels,
annotations and environment) while also performing substitution on the <workload-name> matching
the name of the workload with the given NEMO Workload ID.

When the manifests are updated, the Intent-based API informs the MO by publishing a RabbitMQ
message on the exchange=nemo.api.workload, (routing key, queue)=(run,run) with the message
payload containing “status” field set to “updating”, signaling to the MO to update the NEMO Workload
residing in the corresponding cluster.

Objective Verify the NEMO workload registration, deployment and provisioning pra‘e!su

5.2.1 Verification scenario

Test 2: NEMO workload registration and provisioning

Meta-Orchestrator

Components e NEMO Workload Registration
o LCM O
o Intent-based API
o RabbitMQ
e NEMO Workload deployment
o LCM
o Intent-based API
o CMDT
o RabbitMQ
o
o

4 o “M (mNCC)

Features to be e workload registration, deployment and provisioning process in NEMO, the
QO W g

tested features will be tested:
\v e Workload Registration

y~ * Workload Deployment

e Workload Provisioning

e Network Deployment

The feature that this scenario aims to test are the workload registration process which is
initiated by the NEMO consumer (workload provider) through the LCM GUI & Intent-based
API. Then, the newly registered workload is requested to be deployed into the NEMO meta-
OS ecosystem by the MO. Following the workload provisioning process is triggered which
is facilitated by the Intent-based API and the Access Control components. The results
including the workload status are visualized to the user. The Intent-based API initiates a
network creation intent, which is propagated through RBMQ to mNCC and L2S-M,
triggering gRPC service setup. Once the network is ready, updated deployment fields are
returned through the same path to the Intent-based API.

D4.3 Advqnced NEMO platform & laboratory testing results. Page: 630f 111
Final version

Reference: D4.3 |Disseminction: |PU |Version: |1.0 Status: Final

Document name:

Test 2: NEMO workload registration and provisioning

The updated workload is then published and deployed to the managed clusters with
appropriate network annotations by MO.

Test setup The associated components are deployed in OneLab facilities

Steps The steps identified in the associated sequence diagrams are listed below:

1. NEMO workload registration

a. Workload registration by the NEMO user through the LCM U]

b. Execution of workload validation process in Intent-based A

c. Notification of the LCM UI about the status of the workload regiSgation
2. NEMO workload deployment

Workload deployment by the NEMO user through the

Execution of workload validation in Intent-based AP§ }
Communication of the deployment request to the
Communication of the deployment request to th€
Deployment operation process triggered by

Fr Mo a0 o

Intent-API
i. Expose the services using NE
j- Visualization of the up
3. NEMO workload provisioning
NEMO workload provisi

C service created by L2SM

k ready notification + deployment fields update from mNCC to

ased API.
. sh updated workload into RabbitMQ

2 Receive updated workload bt MO
h. Updated workload by MO-
i. MO deploys pod with network annotations and updates workload into
Managed Clusters selected by the HUB

>

Ther the subsections present the corresponding results step by step as indicated by the verification
scenario.

5.2.2.1 NEMO workload deployment

This section of the present document will be centred around the interactions between the NEMO
components and the mNCC component to create network intents that workloads will use in order to
communicate through the infrastructure.

14146] [27]

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 64 of 111

m
[im

',.-' i _(N E M O

When a new intent arrives with the intent-notify key to the Rabbit-MQ is then read by the IBS. The first
step is to filter and detect the type of intent by the label as show in Figure 36. In case the label is not
referring to cloud continuum connectivity, the intent is discarded.

[INFO - ©7:51:28] intent_engine.executioners.rabbitMQ recv: [Thread-1 (reciver)] Sending cloud_continuum message to queue
[INFO - @7:51:28] intent_engine.executioners.rabbitMQ recv: [Thread-1 (reciver)] New message from RMQ: intent-notify
[DEBUG - 87:51:28] intent_engine.core.ib model: [MainThread] Schema Type Expectation: <class 'intent_engine.core.IntentNrm.IntentExpectatio
n'>
{
'id': '154°,
'userLabel’: 'cloud_continuum’,
'intentExpectations’: [
{
‘expectationIid’': '1°,
‘expectationVerb': 'DELIVER',
‘expectationObject’: {
‘objectType': 'K8S_L2 NETWORK',

Figure 36. Arrival of intent and first filter.

:28] intent_engine.catalogue. : [MainThread] Workload id: b3@ceb56-9eed-4118-ac6f-08ecefls
:28] intent_engine.catalogue. [MainThread] Compiling 1l2sm schema...
:28] intent_engine.catalogue. : [MainThread] pod_cidr subneting...
:28] intent_engine.catalogue.l2sm: [MainThread] cluster name: staging-1
:28] intent_engine.catalogue.l2sm: [MainThread] existing net! subnetworks: 1@.1.1.8
Execution platform
[INFO - @7:51:28] intent_engine.core.intent_core: [MainThread] Runnning sys_out
-> -> Executing:
[
{
"network': {
‘name’: 'spain-network-2",
‘provider': {
'‘name': 'default-slice’,
'domain': 'api.main.nemo.onelab.eu’,
1,
'pod_cidr': 'l1@.1.0.8/16",
‘clusters': [
{
'name’: 'staging-1",
[INFO - ©7:51:28] intent_engine.core.intent_core: [MainThread] Runnning grpc_connector
[DEBUG - @7:51:28] intent_engine.executioners.grpc_connector: [MainThread] 12smmd grpc proto
:51:28] intent_engine.executioners.grpc_libs.12smmd: [MainThread] Reading enviroment GRPC_SERVICE_L2SM_ADDRESS vars: 12sm-grpc-s

e 37. Grpc connector execution

[INFO - @7:51:29] intent_engine.executioners.grpc_libs.12smmd: [MainThread] Sending CreateNetworkResponse to rabbitmg...
[INFO - @7:51:29] intent_engine.executioners.rabbitMQ emit: [MainThread] Connecting to RabbitMQ at nemo-rabbitmq.nemo-sec.svc.cluster.local
:5672
[DEBUG - ©7:51:29] intent_engine.executioners.rabbitMQ emit: [MainThread] Sending message: {"workload": "b38c@b56-9eed-4118-ac6f-08ecefl6”,
"pod": {"labels": {"l2sm": "true", "l2sm/app": "<workload-name>"}, “annotations": {"l2sm/networks": "spain-network-2"}, "env": {"DNS_NAME"
: "<workload-name>.spain-network-2.inter.12sm"}}}
[INFO - ©7:51:29] intent_engine.executioners.rabbitMQ emit: [MainThread] Channel created
[DEBUG - ©7:51:29] intent_engine.executioners.rabbitMQ_emit: [MainThread] Key: mncc.ibs, Routing Key: mncc.ibs, Message: {"workload": "b3@c
©b56-9eed-4118-ac6f-08ecef16" pod": {"labels": {"l2sm": "true", "l2sm/app": "<workload-name>"}, "annotations": {"l2sm/networks": "spain-n
etwork-2"}, "env": {"DNS_NAM| "<workload-name>.spain-network-2.inter.12sm"}}}
[INFO - ©7:51:29] intent_engine.executioners.rabbitMQ emit: [MainThread] [x] Sent mncc.ibs:{"workload”: "b3@ceb56-9eed-4118-ac6f-08ecefls"
"pod": {"labels": {"1l2sm": "true™, “12sm/app": "<workload-name>"}, "annotations": {"l2sm/networks™: “spain-network-2"}, "env": {"DNS_NAME
: "<workload-name>.spain-network-2.inter.12sm"}}}
[x] Sent mncc.ibs:{"workloal 30cOb56-9eed-4118-ac6f-08ecefl6”, "pod™: {"labels™: {"12sm": "true", “"12sm/app": "<workload-name>"}, "ann
otations™: {"12sm/networks’ "}, "env": {"DNS_NAME": "<workload-name>.spain-network-2.inter.12sm"}}}
Intent procesed !!!

Figure 38. L2S-M annotations to be used by the workload.

Once the intent has been received from the IBS component, L2S-M proceeds to create the virtual
network in the relevant clusters, as shown in Figure 39 and Figure 40 and each network has been properly
created in the K8s clusters as a custom resource. In consequence, its details can be obtained through the
command line interface of the cluster, showcasing how the combination of the IBS and the L2S-M
components enable the creation of virtual networks in the NEMO infrastructure (i.e., the mNCC NEMO
component).

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 650f 111

1
NAME
spain-net

d113 - -col
Name :
Namespace
Labels:
Annotatio

:-$ kubectl get 12network -n fcc6f34d-f33a-4bfe-a66b-764d9bedd113 --context nemo-s

AVAILABILITY NECTED_PODS AGE
work-1 Available 1 15d

:-$ kubectl describe 12network spain-network-1 -n fccé6f34d-f33a-4bfe-a66b-764d9bed

ntext nemo-si
spain-network-1

2 fcc6f34d-f33a-4bfe-a66b-764d9bedd113
<none>

ns: <none>

API Version: 2sm.12sm.k8s.local/vl

Creatio

L2Network

n Timestamp: 2025-04-30T13:30:097

Finalizers:
2sm.operator.io/finalizer

Generation: 1

Resource Version: 63712928

UID:
Spec:

Config:

Network

Pod Address Range:

478a8267-fee9-47a7-81e2-947114a90c34

0.0/16
CIDR: 1 0.0/16
2.0/24

Provider:
Dns Grpc Port:
Dns Port:
Domain:

Name:

Of Port:
Sdn Port:

Assigned I Ps:

10.1.2.1:
Connected Pod Count: 1
Internal Connectivity: Available
Last Assigned IP: 10.1.2.1
Provider Connectivity: Available

Events:

s2

NAME

<none>

Figure 39. Network flesource greated in S1 cluster

15 kubectl get 12networks -n 6512a712-a8e0f-4839-9703-fcecd4fb13828

AVATILABILITY CONNECTED PODS AGE

spain-network-1 Available 2 15d
:-$ kubectl describe 2networks -n 6512a712-ae@f-4839-9703-fcecd4fb13828 spain-net
work-1 --context nemo-s2

NELEH

spain-network-1

Namespace: 6512a712-ae0f-4839-9703-fcec4fb13828

Labels:

<none>

[Annotations: <none>
IAPT Version: 2sm.12sm.k8s.local/v1l

Kind:
Metadata:

L2Network

Creation Timestamp: 2025-04-30T13:28:067
Finalizers:
2sm.operator.io/finalizer
Generation: 1
Resource Version: 54706992

UID:
Spec:
Config:

Network CIDR:

35a6a3ab-8ea3-4727-9a10-84cbc92e687a

10.1.0.0/16

Pod Address Range:
Provider:
Dns Grpc Port: 30818
Dns Port: 30053

Domai
Name :

n: 132.227.1

default-s

Of Port: 6633
Sdn Port: 30808

vnet

Assigned I Ps:
10

Connect
Interna
Last As
Provide
Events:

ed Pod Count: 2

1 Connectivity: Available

signed IP: 10.1.1.4

r Connectivity: Available
<none>

Figure 40. Network resource created in S2 cluster

--context nemo-

Document name:

D4.3 Advanced NEMO platform & laboratory testing results.
Final version

Page:

66 0f 111

Reference:

D4.3 |Disseminqtion: |PU |Version: |1.0

Status:

Final

Since the L2S-M annotations reported by the mNCC were added to each pod during the deployment
process, each pod consequently deployed in each cluster attached to its corresponding network. These
details can be found both in the description of the virtual network (i.e., Figure 39 and Figure 40) as well
as the annotations present in each pod within the K8s cluster, as depicted in Figure 41 and Figure 42.

