The increasing availability of User-Generated Content during large-scale events is transforming spectators into active co-creators of live narratives while simultaneously introducing challenges in managing heterogeneous sources, ensuring content quality, and orchestrating distributed infrastructures. A trial was conducted to evaluate automated orchestration, media enrichment, and real-time quality assessment in a live sporting scenario. A key innovation of this work is the use of a cloud-native architecture based on Kubernetes, enabling dynamic and scalable integration of smartphone streams and remote production tools into a unified workflow.
The system also included advanced cognitive services, such as a Video Quality Probe for estimating perceived visual quality and an AI Engine based on YOLO models for detection and recognition of runners and bib numbers. Together, these components enable a fully automated workflow for live production, combining real-time analysis and quality monitoring, capabilities that previously required manual or offline processing. The results demonstrated consistently high Mean Opinion Score (MOS) values above 3 72.92% of the time, confirming acceptable perceived quality under real network conditions, while the AI Engine achieved strong performance with a Precision of 93.6% and Recall of 80.4%.