1S kubectl get pods -n fcc6f34d-f33a-4bfe-a66b-764d9bedd113 --context nemo-si
NAME READY STATUS RESTARTS AGE
echo-server-integration-500-7ccbd97fc-2ctrws 2/2 Running 0] 15d
echo-server-integration-500-test-connection 1/2 NotReady © 15d
:-§ kubectl describe pod echo-server-integration-500-7ccbd97fc-2ctrws -n fcc6f34d-
f33a-4bfe-a66b-764d9bedd113 --context nemo-s1 | grep 12sm
=true
/app=echo-server -integration-500
/networks: spain-network-1
DNS_NAME: echo-server-integration-500.spain-network-1.1inter.

Figure 41. Pod deployed in S1 with L2S-M annotations

1§ kubectl get pods -n 6512a712-ae0f-4839-9703-fcec4fb13828 --context nemo-s2
NAME READY STATUS RESTARTS AGE
echo-server-integration-501-89b7c85b6-ggsz9 2/2 Running 0] 15d
echo-server-integration-501-89b7c85b6-s6xck 2/2 Running 0] 15d
echo—server—integration—501—test—c0nnection 1/2 NotReady @ 15d
1§ kubectl describe pod echo-server-integration-501-89b7c85b6-ggsz9 -n 6512a712-a
e0f-4839- 9703 fcecd4fb13828 --context nemo-s2 | grep 12sm
=true
/app=echo-server-integration-501
/networks: spain-network-1
DNS_NAME: echo-server-integration-501.spain-network-1.inter.
1§ kubectl describe pod echo-server-integration-501-89b7c85b6-s6xck -n 6512a712-a
e0f-4839- 9703 fcecd4fb13828 --context nemo-s2 | grep 12sm
=true
/app=echo-server-integration-501
/networks: spain-network-1
DNS_NAME: echo-server-integration-501.spain-network-1.1inter.

ployed in S2 with L2S-M annotations

It is noteworthy that these ¢ rowdle the DNS name that pods can use to communicate between
each other in the ne al networks. Hence, each pod does not need to know the IP address
y its DNS entry, simplifying the connectivity setup between each other

1on with the standard CoreDNS present in standard K8s clusters. With this

:$ kubectl exec -it -n fLL6f34d f33a-4bfe-a66b-764d9bedd113 --context nemo-sl ec
ho-server- integratlon 500-7ccbd97fc-2ctrw -c echo-server -- ping echo-server-integration-501.
spain-network-1.inter.12sm -c 3
PING echo-server-integration-501.spain-network-1.inter.12sm (10.1.1.1): 56 data bytes
64 bytes from 10.1.1.1: seq=0 ttl=64 time=30.564 ms

64 bytes from 10.1.1.1: seq—l ttl=64 time=1.234 ms
64 bytes from 10.1.1.1: ttl=64 time=1.225 m

--- echo-server-integration-501.spain-network-1.inter.12sm ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 1.225/11.007/30.564 ms

Figure 43. Ping between pods in S1 and S2 clusters

D4.3 Advanced NEMO platform & laboratory testing results.

Final version Page: 67 of 111

Document name:

Reference: D4.3 |Disseminqtion: |PU |Version: |1.0 Status: Final

15 kubectl exec -it -n fcc6f34d-f33a-4bfe-a66b-764d9bedd113 --context nemo-sl1 ec
ho-server-integration-500-7ccbd97fc-2ctrw -c echo-server -- ping echo-server-integration-501.

spain-network-1.inter.12sm -c 3

PING echo-server-integration-501.spain-network-1.inter.12sm (10.1.1.4): 56 data bytes
64 bytes from 10.1.1.4: s ttl=64 time=7.069 ms

64 bytes from 10.1.1.4: 1 ttl=64 time=1.216 m

64 bytes from 10.1.1.4: 2 ttl=64 time=1.311 m

--- echo-server-integration-501.spain-network-1.inter.12sm ping statistics ---

3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 1.216/3.198/7.069 ms

Figure 44. Ping between pods in S1 and S2 clusters

Since the execution of the ping was successful, these results showcase that NEMO s can
communicate with specialised networking tools thanks to the flexibility of the mNC

5.3 NEMO workload scheduling & orchestration

This integration scenario aims to illustrate the workload migration proc nd orchestration. This

process is represented by three different tasks: Q

e Intent-Based workload migration

e CFDRL workload migration
e Workload horizontal scaling

The first two tasks concern the migration of the workload igration from one cluster to another. The
main difference concerns the component that trj s the sad migration. This process is depicted in
Figure 45.)

ibmc-agent ibmc-agent
Intent-AP| (Source Cluster) (Target Cluster)
|

| Publish Intent
T

ibmc-controller

'
Retreive current workload info

A

_, Retreive managed dlusters info
<

Compare current deployment cluster
with incoming intent values

|

|

|

|

|

|

|

|

[Workload Status = “deployed™] :
|

|

|

|

|

|

|

Select new target cluster |
|

- ——— e]

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} Send migration message
| |
} : Create workload backup
T
| | |
< | L P Backupcreated _ _ _ _ ________|]
| |
| |
| |
| | R back
| | etrieve backup
\ . x T >
} : " Restore backup in target cluster
\ [| h I
| P | Update workload status | |
| N T I |
} Update Manifestwork : : :
| | |
| | |
" Update workload status ! :
d T T
| | | |
! _ ! ! !
Figure 45. Intent-Based Migration Sequence Diagram
D4.3 Advanced NEMO platform & laboratory testing results.
Document name: P 4 9 Page: 68 of 111

Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1.0 Status: Final

For the Intent-Based migration, the Intent-Based API is responsible for triggering the migration process
by publishing an intent in RabbitMQ. This intent contains several requirements that the cluster where
the workload is currently deployed must comply with. If one of the requirements is not met, the IBMC
selects a new target cluster and performs the migration.

In the case of the CFDRL migration, machine learning algorithms are used to detect whether the cluster
where the workload is deployed is not suitable anymore, using the information from workload metrics
and trained models. A new target is then selected by the CFDRL and a migration message is sent to the
IBMC to trigger migration as shown in Figure 46.

Workload Migration Sequence Diagram
IBMC-agent IBMC-agent
(Source Cluster) (Target Cluster)

| |
} | Input received from CMDT, mNCC, PPEF. 5

‘Send migration message to current
deployment cluster's IBMC agent

|
|
|
|
Calculate migration decission :
|
|
|
|

Create workload backup

|
Backup created

|, Restore backup in target cluster

Update workload status

Update Manifestwork

Update workload status

Figure CFDRX\/Iigration Sequence Diagram

Finally, the workload horizontal enario also relies on the CFDRL component to detect the
need of upscaling or downsc er of replicas of a deployed workload. When this happens, a
message is sent to theA MOA ich performs the scaling action, Figure 47.

Horizontal Scaling

m m Seeingtiandier
| |
| |

/ |

z ‘ Input received from CMDT, mNCC, PPEF. 'ﬁ | |
Action == "horizontal_scale' -
>
alt [Horizontal Scaling Flow]

Scale workload (replicas)

Acknowledge scaling result

_, Send result message to output queue
-+
|

Figure 47. Horizontal Scaling Sequence Diagram

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 69 of 111

ya

&8s NEMO

5.3.1 Verification scenario

Test 3: NEMO workload migration

Objective

Components

Features to be
tested

Test setup

The objective of this task is to validate the NEMO workload migration process.

IBMC
Intent-Based API
MO

CFDRL

CMDT

PPEF (b
mNCC 4
-
e Workload migration:
1. By the creation of an intent, containing one or mquf r ents which the
deployment cluster must met. If any of these require is not fulfilled, the ibmc-
controller triggers a migration to a more suitable

2. By the CFDRL component once its infereng
workload’s optimal operation to be movegd

request is communicated to the Mgta-OrchcSgsa
migration is executed.

o Horizontal scaling of a deployed workload

t at it is preferable for the
luS@¥ A to cluster B. Once the
or component then the workload

All the participating compon@ats werg deployed in the NEMO meta-OS cloud/edge
infrastructure at OneLal, e\&cl nd staging cluster 1).

%y

\

o

Document name:

D4.3 Advanced NEMO platform & laboratory testing results.

Final version Page: 70 0f 111

Reference:

D4.3 |Disseminction: |PU |Version: |1.0 Status: Final

Test 3: NEMO workload migration

Steps

5.3.2 Results

The steps identified in the associated sequence diagrams are listed below:
a. Intent-Based Migration

1. Intent-based API publishes an Intent with one or more requirements (Availability,
GreenEnergy, CPU, Memory etc).

2. Ibmc-controller retrieves workload status from the Intent-Based API.
Ibmc-controller retrieves the managed clusters information from the M

4. If the workload is already deployed and the intent requirements are not mefghen a
migration action is triggered.

5. A new target cluster compliant with the intent requirements is sic@n the
6.

available managed clusters list.

in the HUB cluster.

8. Upon backup completion, a message is sent to
continue with the migration process.

Ibmc-controller sends a message to the source cluster ibmc aggnt.
A backup of the workload is created and uploaded to Ro 3 Bucket located
&t cluster ibmc-agent to

9. The backup is restored in the target cluste
10. A message is sent to the MO notify the ad migration completion.

11. MO updates the corresponding o to match the new workload
deployment status.

12. A message is sent to thg/Intent-BasedAPI updating the workload status, specifying
the cluster where it ha§ been deployed.

b. CFDRL Migration
1. information from CMDT, PPEF and mNCC.

tes the most suitable cluster for workload migration.

ssage is sent to the MO notifying the workload migration completion.
updates the corresponding Manifestwork to match the new workload
deployment status.
A message is sent to the Intent-Based API updating the workload status, specifying
the cluster where it has been deployed.
C. Horizontal Scaling
CFDRL gathers workload information from CMDT, PPEF and mNCC.
CFDRL algorithm calculates the required scaling action.
CFDRL sends a horizontal scaling message to MO.
MO scales up/down the workload replicas.
MO sends completion a message back to CFDRL

VAR

The rest of the subsections present the corresponding results step by step as indicated by the verification

scenario.

Document name:

D4.3 Advanced NEMO platform & laboratory testing results.

Final version Page: 710f 111

Reference:

D4.3 |Disseminction: |PU |Version: |1.0 Status: Final

NEMO

5.3.2.1 Intent-Based Migration

Step 1

The initial conditions for the migration scenario require a workload already deployed in the source
cluster from where it will be migrated, as shown in Figure 48. LCM Workload Initial Visualization. In

this figure, the LCM IU is used to see that the workload with ID “3b004d45-3f08-48b8-b1b3-
2abe06509d66” is currently deployed in the dev cluster.

2 Workload Instances

Search

‘— 3b004d45-3f08-48b8-b1b3-2abe06509d66

Workload i
ID Release Name D Status Cluster Instance ID Actions
112 test500 1 DEPLOYED dev-onelab 3b004d4... ~ B 42 i
Items per page: 10 - 1-10f1

Figure 48. LCM Workload Initial Vis @ ‘
To trigger the migration process, an availability intent is d as§hown in Figure 49. Availability
Intent Creation, which requires that the workload is deployed 1n¥ cluSter with an availability greater
than 95%. A

J Create Intents

Use yaml file
Workload Instance ID * Start Date-time
3b004d45-3f08-48b8-b1b3-2abe06509d 01/05/2025, 00:00:00 m
Intent Type * End Date-time
Availability - 22/06/2025, 00:00:00 E
Target Name Target Condition Target Value
availability IS_GREA... v 95|
Add Field

Figure 49. Availability Intent Creation
Steps 2-6
After the intent is created, it is published by the Intent-Based API. In Figure 50, the ibmc-controller

deployed in the dev cluster (HUB cluster) receives the message and proceeds to check if the current
deployment cluster meets the availability requirement.

D4.3 Advgnced NEMO platform & laboratory testing results. Page: 79 6f 111
Final version

Reference: D4.3 |Disseminction: |PU |Version: |1.0 Status: Final

Document name:

NEMO

Since the dev cluster has an availability value of only 90%, the intent requirements are not fulfilled, so a
new target cluster is selected for the redeployment of the workload. The list of managed clusters shows
that the staging cluster has an availability of 99.9% thus it is selected as a target cluster for migration.

Finally, a message is sent to the ibmc-agent deployed in the dev-cluster to trigger the migration process.

31:°$ hubectl f ibec-controller-7bfofbcddf -Unce?
t

us :Unknemn S
gu:1358 Vram: 1-|J st
age: 1888 Vraw:8]]
wnt target values: diticn:1 EATER_THAK IquNI'A-Iv availab y targetValusiange:95.8]]
Worklcad deployed in cluster]) o § to check if migration is re ed .
Tuster dev—onelab does not esst intent availal ty requireasnt
nt deployasnt cluster dev—oneladb does ent requirements, proceeding to select a mea cluster
uster kis-onelab does not eest intent
3ing cluster neaso-smart-farming dus D inning Status: Usknosn
onelab does not pest intent i
ng-onelab mests all intent irements
published to exchannge ‘an' with reuting key 'dev-onelab’
Miaration triagerend from dev-anelab to staging onclab

, where the backup of the
S sent to the staging cluster

$ lsbactl logs ~f ibmc-agent-6599 £6~1pzns
"0

wmc-dav 1 created successfully
NOSSAGeS .
received
dv-iv A ction: backuap, Sour uster: dev-omolab, TargetCluster: staging-onelad

Mensage pub
29 (dackuphame: cev- | oadll: SbUONHUS- 3F o restore, ScurceClu
TargetCluster: staging-onelab

Steps 9-12

In Figure 52, the restore message i eived by the staging cluster. There, the ibmc-agent waits for the
syncing of the backup uploadegd to eph and proceeds to restore the workload resources. When
the restore is completegy a g t to both MO and Intent-Based API to notify them that the

=~context staging=onelab ibec-agent-7d77fccl¥d-Tvpls

‘ibmcestaging~onelab' created successfully
ing messages
Message received:
3 {WorkloadID: 3beesdus-3Fa8-¢ abeBESE9d66, Action: restore, SourceCluster: dev-onelad, TargetCluster: staging-onelabd

progress. Waiting
progress. Waiting
in progress. Waiting
sx. Waiting

hup synced, proceding to restore the workload
oSy, Maiting
48:u3 Undated declovment testS56t-e server: linkerd. ic/inject
48:U3 Migration completed sy
48:U3 Message pu}-lnh-- to 'nemo . api.we oad' routing key 'update
5545 5 'nemo , Api . wo d' w ing key 'intent-notify
Ann.l-umlla JEERLAUD~JTUU-USDU -bID I~ Jabelbiisabh, Typ migration, SourceCluster: dev-onelab, TargetCluster: staging-onelab

Figure 52. Staging Cluster Ibmc-agent logs

The workload status can be checked again in LCM, where the deployment cluster has been updated from
the dev cluster to the staging one, as shown in Figure 53.

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Dissemincﬁon: |PU |Version: |1 .0 Status: Final

Document name: Page: 73 0of 111

2 Workload Instances

Search...
(3b004d45-3f08-48b8-b1b3-2ahe06509d66

Workload

ID - Release Name D Status Cluster Instance ID Actions
112 test500 1 DEPLOYED staging-onelab 3b004d4... N7 B i

Items per page: | 10 - 1-1o0f1
Figure 53. LCM workload final visualization

Figure 54 shows the visualization of the different steps and changes followed workload across
the complete workflow. N

May Migration
Migrated_From: dev- -
22 onelab, Migrated_To: CB o548 PM
staging-onelab
2025

May Deployment

Deployment_Cluster: dev-
22 onelab, .0. 05:42 PM
2025
May Rendered
22 Vv 0542 PM

2025

V Figure 54. LCM complete workflow view

5.3 @ Migration and Scaling tasks

Part' @€the CFDRL has been tailored towards managing and orchestrating workloads in a Kubernetes
enviromgent, with a focus on leveraging reinforcement learning (RL) techniques to optimize resource
usage and performance of workloads. Below is an explanation of the project’s purpose and how it is
structured.

The primary goal of this project is to manage workloads efficiently in a cloud-native environment. It
uses reinforcement learning (referred to as CFDRL in the project) to make intelligent decisions about
workload orchestration. This involves optimizing resource allocation by scaling or migrating workloads
dynamically to improve the overall performance of the system.

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 74 of 111

Scaling and migrating tasks

In the context of workloads in a Kubernetes environment, scaling and migration are two fundamental
resource management tasks:

e Scaling refers to adjusting the number of replicas (pods) running for a given workload. This is
typically done to handle changes in demand: increasing replicas to improve performance or
availability when load increases and decreasing them to save resources when demand drops. In
Kubernetes, scaling is a common operation and can be performed automatically (e.g., with the
Horizontal Pod Autoscaler) or manually. In the CFDRL system, the scaling tas)g involves
learning a policy that decides, based on observed metrics (like CPU, RAM, and laten®g), how

many replicas each workload should have at any given time to optimize resourcgegsag@yand
performance. fb

e Migration involves moving a workload (or its replicas) from one cluster og nogde t®another.
This can be necessary for load balancing, fault tolerance, cost optimizatiom®ag compliance

reasons. Migration is more complex than scaling because it requiresf{coOfgination between
clusters or nodes, and may involve data transfer, downtime, or chang®s@ ngtwork latency. In
the CFDRL system, the migration task is formulated as learning a that decides, based on
the current state of the system, to which cluster or node a work owld be moved to achieve
optimal performance or resilience.

For simplicity, the CFDRL program tackles them by trai
reinforcement learning models: one specialized for s@aling deSggfons and another for migration
decisions. Each model learns from its own set of state-acti d SRperiences, allowing the system
to optimize both tasks independently and effectively in § dynamic Kubernetes environment. The
difference between the two models is minor, forhisreason the scaling architecture and then report the
changes in the migration case are described.

Architectural Overview
The project is built around a modular poctureythat integrates several key components:

Containerization with Docker: The projectg€es Docker to containerize its applications. Multiple
Dockerfiles are provided, each tajldged for’specific purposes. This containerized approach ensures
portability and consistency across Tgit environments.

Kubernetes for Orchestrati
configuration files dgfini
Persistent Volume i
CFDRL.

Reinforcement

u es is used as the orchestration platform, with YAML
loyment and storage requirements. Persistent Volumes (PV) and
) are configured to manage data storage of the models learned by

ore: The core functionality of the project revolves around reinforcement
learning. The m¥&in s&ipt (main_cfdrl.py) implements the logic for managing workloads and interacting
with exter likely uses reinforcement learning algorithms to analyze workload states and make
imize system performance. Metrics are logged and stored for further analysis, and old

P
decj t
d riodically cleaned up to maintain efficiency.
Automayen and Deployment: Shell scripts are provided to automate the process of building Docker

images, pushing them to a container registry, and restarting Kubernetes deployments. This streamlines
the deployment process and reduces the potential for human error.

Reinforcement Learning Algorithm in the Project

The CFDRL implements a Deep Q-Network (DQN) algorithm for reinforcement learning (RL). DQN
is used to optimize workload orchestration in a Kubernetes-based environment by dynamically deciding
the number of replicas for workloads based on system metrics such as CPU usage, RAM usage, and

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 750f 111

latency. Below is a detailed explanation of the RL algorithm and its implementation in the project, based
on the provided main_cfdrl.py and dqn.py files available in the git eclipse of the NEMO project.

Purpose of the RL Algorithm
The RL algorithm aims to:

1. Dynamically adjust the number of replicas for workloads to optimize resource usage and
performance.

2. Minimize latency and resource over-provisioning while maintaining workload efficiency.
3. Learn an optimal policy for workload orchestration through interaction with the envirSmnent.
Key Components of the RL Algorithm

1. State Representation: The state is a vector that represents the current environment, iﬂugb

e Number of replicas for a workload.

e CPU usage and target.
e RAM usage and target.

o Latency. &
The function build_state for workload(workload id) in main_cfdr Qots this state vector for

each workload by fetching metrics from shared data structures.

2. Action Space and frequency: The action space is discr d rePgSents possible decisions the RL
agent can make:

e Increase the number of replicas.
e Decrease the number of replicas.

e Maintain the current number of re

The Discrete class in dqn.py defines thi
specified range.

The frequency at which the CFDRL aeent ta

space, ensuring that actions are valid integers within a

s actions is set to every 1 to 3 minutes, depending on the

specific task being performed. Thi ing is chosen because some of the critical information provided
by other system components, guc kload metrics and cluster states, is only updated once per
minute. Additionally, gertaj

[72]

specially migrating workloads between clusters—can take

eward = number, Frepicas latency + méix(ramusage — TaMarget)

It is helful to carefully balance all the metrics (e.g., CPU usage, RAM usage, number of replicas).

Negative rewards are assigned for higher latency and more replicas. Positive rewards are given for
achieving CPU and RAM targets.

4. Deep Q-Network (DQN)

The DQN is implemented in the DQN class in dqn.py. It consists of a Backbone Network: A multi-layer
perceptron (MLP) that processes the state and outputs Q-values for each action and a Target Network:
A copy of the backbone network used to stabilize training by providing fixed Q-value targets during
updates.

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 76 0of 111

The DQNTrainer class manages the training process, including computing the loss using the Bellman
equation and updating the target network periodically to improve stability.

5. Replay Buffer: The ReplayBuffer class in dqn.py stores transitions (state, action, reward, next state)
for experience replay. Random sampling from it allows the agent to learn from past experiences and
break the correlation between consecutive samples. Storage is available with permanent mounted
volumes in the Kubernetes manifest so that the replay buffer is available to any run of the RL algorithm.

6. Exploration Strategy: The project uses an epsilon-greedy strategy for exploration, implemented in
the EpsilonGreedy class. The agent selects random actions with a probability epsilon, which dgcays over
time to encourage exploitation of learned policies.

Neural Network Architecture: The DQN uses a multi-layer perceptron (MLP) as its backb(tvet k.

The architecture is defined in the MLP class in dgn.py.
e Input: State vector (as defined above).
¢ Hidden Layers: Configurable number of layers and neurons, with ReL.Uj tion.
e Output: Q-values for each action.

Algorithm Workflow:

1. Initialization

e The agent initializes its neural network, replay buffereation strategy.

2. Main Loop

e For each workload:

e The agent observes the current state.

e [t selects an action (e.g., adjust repligas).

e The action is executed, and the enviironment returns the next state and reward.

e The transition is stored in the yépla

e Learning: The agent samp bach,ot transitions and updates the Q-value function using
the Bellman equation and D ritglon.

3. Periodic Updates
e The target network is ted periodically.
e Model weights are savid

Defining a reward fungtio &_ d
inherently challenging dufygo tRgmature of the workload distribution and the way latency is measured.
Latency is Linked t m\!ode Communication. Latency is typically a measure of the delay in
communication bet es in a distributed system. However, in this case, most replicas are deployed
on the same nod¢. Aga Tesult, there is little to no measurable latency because intra-node communication
is significa er’and often negligible compared to inter-node communication. When replicas are
collo d@? same node, the latency metric does not provide meaningful feedback about the
p ance. This makes it difficult to use latency as a reliable component of the reward

Compoments CFDRL takes Information From

The CFDRL system interacts with multiple components to gather information and make decisions for
workload orchestration Figure 55 and Figure 56. These interactions are facilitated through RabbitMQ
(via the pika library) and HTTP API requests (via the requests library). Below is an explanation of the
components CFDRL communicates with and how these communications are implemented.

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 77 of 111

general info

cpu/ram usage scaling actions

latency

number of replicas

Figure 55. Inputs/outputs from CFDRL pg§ @ i

\ O

"$schema": "http://fjson-schema.org/draft-04/schema#"
"type": "object”,
"properties”: {
"workload_id": {
"type": "string"
}

cluster_name": {
"type": "string"
}

"number_replicas™ {
"type": "integer”
}
L
L4 "required™: [
"workload_id",
"cluster_name",
"number_replicas”

]
}

@ igure 56. JSON Schema for MO-CFDRL RabbitMQ communication

Meta®Qrchestrator (MO): The Meta-Orchestrator is responsible for managing workload orchestration
decisiony” It receives messages from CFDRL about the number of replicas for workloads and provides
feedback.Communication : RabbitMQ is used for communication. Messages are sent to
the cfdrl_ mo_hs queue using RabbitMQ’s basic_publish method.

CMDT (Cluster Monitoring and Decision Tracking): CMDT provides information about the current
state of workloads, such as the number of replicas and the node where the workload is
running.Communication: RabbitMQ is used for communication. Messages are received from
the CMDT queue.

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 IDisseminaiion: IPU |Version: |1 .0 Status: Final

Document name: Page: 78 of 111

',.-' i _(N E MO

NMCC (Network Metrics Cost Calculator): NMCC provides network-related metrics, such as latency
between nodes or clusters. Communication: RabbitMQ is used for communication. Messages are
received from the mncc.metrics.cfdrl queue.

PPEF through Intent API: The Intent API provides workload-specific metrics, such as CPU and RAM
usage targets, as well as achieved values. It also provides information about workload clusters.
Communication: HTTP GET requests are sent to the Intent API using the requests library. The API
response is parsed, and workload metrics are extracted and stored in shared data structures.

Shared Data Structures and Multi-threaded implementations

The program is designed to be multithreaded, enabling concurrent execution of tasks while sha data
between threads. This approach is crucial for handling multiple sources of information (e.
queues, APIs) and performing reinforcement learning computations simultaneousl
explanation of how multithreading is implemented and how shared data is managed.

The program uses Python’s threading module to create and manage multiple t}

The information gathered from these components is stored in shared d cififes, such as:
e SharedWorkloadData: Stores workload-specific metrics , cas, latency, CPU/RAM
usage).
e SharedReplayBuffer: Stores transitions for reinfor &g.
¢ SharedMNCCBuffer: Stores network metrics from@
These shared data structures are protected by loc) ock) tohsure thread-safe access.

Running the CFDRL for the Scaling task:

META ORCHESTRATOR:
MO REPLY received new message b'{"cluster_name":"k3s-onelab","workload_id":"caedfadf-daa6-4049-a89b-d722d14317b9", "number_replicas
ss 'bytes's
after processing: recelved new message {'cluster_name': 'k3s-onelab', 'worklead_id': 'caedfa4f-daa6-4049-a89b-d722d14317b9', 'numbg
''} of type<class 'dict's>

= ece ew message er': e eg : 'eu-west-1', 'node': 'nemo-dev
state-metrics', 'j 8 ubernetes-servic ndpoints', 'pod': 'echo-serve ntent-18-7659fd576¢c-6cgk7', 'uid': '8d478b62-asg{
069aef@', 'current_state': 'Running', 'status_changes_1h': @, 'traffic_stats': {'req_bytes': None, 'req_rate': None, 'res_bytes': N
}}, 'replicas': 1} of type<class 'dict'>
replicas {'caedfa4f-daa6-4049-a89b-d722d14317b9': 1, 'dae8689c-d810-4a3b-872b-c6cbfc52a3e4': 1, 'e3b30d15-3f72-45b6-99ff-4a3c88853]
dd-6d910d35b27d': 1, '985c2858-5875-4dcf-9d92-606f3eec27ce’': 1, '9fc817e5-0578-4186-8d9a-09a127720725': 1, 'aff12104-0054-4afa-al5qg
f6c-45b6-af30-a3badc232612': 1, 'da738fb0-d84a-48b2-bSel-e80a91443e4e': 1, 'f8554c37-c8b6-4058-b7db-7e882edccd33’: 1, '092f27a0-ad%g
'0fd78817-a411-432f-81f0-89addbc2das8b’: 1, '123e@93e-56a7-405d-9f26-c38aaBd28ab6': 1, '1955d604-245e-467d-8b65-do6abbcoasos': 1, '
48c5b': 1, '61ledb162-1d52-4e4d-8b55-275187a780ba': 1, '6ca37a04-6b61-4631-953a-6ba7f4215175': 1, '7d7f4430-9e71-4b80-a9de-1ddd684cf]
7bo-3aldac4cdéas': 1, '970ef7bz-1587-4c88-9f6a-5dlecb40r369': 1, '137bd579-85da-47b7-b1d3-bfbbf4353142': 1, '32e53f55-3a76-4401-8a
28e1-4f73-b45c-21cc02991bc5': 1, '781052a5-4270-4113-847a-8730cdf55ba7': 1, '9d95bbc7-698c-41e7-9f2e-dd3de3d32d25': 1, 'a9f47e17-59
'e860d4cc-f915-4314-941d-5946c571daf1': 1, 'fccef34d-f33a-4bfe-a66b-764d9bedd113': 1, '2b9c9ade-0296-4cf6-beb9o-6b83ae69aefa’': 1, |

0a957f': 1, '5b065d03-f617-463b-8425-7de@f4594c28': 1, 'GcBee5f5-bc41-42ed-8a24-71e974dc219b': 1, '3b004d45-3f08-48b8-b1b3-2abedssq
sending request to intent api

PPEF RESPONSE
PPEF: Time 2025-05-23 07:09:09.555693
response <Response [200]> <class 'requests.models.Response's 200
workload_id eb414289-dc15-41e3-9b3b-5a605dd802e7 cpu_achieved None ram_achieved None cpu_usage_target 500 ram_usage_target 100
workload_id e6338a60-108f-4a5a-8d87-4c203d06a5ae cpu_achieved ©.3 ram_achieved 0.0 cpu_usage_target 500 ram_usage_target 108
workload_id d79ca4f4-c873-4237-8Be5a-ab966b32fd91 cpu_achieved None ram_achieved None cpu_usage_target 500 ram_usage_target 180
workload_id dae8689c-d810-4a3b-872b-c6cbfc52a3e4 cpu_achieved 32.2 ram_achieved 0.811 cpu_usage_target 500 ram_usage_target 100
workload_id caedfa4f-daa6-4849-a89b-d722d14317b9 cpu_achieved 19.6 ram_achieved ©.779 cpu_usage_target 500 ram_usage_target 160

Figure 57. Messages used for Scaling

The CFDRL program was deployed and executed continuously on the OneLab cluster of the NEMO
platform, where it interacted in real time with other system components such as the Meta-Orchestrator,
CMDT, NMCC, and the Intent APIL. Over a period of 3 days, with the agent collecting one state-action-
reward tuple per minute, the system accumulated a total of 4,320 transitions (3 days x 24 hours x 60
minutes). After this training period, the reinforcement learning agent achieved an average reward of -
5.84, indicating improved performance compared to a random policy, which yielded an average reward
of'-6.54. One way to interpret this is that compared to the random policy, CFDRL almost save on average

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 79 of 111

one replica to obtain the same cpu usage. This demonstrates that the RL-based approach was able to
learn and apply more effective scaling decisions than random actions in this dynamic environment.
Running the CFDRL for the Migration task:

First Note that the model used for migration was very similar to the one in scaling but adding also in the
state space information about the current location of all the workloads. The action space was then the
destination cluster chosen.

After learning a model specific to the migration task, we run the CFDRL with and without the migration
actions and measured over a period of one day an increase of our reward from -11.2 to -10.&thanks to
the migration actions hinting at an improvement due to our model.

However, we also noticed that the variability of the reward over long period of ti the
comparisons between methods complexes.

Viewing the CFDRL and MO and Cluster IBMC interactions:

Here we report screenshots that demonstrate how an action is decided by '@ DRL and then
implemented by either the Meta orchestrator or the Cluster IBMC.

1. Migration: ~\

ab'} at time 2

nemo-kernel | tail -n

ab, Timestamp

Frdge 59. Message published by ibmc

May Migration

Migrated_From: pro-onelab
27 Migrated To: staging-onelab

\ 2025

May Migration

Migrated_From: staging -
27 onelab, Migrated_To: pro- <8 03:00 PM

onelab

@ May Mmigration

Migrated_From: dev-onelab ¢
27 Migrated_To: staging-onelab

C8 03:04PM

S 02:56 PM

May Migration

Migrated_From: dev-onelab, on
27 Migrated_To: staging-onelab o 02:52PM

Figure 60. Log of the Migration action being implemented by the cluster IBMC

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 80 of 111

".- .u:uww _(N E MO

2. Scaling:

89b-d722d14317b9°, 'clusLler nam ielab’, 8 O
orkload id': 'c anf-o -d722d14317b9 ‘cluster name': -on b*, ‘number rep 3, tim

Figure 61. CFDRL decides a scaling action and sends it through Rabbit MQ to MO

Figure 63. The number of replicas is checked and it is set equested

(;

5.4 NEMO workload lifecycle management

The workload lifecycle management scenario illustrates 11@pmg of a workload during its
lifecycle in NEMO meta-OS collecting workload intents, re§durcé€s consumption, performance metrics
and health status of the workload. Figure 64 sho e sequehce diagram of this scenario.

P';ESS e

v
t intents for workload;
B E——
____________________ >
>
intents’ i
monitaring ;
———>
Metrics
monitoring
Provide intent report:
N
Notify violation \
event ? |
:
Visualize '
<! :
perisist event
Get workload
|
Visualize :
|
i
| — H
| cluster H
H | monitoring |
«—————Provide cluster report :
| |
| |
|
i
! Visualize !
! <! '

Figure 64. Workload Lifecycle Sequence Diagram

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminqtion: |PU |Version: |1 .0 Status: Final

Document name: Page: 81 of 111

&3¢ NEMO

5.4.1 Verification scenario

Test 4: NEMO workload lifecycle management

Objective To verify the workload lifecycle management process in NEMO covering all the steps identified.

Components e LCM
e Intent-API
e PPEF

e CMDT (b
e RabbitMQ & 5

Features to be | This integration scenario aims to validate the workload hfecanagement. The NEMO
)

tested workload intents and complementary measurements that conc Jources’ consumption and
the resulting performance and liveness of a workload are cgliiected™®¥ the PPEF and the CMDT
components. From there they are communicated through aDRMQ to the LCM UI where there
are visualized to the NEMO user. h

Test setup The associated components are deployed in OneL, hitig§ at NEMO dev cluster 1
The CFDRL component which is undergois its fin es of development.
Steps 1. The NEMO user accesses the LC y
2. NEMO workload monitgring colldgts metrics that correspond to the NEMO workload
(PPEF)
3. The collected worklgad metricg are communicated to the Intent-API
4. The NEMO Clugter
5.
6.
7.
8. TheL gregates the collected metrics and visualize them to the NEMO user
9. TheP intent violations to the Intent-based API
5.4.2 Results \
This section outlj ep-by-step process described in the scenario above.
5421 T user accesses the LCM UI
The segaccesses the LCM interface by adding its credentials and gains access to the monitoring
d d through NEMO Keycloak identity manager. Depending on its role, the user has access to its
own oads or workloads he manages.

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 82 of 111

&l NEMO

(9IKEYC!

Sign in to your account

Username or email

Password

Figure 65. LCM User access

5.4.2.2 NEMO workload monitoring collects metrics th espONg to the NEMO workload (PPEF)

Within the NEMO framework there is a periodic task that uafs the Intent target conditions for all
types of workload intents that are creat the LCM UL For example, a
“DeliverComputingWorkload” Intent allows set conditions regarding the workload
resource usage (CPU, RAM, disk). Figure 66 s@ows an gxample of an intent requiring for the workload

to be executed in a cluster that can prov199/m*gr milliseconds of CPU time.
> m B
1D 1128
Name : DeliverCoemputingWorkload
Feasibility : FEASIBLE
Fulfilment Status : FULFILLED
Not Fulfilled State : COMPLIANT
Last Updated Time 1 2025-05-14T09:24:13.359393Z
Workload Instance ID * Start Date-time
128 30/04/2025, 00:00:00 =
Intent Type * End Date-time
DeliverComputingWorkload 30/05/2025, 00:00:00 B
Target Name Target Condition Target Value

- N FULFILLED B
cpulsage IS_GREATER_THAN 2 -

Figure 66. Example of intent conditions

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 83 0of 111

O _(N E M O

Figure 67 (a) and (b) show the logs of the intent evaluator periodic task. The evaluator checks though the
PPEF for the values corresponding to the intents’ targets and determines if the required conditions are
met. The report produced is sent through RabbitMQ for the Intent API to consume.

5.4.2.3 The collected workload metrics ar

Figure 68 demonstrates the logs o
intent evaluation reports. The Int

Intents:
- id: 33

fulfilled: true

intentExpectations:

- expectationId: 33
fulfilled: true
expectationTargets:
- targetId: 38

fulfilled: true

target_achieved_value: 99.
- id: 138

fulfilled: true

intentExpectations:

- expectationId: 254
fulfilled: true
expectationTargets:

- targetId: 259
fulfilled: true
target_achieved_value:

- id: 139

fulfilled: true

intentExpectations:

- expectationId: 255
fulfilled: true
expectationTargets:

- targetId: 260
fulfilled: true
target_achieved_value:

- id: 134

fulfilled: false

intentExpectations:

- expectationId: 250
fulfilled: false
expectationTargets:

- targetId: 255
fulfilled: false
target_achieved_value:

- id: 146

fulfilled: true

intentExpectations:

- expectationId: 262
fulfilled: true
expectationTargets:

- targetld: 267
fulfilled: true
target_achieved_value:

K
-\
)5-29 14:
14:
14:
14:

9 14:

- id: 135

fulfilled: true

intentExpectations:

- expectationId: 251
fulfilled: true
expectationTargets:

- targetld: 256
fulfilled: true
target_achieved_value

- id: 48

fulfilled: true

intentExpectations:

- expectationld: 48
fulfilled: true
expectationTargets:

- targetId: 53
fulfilled: true
target_achieved_value:

- id: 47

fulfilled: true

intentExpectations:

- expectationld: 47
fulfilled: true
expectationTargets:

- targetId: 52
fulfilled: true
target_achieved_value:

- id: 120

fulfilled: true

intentExpectations:

- expectationld: 226
fulfilled: true
expectationTargets:

- targetld: 231
fulfilled: true
target_achieved_value:

- 1d: 31

fulfilled: true

intentExpectations:

- expectationId: 31
fulfilled: true
expectationTargets:

- targetId: 36
fulfilled: true
target_achieved_value:

[x] Sent evaluated intent!

mmunicated to the Intent-API

Intent API task which is responsible for receiving the produced
eceives this report and uses it to update its intents’ status

Figure 68. Intent API receives the Intent Evaluation report

5.4 The NEMO Cluster monitoring collects measurements that concern the NEMO meta-OS
perated clusters (PPEF)

In NEMO a monitoring mechanism has been established that periodically communicates with PPEF to
retrieve the CPU, RAM and disk usage metrics for a time window of 1 minute to keep track of the state
of the NEMO meta-OS operated clusters. Figure 69 shows the logs of the monitoring task. The message
includes the resource usage metrics for all NEMO clusters. This message is published to NEMO
RabbitMQ, for the LCM to consume the information and display the changes in the dashboard.

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
D4.3 |Disseminqtion: |PU

Document name: Page: 84 of 111

Reference:

|Version: | 1.0 Status: Final

&g NEMO

3.547723+00:

, {"clu

Figure 69. Cluster metrics from PPEF

5.4.2.5 The collected cluster metrics are communicated to the RabbitMQ
Figure 70 gives a closer look at the details of the message that is pushed to the RabbitMQ.
{

"cluster": "pro-gnelah”,
"cRhu. usage": 1810.482,
"memeory. usage": 40.6,
"disk_usage": 1.4,

"timestamp": "2025-05-12 13:59:02.389999+00:00"

}

Figure 70. Cluster metrics RabbitMQ paylo,

5.4.2.6 NEMO workload complementary monitoring (CMDT)

The CMDT component is thoroughly presented in NEM
two distinct services:

.3 ani ies on information gathered by

e kube-state-metrics, collecting pod-related getadata,
e Linkerd and Linkerd-viz, collecting netyork-related fraffic metrics.

Both services forward collected metrics to P
internally utilize Prometheus Query Lapfuage

eus/Thanos services. Finally, the CMDT components
L) to retrieve data and expose enriched data

directly through the API, as well as vi tM@Q communication channels, Figure 71.
-
Readyness A
20| /readyness Health Check [~
Liveness A
<45 | /liveness Health Check Bv
default ~
28 /api/vi/workloads GetWorkloads List N
38| /api/v1/pods/{pod_name_or_uid} GetPod Details ~
33 /api/vl/peds/{ped_name_or_uid}/traffic Get Traffic Stats v
<) | /apifvl/tree GetDeployment Tree ~
55 | /api/vl/tree/workloads GetPruned Deployment Tree ~
Schemas ~
HTTPValidationError > object
PodInfoExtended > object
TrafficStats > object
ValidationError » object

Figure 71. The CMDT component includes a SwaggerUI endpoint with up-to-date documentation and examples.

D4.3 Advgnced NEMO platform & laboratory testing results. Page: 850f 111
Final version

Reference: D4.3 |Disseminction: |PU |Version: |1.0 Status: Final

Document name:

The CMDT provides the following complementary information:

1.

The “/api/vi/workloads™ endpoint provides a list of workloads on the NEMO cluster. Each
NEMO workload has a UUID, and CMDT provides a list of pods from the corresponding
NEMO workload. Pod information includes the pod’s location (NEMO cluster, region, node,
tenant), namespace, service, job, pod’s name, and pod’s unique ID.

The “/api/vi/pods/{pod_name_or uid}" endpoint provides detailed information with all the data
provided previous point and adds pod’s current status (running, terminated, restarting, etc),
number status changes within last hour (if pod was restarting), number of replicas of the same
pod, and traffic summary. The traffic summary provides the incoming and outgoi
network traffic, the traffic rate (requests per second), response status codes and their ra
response times presented in percentiles (in milliseconds), Figure 72.

The “/api/vl/pods/{pod name or uid}/traffic’ endpoint provides a pod’s detail§d tr@ffic view,
where CMDT provides bytes of incoming or outgoing traffic and provides t e of external
pods communicating with the corresponding pod, Figure 73.
The “/api/vi/tree’ endpoint provides a tree-like representation of the ge @ hips between all
deployments, replicasets, and pods.

The “/api/vi/tree/workloads’ endpoint provides a tree-like rep
replicasets, and pods, excluding non-NEMO workload comp

-.

of all deployments,
igure 74.

Figure 72. a1yl information about the NEMO workload pod showing its location, status, traffic, and

@ response times.

Document name:

D4.3 Advanced NEMO platform & laboratory testing results.

Final version Page: 86 0f 111

Reference: D4.3 |Disseminqtion: |PU |Version: |1.0 Status: Final

A.'oo_(NEMO

de-41mpa”: [

Figure 73. Detailed information about the pod’s traffic. Additjonally, @ ys ifs internal traffic, as well as
inbound and outbound traffic w

El fapi/vl/tree/workloads GetFruned Deployment Tree

Parameters Cancel

No parameers

Responses

Request URL

http://localhos| /api/v1/tree/workloads

Server response
Code Details

200 Response body

“deployertest-echo-server™: {
=k

ment=,
me": "deployer-test-scho-server”,

Response headers

eontent-length: 31938
content-type: application/json

date: Wed,28 May 2825 67:57:40 GNT
server: uvicorn

Responses
Code Description T
200 Successful Response No links

Medis type

applicationfson o

Canrols Accegt heade

Figure 74. Tree-like representation of all deployments, replicasets, and pods, excluding non-NEMO workload
components

D4.3 Advanced NEMO platform & laboratory testing results. Page: 87 of 111

Document name: . .
Final version

Reference: D4.3 |Disseminqtion: |PU |Version: |1.0 Status: Final

NEMO

5.4.2.7 The LCM aggregates the collected metrics and visualizes them to the NEMO user

The LCM gathers data from the previously mentioned sources and consolidates it into a unified user
interface, providing a comprehensive view of the workload lifecycle. This includes historical data, near
real-time performance insights, and management capabilities, Figure 75.

O Registered Workloads

Search..

D4 Workload Name Version Status ;:"i'::; User Balance Actions

59 Smart4Gare WL1 1.00 [] nenaddstojanovic@gmail.com - ® 1 O
58 hello-world-api 0.2.0 [] seitanidis@synelixis.com ® 5§ O
56 hello-world 0.1.1 [] seitanidis@synelixis.com ® 5§ O
54 hello-world 0.1.0 [] pedro.branco@xilbi.com ® 1 O
48 echo-server 0.5.17 [] lakka@synelixis.com ® 1 O
45 smart-xr-use-case 0.1.6 [] lakka@synelixis.com ® 5§ O
44 smartdgame 0.0.1 [] nenaddstojanovic@gmail.com ® 1 O
43 smartxr-use-case 0.1.5 [] lakka@synelixis.com ® 5§ O
a2 smart-xr-use-case 014 ® lakka@synelixis.com ® 8§ DO
n smart-xr-use-case 013 ® lakka@synelixis.com ® 8§ DO

ltems per page: | 10 = ‘ 1-100f45 >

5 .Workloads

Each workload is associated with its inst®gesAn NEMO meta-OS. The user can manage workload
instances, Figure 76, and get detailedinformafion on its activity in a status timeline, Figure 77.

M\

O Workload Instances

Search..

D4 Release Name Workload ID Status Cluster Instance ID Actions

105 smartxr-7 43 dev-onelab 2eaShce... ~ B 2 @
104 smartxr-6 3 dev-onelab 7a7d5e7... ~ B 4 3
103 smartxr-5 43 dev-onelab 3cdedad... ~ B 2 1
102 smartxr-4 43 dev-onelab 16209 . ~ B 42 1
Items per page: | 10~ ‘ 1-40f4

Figure 76. Manage workload instances

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 88 of 111

&8s NEMO

Deletion
Deployment_CI
uster: dev-
onelab,

May Deployment

12 Deployment_Clu

ster: dev-onelab,

2025

Rendered

12 ' 09:32PM

Figure 77. Workload Instance lifecycle tj

The LCM collects information about the deployment of eac tance, the ReplicaSets and the
number of pods as it is provided by CMDT. Based on this §ata LCM displays the deployment tree of
the workload visualizing the Deployment controje™used to npdnage the ReplicaSets and pods in a tree-
like structure, Figure 78.

3877d15¢-bdeg-4bbe b 11e-166589e5006b
‘echo-server-integration-300-641509fc6b-2s1d4
+ staging-onelab

52680281-5874-4800-9348-5e8801391375

2 echo- ration-300-6.75097Cb-bE

= Replica Set server-integration- mgm
staging-onelab

D 8572051-8834-4110-3069-62164989CT Name - echo-server-integration-300-547501c6D

Name : echo-server-integration-300 Cluster : staging-onelab

£3305627-04ab-4018-b4d4-954c678061d
‘echo-server-integration-300-6415A9fc6b-mwx9
staging-onelab

+ 43a4dabe-a041-46db-bdd3- 4952871603
‘scho-server-integration-300-6¢1549fc5b-2075
staging-onelab

Figure 78. LCM workload deployment tree

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Dissemination: [PU [Version: [1.0 [Status: [Final

Document name: Page: 89 of 111

NEMO

While each workload instance is associated with one or more intents, the LCM dashboard provides
information about the attached intents and their status, Figure 79. This includes intent violations as
presented in the next section.

© Intents Management

Sesrch
[495552&

[orvse am |
Dy Status Intent Type Workload Instance ID Actions
114 FULFILLED Availability 4955528.. B » = &
13 Availability 4955528 B » = &
12 Availability 4955528 B » = &
m Availability 4955528 g » = @&

ltems per page: | 100 ~ ‘ 1-d0f4

Finally, the LCM interface shows resource provisionin
providing useful insights in cluster performance (CPU u
historical and runtime, Figure 81. A

2 Clusters Table

Search
D4 Name Status Endpoint CPUs Storage Memory Vram Actions

933189%... dev-onelab https://api.main.nemo.onelab.eu:6443 68 1620 172 0 L]
8d63cc0 test-cluster o https:/fapi. main.nemo onelab.eu:6443 10 300 120 0 L |
67¢21fc... pro-onelab https:/fapi.prod.nemo.onelab.eu:6443 32 1350 62 14 L HE
60azee’. k3s-onelab https:/fapi.s2.nemo.onelab.eu:6443 16 1080 32 0 |
TeS8cae. nemo-smart-farming https://83.235.169.221:35443 6 1000 8 0 n 3
179592b... staging-onelab https:/fapi.staging1.nemo.onelab.eu:6443 32 1080 62 0 n 8
142€334... energy https://comsensus eu:13387 5 5 5 0 L |

Items per page: 10 - 1-70f7

y Figure 80. Resource provisioning

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 90 of 111

CPU Usage
CPU Usage (GHz)

om0
om0
ssm00m
simom
oo
om0
o
o
4400.000
o
om0 R
@“\ﬁ EAF A S A A

Memory Usage

Memory Usage (GB)

N

Figure 81. Cluster perfygggance

5.4.2.8 The PPEF report intent violations to the Intent-ba

The PPEF reports the intents status for each wor| instang®’and the LCM displays the status of each
intent along with detailed information as presefited in Figure 82 if the intent is fulfilled and Figure 83 if

the intent has been violated. f*

t120
- Availability
Feasibility - FEASIBLE
Fulfilment Status * FULFILLED
Not Fulfilled State 2 COMPLIANT
Last Updated Time - 2025-05-28T04:43:14.3804682

‘Workload Instance ID * Start Date-time:

120 15/04/2025, 00:00:00

Intent Type * End Date-time

Availability 30/04/2025, 00:00:00

Target Name ‘Target Condition Target Value

| @O
availability IS_EQUAL_TO 920

Figure 82. Intent Fulfilled

Document name:

Q4.3 Advgnced NEMO platform & laboratory testing results. Page: 91 of 111
Final version

D4.3 |Dissemination: [PU [Version: [1.0 [Status: [Final

D S119
Name cloud_continuum

Feasibility I FEASIBLE

Fulfilment Status 2 NOT_FULFILLED

Not Fulfilled State - COMPLIANT

Last Updated Time ©2025-04-14T12:50:08 8820467

Workload Instance ID *

119

Intent Type *

cloud_continuum

Target Name Target Condition Target Value

Bo
isolatedConnectivity IS_EQUAL_TO true

Figure 83. Intent Violation

5.5 NEMO Secure Execution Environment

The following scenario focuses on the deployment o
Environment (SEE) component, starting from the meta-Ord)
and deletion of unikernels are essentially the same at this le

ikern ough the Secure Execution
i). The creation, modification,

Unikernel Creétion

Meta-Orchestrator RabbithMQ E Node

create unikernel

 read creation request

creation process

deployment

alt [success]

-

Figure 84. Unikernel creation sequence diagram

DA.3 Advgnced NEMO platform & laboratory testing results. Page: 92 6f 111
Final version

Reference: D4.3 |Dissemination: [PU [Version: [1.0 [Status: [Final

Document name:

ya

5.5.1

Test 5: Unikernels

Verification scenario

&8s NEMO

Objective Deploy Unikernels inside NEMO premises
Components e Meta-Orchestrator (MO)

e RabbitMQ

e SEE

Features to be | This scenario validates the deployment of unikernel into a specific

D

% h%EE interface is
components through

rmit technology solution

tested already deployed in a cluster and communicates with the rest of th
RabbitMQ. In particular, MO triggers this scenario to deploy
(unikernel). Af -~
Test setup SEE, RabbitMQ and MO are deployed in OneLab. A’\'
Steps a. Meta-Orchestrator sends a create unikernel e Jo RabbitMQ.
b. SEE reads the creation request from Rabbj
c. SEE performs the creation process inte
d. SEE deploys the created unikern: e N
e. Ifthe deployment is successful, S an Pk message to RabbitMQ.
f.

If there is an error, SEE iends an erfor message to RabbitMQ.

\ %

5.5.2 Results
Triggering the POST endpoint /publishTo

re details in Figure 85, MO send a message with the

following payload, as listed in Listjng 11, Yo the RabbitMQ queue called nemo.see.create, and if

everything is correct the request w,
and receives that message.

be similar to Listing 12. After that, the SEE interface consumes

"reply_to": "see-interf:
"verb": "create",
"body": {

"apiVersigiy:
daf

ame": "hermit-httpd-app"

ent",

"spec": {
"replicas": 1,
"selector": {
"matchLabels": {
"app": "hermit-httpd-app"

}
h
Document name: D4.3 Advgnced NEMO platform & laboratory testing results. Page: 93 0f 111
Final version
Reference: D4.3 |Dissemincﬁon: |PU |Version: |1 .0 Status: Final

ya

&8s NEMO

"template": {
"metadata": {
"labels™: {

"app": "hermit-httpd-app"

h
"spec": {
"runtimeClassName": "runh",
"containers": [
{
"name": "hermit-httpd",
"image": "ghcr.io/hermit-os/httpd:latest”,
"imagePullPolicy": "Always",

"ports™: [
{

"containerPort": 9975

I
"nodeSelector": {
"runtime": "runh"

11. Payload for endpoint

{

-4a5d-b137-475237d24972",
"message": "Mess, ed successfully",

"status": "ok"

@ Listing 12. MO message after sending

Document name: D4.3 Advqnced NEMO platform & laboratory testing results. Page: 94 0f 11]
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

see a

POST /publishToSee Using the next verbs: create, delete, apply A i
Name Description
info * Info to trigger the SEE component

object

(body) Example Value | Model

"body”: {
"additionalPropl™: {}

I
"reply_to”: "string”,
"verb": "create”

¥

Parameter content type

application/json ~
‘ Responses Response content type | application/json ~ ‘
Code Description
200 ok

Example Value | Mode!

"string”

Yy

RabbitMQ. If something is
is sending a message with a

Figure 85. publishToSee endpoi

Depending on the result, the SEE generates and queues a
wrong, the message appears as in Listing 13. Otherwisej e rv
correlation_id but without a payload Figure 86.

{
correlation_id: 4fa6082a-7479-4a5d-b137-47523£0249
"ErrStatus": {
"apiVersion": "v1",
"code": 404,
"details": {
"kind": "pods",
name": "nginx

}, A
"kind": "Status",

"message": "p
"metadata™;

\' not found",

Listing 13. SEE error response

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 95 0f 111

Message 1

The server reported 0 messages remaining.
Exchange | (AMQP default)

Routing Key | see-interface-response

Redelivered -

Properties | correlation_id: 4abalcch-e203-49ee-a208-9089a755b4f0
content_type: application/json

Payload
0 bytes

Encoding: string

Figure 86. SEE success message

In the end, depending on the action represented as the “verb” field in the payload ¢ int (€reate, apply,

or delete), the message is published in different queues (nemo.see.creat o.see.apply, or
nemo.see.delete).

nemo.see.*

, Eivdika
creat@/c«pok//:J.!;’.'(;":-Z

SEE Interface

MO API

Figure 87. Schematic of the communication channels used by the MO API and the SEE

D4.3 Advgnced NEMO platform & laboratory testing results. Page: 96 of 111
Final version

Reference: D4.3 IDissemincxiion: IPU |Version: |1.0 Status: Final

Document name:

6 Conclusions

In this document the latest updates regarding the WP4 tools (LCM, IBMC, MOCA and IBA) were
presented. The major highlight of this document is the set of integration workflow pipelines presented
in section 5. In this document the integration pipelines across WP2, WP3 and WP4 were extended to
support the complete integration and validation tests of the final NEMO meta-OS. This provides the
reader with a complete and up-to-date vision of what has been developed within the NEMO framework
as well as how the components interact with each other. In addition, this document is int d to be
used as the handbook of NEMO for other existing and future projects, a detailed user guidelineS\gf the
NEMO meta-OS was presented.

With the completion of the NEMO components’ development, a thorough testin d gration
procedure took place to guarantee that the initial objectives of the project as well arious KPIs
defined have been successfully met. The work carried out within the framework/6 P4 lead to a fully
functional and complete toolset that provides an easy-to-use ZeroDevO s%@ for managing
services in the form of workload across the IoT-Edge-Cloud continuum. &

idated and verified in the
ded in deliverable D5.4
, D5.4 is also forseen to
pen Call Projects in the context

Finally, the resulting final version of the NEMO meta-OS will be fu
framework of NEMO npilots. The corresponding information wi
“NEMO Living Labs use cases evaluation results. Final versio
contain results stemming from the integration activities ofghe NE
of NEMO meta-OS pilots.

&
S

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 97 of 111

/ References

[1] NEMO, "D4.2 - Advanced NEMO platform & laboratory testing results. Intermediate version,"
HORIZON - 101070118 - NEMO Deliverable Report, 2024.

[2] NEMO, "D4.1 - Advanced NEMO platform & laboratory testing results. Initial version,"
HORIZON - 101070118 - NEMO Deliverable Report, 2023.
[3] NEMO, "D1.2 - NEMO meta-architecture, components and benchmarking. Initj erspn,”
HORIZON - 101070118 - NEMO Deliverable Report, 2023.
2023. [OnhA

[4] GitLab, "The Role of Al in DevOps," Available:
https://about.gitlab.com/topics/devops/the-role-of-ai-in-devops/.

[5] Docker. [Online]. Available: https://www.docker.com/. [Accessed 23
[6] Flux, "Flux - the GitOps family of projects," 2023. [Online]. Avaj s://fluxcd.io.

[7] Flux, "Flux multi-tenancy," 2025. line]. Available:
https://fluxcd.io/flux/installation/configuration/multitenanc

[8] B. Ruecker, " The Microservices Workflow Automa t: The Role of the Workflow
Engine," 2020. [Online]. Available: https://cammyfda. log/2020/02/the-microservices-
workflow-automation-cheat-sheet-the-role- e-workfllew-engine/.

[9] Kubernetes, "Good practices for Wubernetds Secrets,” 2023. [Online]. Available:
https://kubernetes.io/docs/concepts/sp€ri cregb-good-practices/.

hg Kubernetes APL" 2023. [Online]. Available:
igf/controlling-access/.

[10] Kubernetes, "Controlling Acces
https://kubernetes.io/docs/concepts/se

[11] "Kustomize - Kubernete ative Configuration Management," [Online]. Available:
https://kustomize.io/. [Acces 23].
[12] NEMO, "D1.3 -e&NE itecture, components and benchmarking. Final version,"

HORIZON - 108070918 YEMO Deliverable Report, 2024.

[13] Keycloak, "httpf -keycloak.org," [Online]. Available: https://www .keycloak.org.

[15] OPE% priative, "OpenAPI Specification,” [Online]. Available: https://www.openapis.org.
024]

[16 bitMQ, "RabbitMQ," [Online]. Available: https://www.rabbitmg.com.

[17] Argo CD, "Introduction to ApplicationSet controller," 2023. [Online]. Available: https://argo-
cd.readthedocs.io/en/stable/operator-manual/applicationset/.

[18] Argo, "Argo CD - Declarative GitOps CD for Kubernetes," 2023. [Online]. Available:
https://argo-cd.readthedocs.io/en/stable/.

[19] Argo, "Argo Workflows," 2025. [Online]. Available: https://argoproj.github.io/argo-workflows/.

D4.3 Advanced NEMO platform & laboratory testing results.

Document name: . .
Final version

Page: 98 of 111

Reference: D4.3 |Disseminqtion: |PU |Version: |1.0 Status: Final

[20] NEMO, "D3.3 - NEMO Kernel. Final version," HORIZON - 101070118 - NEMO Deliverable
Report, 2025.

[21] gRPC, "gRPC - A high performance, open source universal RPC framework," 2023. [Online].
Available: https://grpc.io/.

[22] Google Cloud, "Cloud Endpoints for gRPC," 2023. [Online]. Available: Cloud Endpoints for
gRPC.

[23] R. Gancarz, "Why LinkedIn chose gRPC+Protobuf over REST+JSON: Q&A with Karthik
Ramgopal and Min Chen," 2023. [Online]. AVilable:
https://www.infoq.com/news/2023/12/linkedin-grpc-protobuf-rest-json/.

[24] Camunda, "Zeebe: Cloud Native Workflow and Decision Engine," 2023. [Onli].(Qlablez
https://camunda.com/platform/zeebe/.

[25] D. Goel, "Elevate Kubernetes Security with Zero Trust," 2023. 'ne]. Available:
https://d2iq.com/blog/elevate-kubernetes-security-zero-trust.

[26] A. Syed, "Zero Trust Security for Kubernetes with a Service Me 7 [Online]. Available:
https://www.hashicorp.com/blog/zero-trust-security-for-kubernet3 -a-service-mesh.

and governance," 2023.
[Online]. Available: https://konghqg.com/products/ko

[28] M. Palladino, "Service Mesh vs. API Gateway: t’s ’The’” Difference?,” 2020. [Online].
Available: https://konghq.com/blog/enterpri e-diffefence-between-api-gateways-and-service-
mesh.

[29] L. Krutov, "Architecting Zero Trust S
Available: https://www.nginx
with-nginx/.

bernetes Apps with NGINX," 2022. [Online].
1tecting-zero-trust-security-for-kubernetes-apps-

[30] Kata Containers, "About Kata

[31] Kepler Contributors, "Kube
Available: https: //susta

[32] Pixie, "Open E etes observability for developers," 2023. [Online]. Available:

," [Online]. Available: https://katacontainers.io.

ﬁment Power Level Exporter (Kepler)," 2023. [Online].

https://px.dev/.

[33] The Linux
2025].

[34] The u oundation, "Cloud Native Computing Foundation," [Online]. Available:
S: .cncf.io/. [Accessed 6 2025].

[35] Linux Foundation, "Falco," [Online]. Available: https://falco.org/. [Accessed 6 2025].

, "Kubernetes," [Online]. Available: https://kubernetes.io/. [Accessed 6

[36] "trivy-operator," [Online]. Available: https://github.com/aquasecurity/trivy-operator. [Accessed 6
2025].

[37] Flower Labs GmbH, "Flower," open source, [Online]. Available: https://flower.dev. [Accessed 6
2025].

[38] AsynvAPI Initiative, "Building the future of Event-Driven Architectures (EDA)," [Online].
Available: https://www.asyncapi.com. [Accessed 6 2025].

D4.3 Advanced NEMO platform & laboratory testing results.

Document name: . .
Final version

Page: 99 of 111

Reference: D4.3 |Disseminqtion: |PU |Version: |1.0 Status: Final

&3¢ NEMO

[39] Swagger, "Open API Specification," [Online]. Available: https://swagger.io/resources/open-api/.
[Accessed 6 2025].

[40] Swagger, "Swagger Editor,” [Online]. Available: https://swagger.io/tools/swagger-
editor/download/. [Accessed 6 2025].

[41] Robot Framework Foundation, "Robot Framework," [Online]. Available:
https://robotframework.org. [Accessed 6 2025].

[42] BlazeMeter, "Taurus," [Online]. Available: https://gettaurus.org. [Accessed 6 2025].
[43] Selenium, "Selenium," 2025. [Online]. Available: https://www.selenium.dev/.

[44] Istio, "The Istio service mesh," 2025. [Online]. Available: https://istio.io/lates ice-
mesh/. £ S

[45] Envoy, "Envoy Gateway," 2025. [Online]. Available: https:// gateway.envom.io.
[46] KongHQ, "Kong Gateway," 2025. [Online]. Available: https:/kafigh products/kong-

Y,QQ

&
S

D4.3 Advanced NEMO platform & laboratory testing results.

Document name: . .
Final version

Page: 100 of 111

Reference: D4.3 |Disseminction: |PU |Version: |1.0 Status: Final

&8s NEMO

Annex 1-Network Intfent

Intent:

id: '\''mncc_12sm 1'\''

userLabel: '\''cloud continuum'\"'
intentExpectations: -

expectationId: '"\''1'\''
expectationVerb: '\''DELIVER'\''
expectationObject:

objectType: '\''K8S L2 NETWORK'\''
objectInstance: '\''spain-network-8'\"'
objectContexts: -

contextAttribute: '\''name'\''
contextCondition: '\''IS EQUAL TO'\'"''

contextValueRange: '\''spain-network-8'\"'

contextAttribute: '\''providerName'\''
contextCondition: '\''IS EQUAL TO'\'"''
contextValueRange: '\''default-slice'\"''
contextAttribute: '\''domain'\''

contextCondition: '\''IS_EQUAL_TO'\''
contextValueRange: '\''api.main.nemo.onelab.eu'\"'
contextAttribute: '\''pod cidr'\"'

contextCondition: '\''IS EQUAL TO'\'"''
contextValueRange: '\''10.1.0.0/16"\""'
expectationTargets:

targetName: '\''isolatedConnectivity'\
targetCondition: '\''IS_EQUAL_TO'\''
targetValueRange: '\''true'\''
expectationId: '\''2'\"'

expectationVerb: '\''DELI ! !
(]

expectationObject:

objectType: '\''K8

CONFIG'\ "'
objectInstance: '\ etwork-8"\""
objectContextsy
contextAttrib : name'\''
contextCon onWy\''IS EQUAL TO'\''

1% Rage: '\''staging-2'\"'

tribute: '\''bearer token'\''
ondition: '\''IS EQUAL TO'\'"'

lueRange:
"\'"'eyJhbGci0iJSUzI1INiIsImtpZCI6I]jZ2Gbm42VVhCWVp4dVhRVEYwSGZTdnJIsZEAXX1VsX01SSG1GZz1FUGpualkifQ
.eyJhdWQiOlsiaHROCHM6Ly9rdWJlcm51dGVzImR1ZmEF1bHQuUC3Z 3 LmNsdXNOZXTubG9j YWwiLCIrM3MiXSwiZzXhwIjoxN
zc3NzIyODUyLCIpYXQiOjE3NDE3MjI4NTIsImlzcyI6Imh0dHBz01i8va3ViZXJuZXR1lcy5kZWZhdWx0LnN2Yy5ibHVZdGV
yImxvY2FsIiwianRpIjoiZWI20TRiMjYtZDg22S00NDIyLWIMZTkt ZWVkYzgwOTg30GI3Iiwia3ViZXJuzZXRlcy5pbylée
yJuYW11lc3BhY2UiO1iJuZWlvLW51dCIsInNlcnZpY2VhY2NvdW50Ijp7Im5hbWUi01IsMnNtLWNVvbnRyb2xsZXItbWFuYWd
1ciIsInVpZCI6IjdiYzIyMTRKLWZmMOGEENDImYi04YzYxLTczNJES5YmMMOMDhiYyJ9£fSwibmdmIjoxNzQxNzIyODUyLCJzd
WIi01iJzeXN0ZW06c2VydmljZWFjY291bnQ6bmVtbyluZXQ6bDJzbS1ib250cm9IsbGVyLWlhbmFnZXIifQ.aWg9F6wrwslk
nWryEWfkd710Nizjc47WWl-hyn-
WshkyJXKAQUJIF86WEFD5arbNIyGOglsNop92yN fSA FnHCv5F5S70YXExOBLIB3NDN3MCICAtklfWEFpZ hH1c2PW1A1l8Ua
23vogQyDhx4LFx8JR7xBJatY6JkxXKrhhILBIZCx7VVhIIEZ2BONiy90CpU2rvsN8YCBICETnDwimVEtQjZz5eG6TXZr8N6n

D4.3 Advanced NEMO platform & laboratory testing results.

Document name: . .
Final version

Page: 101 of 111

Reference: D4.3 |Disseminction: |PU |Version: |1.0 Status: Final

NEMO

xE1U068pgfo07z34GIVWWWWIdwL1gzSS5UAdLmlccx0XZutr9-9R1dFf]j6hvMnxKP-LXOYLkKVidtzeqr-
X8IrkAHDUM4IgOY1l c4fdC89Un6L-yOhOg'\""'

contextAttribute: '\''api key'\''
contextCondition: '\''IS EQUAL TO'\''
contextValueRange: '\'' T\

expectationTargets:

targetName: '\''isolatedConnectivity'\"'
targetCondition: '"\''IS_EQUAL_TO'\''
targetValueRange: '\''true'\''

expectationContexts:

contextAttribute:

contextCondition:

contextValueRange:

'\'"'k8s 12 network'\"'
"\''IS_EQUAL TO'\"'

'"\''spain-network-8'\""

contextAttribute: '\''namespace'\''

contextCondition: '\''IS EQUAL TO'\'"''

contextValueRange: '\''0937609e-a6c4-43d3-b0dd-2d7c3641eelc'\""
intentContexts:

contextAttribute: '\''NEMO WORKLOAD'\''

contextCondition:

contextValueRange:

intentPriority:

observationPeriod:

intentAdminState:

"\''TIS _EQUAL TO'\''
o\ '0937609ea6c443d3b0dd2d7c3641eeOCQ

60
"\'"'ACTIVATED'\'"'

Document name: D4.3 Advgnced NEMO platform & laboratory testing results. Page: 102 of 111
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

https://api.s2.nemo.onelab.eu:6443/

&l NEMO

Annex 2-LCM subcomponent

class WorkloadLifecycleManager:
"""MO integration
def parse lifecycle message (self, message):
message type = message['type']

instance id = message['workloadID']

timestamp = message['timestamp']

try:

workload document instance =
WorkloadDocumentInstance.objects.get (instance id=instance_id)

except WorkloadDocumentInstance.DoesNotExist:
LOG.error ('Invalid workload document instance id={}"'.formagd(in e 1id))

return

match message type:
case 'deployment':

WorkloadDocumentLifecycleEvent.object

workload document instance=workloa nt ZAnstance,

type=WorkloadDocumentLifecycleEvent.WorkloadpBcumentlLifefycleType.DEPLOYMENT,
deployment cluster=messflge['tardetCluster'],

timestamp=timestamp,

workload document instanc luster name = message['targetCluster']

workload docume pstance.status =
WorkloadDocumentInstance.Worklog DEPLOYED

type=WorkloadDo C ecycleEvent.WorkloadDocumentLifecycleType.MIGRATION,
igration from cluster=message['sourceCluster'],
migration to_ cluster=messagel'targetCluster'],

timestamp=timestamp,

workload document instance.cluster name = message['targetCluster']
workload document instance.save ()

case 'undeployment':
WorkloadDocumentLifecycleEvent.objects.create (

workload document instance=workload document instance,

type=WorkloadDocumentLifecycleEvent.WorkloadDocumentLifecycleType.DELETION,

deployment cluster=message['targetCluster'],

D4.3 Advanced NEMO platform & laboratory testing results.

Document name: . . Page: 103 of 111
Final version

Reference: D4.3 |Disseminction: |PU |Version: |1.0 Status: Final

NEMO

timestamp=timestamp,

workload document instance.cluster name = messagel'targetCluster']

workload document instance.status =
WorkloadDocumentInstance.WorkloadDocumentInstanceStatus.DELETED

workload document_ instance.save ()
case _
LOG.warning ('Got message type: %s', message type)

return

)

D4.3 Advanced NEMO platform & laboratory testing results.

Document name: . .
Final version

Page: 104 of 111

Reference: D4.3 |Disseminction: |PU |Version: |1.0 Status: Final

ya

Annex 3 — ServiceProviderModel

&3¢ NEMO

pragma solidity 20.8.0;

import "./NemoTokenEstimationSetupContract.sol";
import "./NemoFunds.sol";

import "./InfrastructureOwnerModel.sol";

contract ServiceProviderModel {
NemoTokenEstimationSetupContract public nemoTokenEstimationSetup;
NemoFunds public nemoFunds;
InfrastructureOwnerModel public infrastructure;

address public owner;

struct ServiceMetrics {
string serviceld;
string clusterld;

string region; 2
uint256 cpuUsage;
uint256 memoryUsage; v

uint256 clusterCpuUsage;
uint256 clusterMemoryUsage;

event ServiceComputeTokens(
string serviceld,
string clusterld,
uint256 cpu,
uint256 ram,

uint256 tokens
[]

mapping(string => stri

erviceProviderWorkrows;

mapping(string =zagiints blic greenEnergyRewards;

constructs

s§8 negfoTokenEstimationSetupContractAddress,
ess _nemoFundsAddress,
_infrastructure
H
nemoTokenEstimationSetup = NemoTokenEstimationSetupContract(
_nemoTokenEstimationSetupContractAddress
);
nemoFunds = NemoFunds(_nemoFundsAddress);
infrastructure = InfrastructureOwnerModel(_infrastructure);

/l Initiate greenEnergyRewards mapping

D4.3 Advanced NEMO platform & laboratory testing results.

Document name: . . Page: 105 of 111
Final version

Reference: D4.3 |Disseminction: |PU |Version: |1.0 Status: Final

ya

&3¢ NEMO

greenEnergyRewards['0%"] = 0;
greenEnergyRewards["20%"] = 20000000;
greenEnergyRewards["'40%"] = 40000000;
greenEnergyRewards["80%"] = 80000000;
greenEnergyRewards["100%"] = 100000000;

modifier checkRegistration(string memory serviceld) {
require(
InemoFunds.isCustomerRegistered(serviceld),
"The customer is already registered!"

modifier checkRegionData(string memory region) {
require(
nemoTokenEstimationSetup.isRegionSet(region),
"Data for region must be set before calling this function."

function register(
string memory serviceld

) public checkRegistration(serviceld) {
string memory _identifier = "ServiceProvider’
nemoFunds.registerCustomer(serviceld, _identi

ry serviceld) public {
nemoFunds.isCas w ed(serviceld),
"The customer is q tdred!"

nemoF .re Customer(serviceld);
P

fun nabledIngress(string memory serviceld) public {

reqdire(
nemoFunds.isCustomerRegistered(serviceld),
"The customer is not registered!"

nemoFunds.enabledingress(serviceld);

Document name: D4.3 Advgnced NEMO platform & laboratory testing results. Page: 106 of 111
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

ya

&3¢ NEMO

function computeCpuCredits(
ServiceMetrics memory _metrics,
uint256 _regionalCpuCosts,
uint256 _cpuBaseRate
) public pure returns (uint256) {
// CPU
uint256 _cpuTokens = 0;
uint256 _cpuUsage = _metrics.cpuUsage * 10 ** 3;

if (_cpuUsage > _regionalCpuCosts) {
_cpuTokens =
((_cpuUsage) / _metrics.clusterCpuUsage) *
10** 8 +
(_cpuBaseRate * 10 ** 5);

return _cpuTokens;

function computeMemoryCredits(;
ServiceMetrics memory _metrics, v

uint256 _regionalMemoryCosts,
uint256 _memoryBaseRate
) public pure returns (uint256) {
/I RAM
uint256 _ramTokens = 0;
uint256 _ramUsage = _metrics.memoryUsa 0

if (_ramUsage > _regionalMemoryCq
_ramTokens =

(_ramUsage / _metrics.cl
10** 8 +

(_memoryBa te&
}

return _rampigken

ge)

computeCredits(
\iC
) publi

require(

Metrics memory _metrics
checkRegionData(_metrics.region) {

nemoFunds.isCustomerRegistered(_metrics.clusterld),
"The cluster is not registered!"

);

require(
nemoFunds.isCustomerRegistered(_metrics.serviceld),
"The service is not registered!"

D4.3 Advanced NEMO platform & laboratory testing results.

Final version Page: 107 of 111

Document name:

Reference: D4.3 |Disseminction: |PU |Version: |1.0 Status: Final

ya

&3¢ NEMO

bool _highDemand,
uint256 _highDemandCost,
uint256 _regionalCpuCosts,
uint256 _regionalMemoryCosts
) = nemoTokenEstimationSetup.getRegionInfo(_metrics.region);

uint256 _cpuBaseRate,
uint256 _memoryBaseRate,
string memory _greenEnergy
) = infrastructure.getinfrastructureCostsAndGreenEnergy(
_metrics.clusterld

uint256 _tokens = 0;

uint256 _greenEnergyReward = 0;

/I CPU

uint256 _cpuUsage = _metrics.cpuUsage * 10 ** 3;

/IRAM
uint256 _ramUsage = _metrics.memoryUsage ‘al0

_tokens =
computeCpuCredits(_metrics, _regionalCpuC

computeMemoryCredits(
_metrics,
_regionalMemoryCostsQ

_cpuBaseRate) +

_memoryBaseRag

TR

if (_highDemangh {
_tokens hi mandCost;

} :
eck infrastructure green energy percentage and charge less
“eenEnergyReward = greenEnergyRewards[_greenEnergy];

if (_tokens >= _greenEnergyReward) {
_tokens -= _greenEnergyReward;

_tokens = _tokens / 1000;

nemoFunds.makeTransaction(

D4.3 Advanced NEMO platform & laboratory testing results.

Final version Page: 108 of 111

Document name:

Reference: D4.3 |Disseminction: |PU |Version: |1.0 Status: Final

|
0

0@ ® —

(!

NEMO

_metrics.serviceld,
_metrics.clusterld,
_tokens

)

emit ServiceComputeTokens(
_metrics.serviceld,
_metrics.clusterld,
_cpuUsage,
_ramUsage,
_tokens

)

>

O
w

Document name: D4.3 Advgnced NEMO platform & laboratory testing results. Page: 109 of 111
Final version
Reference: D4.3 |Disseminction: |Version: |1 .0 Status: Final

NEMO

Annex 4-Intent for network connectivity request

Intent for network connectivity request. L2S-M network request example.

Intent:
id: 'mncc_12sm_1'
userLabel: 'cloud_continuum'
intentExpectations:
- expectationld: 'l'
expectationVerb: 'DELIVER'
expectationObject:
objectType: 'K8S L2 NETWORK'
objectlnstance: 'spain-network'
objectContexts:
- contextAttribute: 'name’
contextCondition: 'I[S_ EQUAL_TO'

contextValueRange: 'spain-network’ ;
- contextAttribute: 'providerName'
contextCondition: 'IS EQUAL_TO' v

contextValueRange: 'default-slice’

- contextAttribute: 'domain’
contextCondition: 'I[S_ EQUAL_TO'
contextValueRange: 'api.main.nemo.onelab.eu'

- contextAttribute: 'pod_cidr'
contextCondition: 'I[S_EQUAL_TO'
contextValueRange: '10.1.0.0/16'

expectationTarget:

- targetAttribute: 'isolatedConnectivity'
targetCondition: 'IS EQUAL T
targetValueRange: 'true'®

- expectationld: '2' N
expectationVerb: 'DEL

expectationObject:

objectType: ' STER CONFIG'

ntextCondition: 'IS EQUAL_TO'
copiextValueRange: 'staging-1'
- contextAttribute: 'bearer_token'
contextCondition: 'IS EQUAL TO'
contextValueRange: 'eyJhbGciO...
- contextAttribute: 'api_key'
contextCondition: IS EQUAL TO'
contextValueRange: 'https://api.stagingl.nemo.onelab.eu:6443'

expectationTarget:

D4.3 Advanced NEMO platform & laboratory testing results.
Final version
Reference: D4.3 |Disseminction: |PU |Version: |1 .0 Status: Final

Document name: Page: 110 of 111

- targetAttribute: 'isolatedConnectivity'
targetCondition: 'IS EQUAL_TO'
targetValueRange: 'true’

expectationContexts:

- contextAttribute: 'k8s 12 network'
contextCondition: 'IS_ EQUAL_TO'
contextValueRange: 'spain-network'

- contextAttribute: 'namespace'
contextCondition: 'IS_ EQUAL_TO'
contextValueRange: 'cbcb208a-d535-434b-bb35-217a64bd516b'

- expectationld: '3'
expectationVerb: 'DELIVER'
expectationObject:

objectType: 'K8S_CLUSTER_CONFIG'

objectInstance: 'spain-network'

objectContexts:
- contextAttribute: 'name’
contextCondition: 'I[S_ EQUAL_TO'

contextValueRange: 'eyJhbGe..."
- contextAttribute: 'api_key'
contextCondition: 'I[S_EQUAL_TO'
contextValueRange: 'https://api.s2.nemo.onelab.eyagd4
expectationTarget:
- targetAttribute: 'isolatedConnectivity'
targetCondition: 'IS EQUAL TO'
targetValueRange: 'true'
expectationContexts:
- contextAttribute: 'k8s 12 networ]
contextCondition: 'IS EQU

contextValueRange/ Sgain-n

- contextAttribute: 'na

contextConditigga'T TO'
contextValugRange$ o-workload'
intentConte

ARgdibutcg NEMO_WORKLOAD'

Condition: 'IS_ EQUAL_TO'

tValueRange: 'cbcb208a-d535-434b-bb35-217a64bd516b'
intentPrilrity: 1

N

[¢[0)

observationPeriod: 60
intentAdminState: 'ACTIVATED'

contextValueRange: 'staging-2' ;
- contextAttribute: 'bearer_token'
contextCondition: 'IS_EQUAL_TO' v

&8s NEMO

D4.3 Advanced NEMO platform & laboratory testing results.

Document name: . .
Final version

Page:

111 of 111

Reference: D4.3 |Dissemincﬁon: |PU |Version: |1.0

Status:

Final

